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1 Introduction

Air-pollution exposure has been increasing over time and growing evidence has pointed to

this exposure as a high-risk factor for global health (Gakidou et al. 2017). Fine-particulate-

matter exposure, especially from PM2.5, has been indicated as the cause of millions of deaths

in the world, and negatively correlated with outcomes such as health, children’s cognitive

development, and productivity (Fisher et al. 2021; Fu, Viard, and Zhang 2021; Odo et al. 2023).

Additionally, more than half of the global population is exposed to shallow quality air (PM2.5

concentration of more than µg/m3) and this exposure has been increasing over time (Pirlea

and Huang 2019; Shaddick et al. 2020). In light of this, it is important to understand what is

the global distribution of air pollution across and within countries better understand the global

population risks of air pollution.

A large literature documents changing patterns of global climatic and pollution exposures,

however, the scientific literature generally focuses on variations in climatic measures across

locations and time, without tying the data to the geographical distribution of the population

experiencing these changes (Mehta et al. 2016; Tian et al. 2023). In social science, there is

also a rapidly growing empirical literature that uses available micro-data from parts of the

world to estimate the effects of pollution exposures on labor market productivity, health, as

well as educational outcomes (Brabhukumr et al. 2020; Gakidou et al. 2017; Odo et al. 2023).

These papers, however, do not provide global analyses of the overall pollution burdens facing

population from across the world.

This paper contributes to burgeoning literature that combines global population distribu-

tion and global air pollutant measurements to study global heterogeneities in population-

weighted air pollution burden (Shaddick et al. 2018; Van Donkelaar et al. 2021). Prior papers

in this literature have generally focused on comparing regional and national mean measures.

Our paper is the first to analyze inequalities in air pollution distributions across and within re-

gions and countries of the world. We accomplish this by decomposing the global population-

weighted air pollution distribution into across and within region and country components.

Additionally, we provide the first global analysis that maps global national and subna-

tional variations in air pollution to economic development as captured by GDP per capita. We

provide results on the direction and magnitude of the GDP per capita and air pollution associ-

ation globally and for each continent, and use continental and regional fixed effects to explain
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whether aggregate associations are due to across region or within region variabilities.

Our analysis is based on gridded high-resolution global data on pollution and population

and subnational GDP per capita data from around 2010, the year around which globally reli-

able measures of air pollution, population and GDP are available. For air pollution, we use

data on air pollution by aerosols, as captured by satellite-based Aerosol Optical Depth (AOD)

measurements (Xiong et al. 2020). We combine the air pollution by aerosol data with gridded

granular national population census and population register data (CIESIN Columbia Univer-

sity 2018). We compute in particular the relative burden of air pollution by aerosol facing

population in a particular gridded cell versus the global population-weighted mean exposure,

and we construct country-specific population distributions of air pollution burden based on

the geographical dispersion of population and air pollution within each country. Finally, we

combine the population-weighted air pollution data, aggregated to subnational levels, with

subnational GDP per capita data (Gennaioli et al. 2013; Kummu, Taka, and Guillaume 2018).

We find considerable global inequalities in population-weighted air pollution by aerosol

exposures. Population in Asia, the continent with the highest level of air pollution by aerosols,

face a mean exposure level that is 3.3 times larger than those faced by population in Oceania,

which has the lowest mean exposure among continents. Looking across regions within con-

tinents, we find that in Eastern Asia, the subcontinental region with the highest level of air

pollution by aerosols, population face a mean exposure level that is 6.0 times larger than that

faced by population in Australia and New Zealand, which have the lowest mean exposure

among subcontinental regions,

In terms of inequalities, across continents, population at the 80th percentile of the continen-

tal air pollution by aerosol distribution have between 28% (Europe) to 141% (Africa) greater air

pollution by aerosol exposures than population at the 20th percentile. Across subcontinental

regions, population at the 80th percentile of the regional air pollution by aerosol distribution

have between 2% to 208% greater air pollution by aerosol exposures than population at the 20th

percentile. Within countries, population at the 80th percentile of country-specific air pollution

by aerosol distributions have between 0% to 359% greater air pollution by aerosol exposures

than population at the 20th percentile.

For the global GDP per capita and air pollution by aerosol analysis, overall, we find a strong

negative global correlation. This indicates that globally, national and subnational economic

units with higher GDP per capita tend to have lower air pollution by aerosols. Specifically, us-
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ing subnational population-weighted data, we find that a doubling of GDP per capita is associ-

ated with a 11.8 percentage points reduction in the percentage deviation between a subnational

unit’s population-weighted air pollution by aerosol level and the global population-weighted

mean. This global association is largely explained by correlation between continental-level

mean GDP per capita and air pollution by aerosol.

Furthermore, we analyze the GDP and air pollution relationship within each continent.

Exploiting variabilities in subnational data after controlling for aggregate regional variabilities,

we find a positive association between air pollution by aerosols and GDP per capita in Africa

and Europe, but negative association in the Americas, Asia, and Oceania.

2 Data and Methods

2.1 Data and aggregation

Air pollution by aerosols as measured by AOD Aerosols are ensembles of suspended par-

ticles present in the Earth’s atmosphere. Atmospheric pollution by aerosols is important to

human health and well-being because higher amounts of aerosol particles degrade visibility

and can also damage health, especially when there is a higher concentration of PM2.5 parti-

cles that are smaller then 2.5 micrometers (Jacobson 2002). Aerosol Optical Depth (AOD) is a

satellite-based measure that captures the composition, sizes and concentration of aerosols by

measuring the magnitudes atmospheric light reflection and absorption across the globe (Leno-

ble, Remer, and Tanre 2013). Scaled between 0 to 1, an AOD value that is less than 0.1 indicates

crystal clear sky and clear satellite to earth surface visibility. In contrast, a AOD value close to

1 indicates very hazy conditions (NASA Earth Observatory 2024).

We use AOD measurements based on images collected by the TERRA satellite with its

MODIS instruments (Xiong et al. 2020), and we access the data via the NASA EarthData data

collection and using the OpenDAP protocol (Cornillon, Gallagher, and Sgouros 2003). On

each day in a particular year, tracking along TERRA’s orbital path across the globe, we down-

load AOD data at a spatial resolution of 3km × 3km and at all available 5 minute temporal

resolution units. For each day, this process generates a vector of latitude-, longitude-, and

time-specific AOD measurements.

Within each 1◦ × 1◦ longitude–latitude grid (cell), we compute average daily AOD values

based on the subset of the daily AOD measurement vector that fall within the geographical
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boundaries of each cell on that day. Repeating this across days during a year, we generate for

each cell, a vector of average daily AOD measurements. During each year, the length of these

cell-specific daily average AOD vectors is equal to the number of days in which valid AOD

measurements are available for a particular cell. On some days, there might be no cell-specific

AOD measurements due to high cloud fraction and invalid reflectance assumptions (Wang

et al. 2021) or due to limited overlaps between the cells and the daily orbital path (Xiong et

al. 2020).

Using the cell-specific vectors of average daily AOD measurements from a year, we com-

pute annual average AOD exposures for each cell, first averaging over the days in which cell-

specific measurements are available, and then separately averaging over all days after comple-

menting the observed averages with interpolated and extrapolated estimates on days without

cell-specific measurements. Due to the concentration of missing AOD data in regions with

the least population, our population-weighted AOD distributional results based on the raw

data and interpolated and extrapolated data are very similar. Our global inequality results

presented in the text are based on annual averages of the raw data.1

Global gridded population data In conjunction with the cell-specific AOD data, we generate

cell-specific global population estimates based on the Gridded Population of the World Ver-

sion 4 (GPWv4) dataset from the Center for International Earth Science Information Network

(CIESIN Columbia University 2018). The GPWv4 data contains population statistics from 241

global economies. Data is sourced in most cases from national and local statistical agencies,

and when that is not available, sourced from the United Nations.

The gridded GPWv4 data provides total population estimates at 30 arc-second grids (∼ 1km

at the equator), and is aggregated based on up to administrative level 6 population data

from global economies. For example, the gridded data is aggregated from population data

from 316,461 Brazilian sectors, 43,878 Chinese townships, 5,967 Indian sub-districts, 774 Nige-

rian local government areas, and 10,535,212 US census blocks. To allow for the calculation

population-weighted AOD data, we aggregate the GPWv4 population estimates up to 1◦ × 1◦

longitude–latitude grid, which matches up with the resolution of our cell-specific annual av-

erage AOD exposures data.

Due to variabilities in census survey and population register data availability, GPWv4 pop-

1. See Appendix Figure C.1 for a visualization of the number of days in 2010 with AOD measurements across
global cells.
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ulation data are sourced between the years 2001 and 2015, with the center of the calendar year

distribution at around 2010. Specifically, data from 27% of the economies are based on 2010

census and population register data, 62% and 83% of the economies’ data come from within

one and three years of 2010, and about 8% of the economies have data sourced from outside

of four years of 2010. To appropriately match up the time-frame of the population and AOD

data, we use cell-specific annual average AOD exposure data in 2010.

Subnational GDP data We complement global measurements of air pollution by aerosols

and population with data on the relative levels of economic development as captured by GDP

per capita. Specifically, we use national and subnational from the Gridded global datasets for

Gross Domestic Product (Kummu, Taka, and Guillaume 2018), which is based on subnational

GDP per capita data from Gennaioli et al. (2013). The GDP per capita values are adjusted for

purchasing price parity and based on 2005 international dollars.

Gennaioli et al. (2013) collected subnational GDP data from 1569 subnational first-level or

equivalent administrative units from the largest 110 economies up to 2010. These economies

accounted for 97% of global GDP in 2010. Kummu, Taka, and Guillaume (2018) augmented

the dataset with national GDP data from economies without subnational data, filled in miss-

ing subnational GDP values by interpolating based on geographically and temporally neigh-

boring data-points around missing values, and extended the dataset time-frame to 2015 by

extrapolating based on trends up to 2010.

Considering jointly the temporal availability of AOD, pollution, and GDP data, we use the

2010 subnational and national GDP per capita estimates from Kummu, Taka, and Guillaume

(2018).

2.2 Population weighted distributional statistics for AOD

Population-weighted AOD distributions To analyze population-weighted air pollution by

aerosol distributions, we define a discrete distribution of 2010 annual average AOD values

over the set of all populated cells, where the cell-specific population mass is determined by

GPWv4-based population estimates from around 2010. Specifically, let sc be the share of global

population in cell c, ac be the average annual AOD at cell c, and C be the set of all gridded cells

where sc > 0. The global population-weighted annual average AOD distribution function,

which provides the share of global population experiencing lower than a∗ levels of annual
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average AOD, is equal to:

F(a∗) = P(a < a∗) =
∑
c∈C

sc · 1 {ac < a∗} . (1)

To compare aerosol distributions conditional on regional groupings based on suprana-

tional, national, and subnational boundaries, we define Cr ⊆ C as the set of populated cells

that intersect with the boundary enclosures of supranational, national, or subnational loca-

tion r. For boundary data, we use national boundary data available in the GPWv4 population

dataset (CIESIN Columbia University 2018), and the subnational boundary data embedded in

the subnational GDP data from (Kummu, Taka, and Guillaume 2018). The share of popula-

tion in cell c conditional on location grouping r is sc,r = sc
(
∑

ĉ∈Cr
sĉ)

, and the locational AOD

distribution function is:

Fr(a
∗) = Pr(a < a∗) =

∑
c∈Cr

sc,r · 1 {ac < a∗} . (2)

Given the locational distribution function, we compute key distributional statistics for each

location r. The mean and variance of the location r-specific distributions are

µr =
∑
c∈Cr

sc,r · ac

and σ2
r =

∑
c∈Cr

sc,r · (ac − µr)
2 .

(3)

The global weighted mean is µglobal =
∑

c∈C sc · ac. In our empirical analysis, we compute

global, continental, regional, national, and subnational population weighted annual mean

AOD exposures.

Given the discrete mass distribution over cells, the location distribution function Fr(a
∗) is

not invertible. Hence, we define the τth percentile of the locational distribution as the mini-

mum a∗ value where the share of population in location r with less than a∗ level of annual

average AOD is greater or equal to τ
100 , specifically:

percentiler(τ) = min
{
a∗ : Fr(a

∗) ⩾
τ

100

}
. (4)

Discussions in our empirical analysis focus on location-specific 20th and 80th as well as 10th and

90th percentiles, and use relative percentile ratios as an additional measures for within location
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distributional variabilities.

Relative exposure and excess burden To measure relative exposures, we compute what we

call excess aerosol burden, ec,r̂, which is the percentage deviation between cell-specific AOD

value ac and location-specific AOD value average µr̂:

ec,r̂ =
ac − µr̂

µr̂

=
ac

µr̂

− 1 . (5)

When r̂ includes all global cells, we have ec,global, the global excess aerosol burden. We also

divide weighted mean from location r against that of another location r̂:

er,r̂ =
µr − µr̂

µr̂

=
µr

µr̂

− 1 . (6)

When r is a country and r̂ includes all global cells, ecountry,global is the country-specific excess

aerosol burdens relative to the global mean. A global excess aerosol value of 0 indicates that

a location has the same AOD measure as the global mean, and a value of 0.5 or −0.5 indicates

that a location’s AOD measure is 50 percent greater or smaller than the global mean.

As an additional interpretation of the ratio of the weighted means of a subset over a super-

set, er,global can also be expressed as:

er,global =

Location r pop-weighted pollution share︷ ︸︸ ︷((∑
c∈Cr

sc
)
· µr

µglobal

)
(∑

c∈Cr

sc

)
︸ ︷︷ ︸

Location r population share

− 1 =
µr

µglobal
− 1 . (7)

A value of 0.5 or −0.5 for er,global indicates that location r’s share of global population-weighted

air pollution is 50 percent greater or smaller than location r’s share of global population.

AOD and PM2.5 As a satellite-based measure of air pollution by aerosols, AOD measure-

ments increase with greater concentrations of atmospheric particles, including PM2.5 particles.

While our analysis is focused on the distribution of air pollution by aerosols as measured

by AOD, to help provide additional interpretation of our AOD results, in our presentation

and discussion of results, we provide results both in AOD as well as in estimated AOD-

transformed PM2.5 scales.
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While AOD captures directly visibility experiences, the best-fitting model that maps be-

tween atmospheric aerosol measurements and on-the-ground ambient particulate matter ex-

posure experienced by people is parameterized by heterogeneous topological and meteoro-

logical circumstances (Chu et al. 2016; Holben et al. 1998; Van Donkelaar et al. 2016; Yang

et al. 2019). Overall, atmospheric-based AOD measures have been found to substantively

and positively correlate with ground-based aerosol and PM2.5 measurements (Bibi et al. 2015;

Bright and Gueymard 2019; Chu et al. 2016), and AOD is often used as a predictor of ambient

PM2.5 exposures with locally and temporally calibrated prediction functions (Chen et al. 2022;

Fu et al. 2018; Yang et al. 2019).

To create a globally consistent and transparent scale, we use a global linear model to relate

our AOD estimates to existing global estimates of PM2.5. Specifically, we relate the cell-specific

annual average AOD values we derived to global gridded estimates of surface PM2.5 concen-

tration derived based on models that use satellite-based AOD measures as inputs and ground-

based PM2.5 data for calibration and model validation (Hammer et al. 2020). Regressing the

PM2.5 values from Hammer et al. (2020) on our AOD measures, we find that a bivariate linear

model provides a reasonable global fit with an R2 of 0.4. We obtain similar fit and estimates

when we restrict the data to only populated cells or when we use all available cells, and higher

polynomial orders do not significantly improve the fit.

In our results discussions, we also compare the AOD-transformed PM2.5 measures to the

WHO interim targets for particulate matter air pollution.2 These targets are used as guidelines

for classifying the severity of PM2.5 exposures. The WHO guideline recommends lowering

annual average exposure levels to less than 35µg/m3, 25µg/m3, 15µg/m3, and 10µg/m3 as

interim targets 1, 2, 3, and 4.

3 Within and across country distributions of air pollution by aerosols

Combining global AOD measures and population data, we present in this section the over-

all population-weighted global distribution of air pollution by aerosols. In contrast to prior

studies on global population-based inequality in ambient air pollution, which have focused on

comparing means across regions and countries (Shaddick et al. 2018; Van Donkelaar et al. 2021;

Van Donkelaar et al. 2016), we study global inequalities based by conducting comparisons

2. The report can be found here https://www.who.int/publications/i/item/9789240034228
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within and across region as well as countries.

3.1 Global distributions

Overall global distribution Figure 1 presents histograms for the global relative distribution

of air pollution by aerosols, measured in units of excess aerosol burden. The country-based

result in Panel (a) shows the country-aggregate population weighted distribution of country-

specific within-country population-weighted means. The cell-based distribution in Panel (b)

uses cell-specific results, weighted by cell-specific population estimates.3

Panel (a)’s country-level distribution of global excess aerosol burden ranges from -0.81 to

1.18, and has an 80th percentile that is 1.44 times larger relative to its 20th percentile. In contrast,

Panel (b)’s cell level distribution of global excess aerosol burden ranges from approximately

-1.0 to 10.06, and has an 80th percentile that is 3.62 times more exposed than the 20th per-

centile. Comparisons between the panels demonstrate that country-level information, even

when properly weighted by within country distributions, masks the inequalities across cells

within countries. Our analysis in the following sections focus on population-weighted cell-

based distributions.

Global dispersion map Figure 2 presents a global map of the relative distribution of air pol-

lution by aerosols in Panel (a). The map matches cell-specific AOD to cell locations. The colors

correspond to levels of global excess aerosol burdens—darker shades of green (red) represent

greater magnitudes of negative (positive) excess burdens.

The map shows that Asia and Africa have relatively higher levels of air pollution by aerosols.

Focusing on countries, India, China, and Pakistan stand out as large countries with areas expe-

riencing high levels of excess aerosol burdens. In contrast, Australia, Mexico, and Argentina

are also large economies, but have relatively lower levels of excess aerosol burdens. Addi-

tionally, there are variations in the within-country heterogeneities of exposures. For example,

locations in the southeastern and northwestern regions of China have high excess burdens,

but areas in northern and southwestern China have relative lower levels of excess burdens. In

contrast, countries within Western Europe and North America tend to have limited variations

concentrated around lower levels of excess burdens.

While the world map provides a useful visualization of the global dispersion of air pollu-

3. In Appendix Figure C.2, we present un-weighted histograms.
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tion, it does not show the relative population shares facing these heterogeneous burdens across

locations.

Population-weighted distributions across continents In Panel (b) of Figure 2, we present

continent-specific air pollution distributions that combine the distributions of population and

excess aerosol burdens across cells.

Comparing continents at the extremes, the average individual in Asia is 3.32 times more

exposed to air pollution by aerosols than the average individual in Oceania. Asia and Oceania

have average excess burdens of 0.26 (≈ 29.10µg/m3 of PM2.5) and -0.63 (≈ 8.76µg/m3 of

PM2.5). This means that Asia’s and Oceania’s global shares of air pollution by aerosols are 26%

larger and 63% smaller than their global population shares.

Africa is has the second highest mean exposure with a approximate average PM2.5 value of

19.91µg/m3, followed by Europe and the Americas at 14.32µg/m3 and 12.11µg/m3. Oceania

is the only continent with average PM2.5 reaching WHO interim target 4, which suggests that

a considerable share of the world lives in places where air pollution by aerosol exposures are

above recommended healthy condition levels.

In addition to the means, the Panel (b) of Figure 2 also shows heterogeneities in the population-

weighted dispersion of excess aerosol burdens within each continent. The Americas, Europe,

and Oceania have distributions with relatively limited variabilities. Europe is the most equal

continent in the world where population at the 80th percentile of excess aerosol burden are

only 28% more exposed than those at the 20th percentile. In contrast, distributions in Africa

and Asia are more dispersed. Populations at the 80th percentile of the aerosol distribution are

141% and 109% more exposed than population at the 20th percentile in Africa and Asia, re-

spectively. Further at the tails, the exposure faced by populations at the 90th percentile of the

aerosol distribution are 227% and 185% higher than those at the 10th percentile in Africa and

Asia, respectively.

3.2 Distributions across and within regions and countries

In this section, we decompose the global air pollution by aerosol distribution into sub-continental

region- and nation-specific components. We present the results in continent-specific Figures 3

to 6. In each figure, Panel (a) presents air pollution by aerosol distributions by sub-continental

group (e.g., Northern Africa, East Asia), and Panel (b) highlights the 20th and 80th percentiles
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and means of country-specific distributions. Both results are based on population-weighted

cell-level results.

There are substantial differences in means and variabilities across sub-continental regions.

In terms of means, Eastern Asia has the highest mean AOD of 0.66 (≈ 33.68µg/m3 of PM2.5),

which is just below WHO interim target 1. Australia and New Zealand have the lowest mean

AOD of 0.11 (≈ 7.65µg/m3 of PM2.5), which has reached WHO interim target 4. In terms

of variabilities, the ratios of exposure for population at the 80th to 20th percentiles for sub-

continental regions range between 1.02 to 3.08, and the 90th to 10th percentile ratios range

between 1.06 to 4.31.

Inequalities within Africa Figure 3 shows air pollution by aerosol distributions for coun-

tries in Eastern, Middle, Northern, Southern, and Western Africa. Results show substantial

heterogeneities in within-region aerosol exposures.

Western Africa has the highest average annual AOD at 0.51 (≈ 26µg/m3 of PM2.5), almost

reaching WHO interim target 2. Southern Africa has the lowest average annual AOD at 0.14

(≈ 9.05µg/m3 of PM2.5), which exceeds WHO interim target 4.

The most populous African country, Nigeria, has an annual average AOD of 0.56 (≈ 28.98µg/m3

of PM2.5), which is behind WHO interim target 2. Nigeria’s average exposure level corre-

sponds to a global excess aerosol burden of 0.24, meaning that Nigeria’s global share of air

pollution by aerosols is 24% larger than its population share. Exposure inequalities are signif-

icant within Nigeria—Nigerian population at the 80th (90th) percentile of aerosol distribution

are 77% (106%) more exposed than those at the 20th (10th) percentile. One of the least populous

countries in Africa, Sao Tome and Principe, has an average annual AOD of 0.47 (≈ 24.65µg/m3

of PM2.5), just passing WHO interim target 2. In contrast to Nigeria, relative population expo-

sure percentiles are close to 1 due to the small size of the country.

At 0.66 (≈ 35.18µg/m3 of PM2.5), Congolese population face the highest average annual

AOD in Africa, which lags behind WHO interim target 1. Congo’s global share of air pollution

by aerosols is 53% larger than its population share. Exposure inequalities are limited within

Congo—Congolese population at the 80th (90th) percentile of aerosol distribution are 15% (22%)

more exposed than those at the 20th (10th) percentile. In contrast, at 0.09 (≈ 6.42µg/m3 of

PM2.5), population in Lesotho face the lowest average annual AOD in Africa, which surpasses

significantly WHO interim target 4. Lesotho’s global share of air pollution by aerosols is 81%
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smaller than its population share. Exposure inequalities are limited except at the end tails

within Lesotho—Lesothoan population at the 80th (90th) percentile of aerosol distribution are

0% (40%) more exposed than those at the 20th (10th) percentile.

Inequalities within Americas Figure 4 shows air pollution by aerosol distributions for coun-

tries in the Caribbean, Central America, Northern America, and South America. Compared to

Africa and Asia, distributions in regions in the Americas have limited variabilities.

South America has the highest average annual AOD at 0.22 (≈ 12.93µg/m3 of PM2.5). Cen-

tral America has the lowest average annual AOD at 0.19 (≈ 11.65µg/m3 of PM2.5). All regions

in the Americas, on average, have reached WHO interim targets 3.

The most populous country in the Americas, the United States of America, has an annual

average AOD of 0.19 (≈ 11.67µg/m3 of PM2.5), close to reach WHO interim target 4. The

US’s average exposure level corresponds to a global excess aerosol burden of -0.56, meaning

that the US’s global share of air pollution by aerosols is 56% smaller than its population share.

Exposure inequalities are important but limited in the US—Americans population at the 80th

(90th) percentile of aerosol distribution are 36% (71%) more exposed than those at the 20th (10th)

percentile. One of the least populous countries in the Americas, Saint Lucia, has an average

annual AOD of 0.21 (≈ 12.49µg/m3 of PM2.5). Relative population exposure percentiles is

equal to 1 in Saint Lucia.

At 0.34 (≈ 18.55µg/m3 of PM2.5), Colombian population face the highest average annual

AOD in the Americas, which is behind WHO interim target 3. Colombia’s global share of

air pollution by aerosols is 24% smaller than its population share. Exposure inequalities are

important but limited within Colombia—Colombian population at the 80th (90th) percentile of

aerosol distribution are 28% (55%) more exposed than those at the 20th (10th) percentile. In con-

trast, at 0.10 (≈ 7.27µg/m3 of PM2.5), population in Chile face the lowest average annual AOD

in the Americas, which achieves WHO interim target 4. Chile’s global share of air pollution by

aerosols is 77% smaller than its population share.

Inequalities within Asia Figure 5 shows air pollution by aerosol distributions for countries

in Central, Eastern, Southeastern, Southern, and Western Asia. Results show substantial het-

erogeneities in within-region and within-country aerosol exposures.

Eastern Asia has both the highest average levels of exposure and variabilities in expo-

12



sures, and Central Asian has the lowest. Eastern Asia has an average annual AOD of 0.66

(≈ 33.68µg/m3 of PM2.5). Eastern Asian population at the 80th percentile of aerosol distri-

bution are 158% more exposed than those at the 20th percentile, and its population at the 90th

percentile of aerosol distribution are 223% more exposed than those at the 10th percentile. Cen-

tral Asia has an average annual AOD of 0.36 (≈ 19.49µg/m3 of PM2.5), reaching WHO interim

target 3. Central Asia’s population at the 80th (90th) percentile of aerosol distribution are 64%

(110%) more exposed than those at the 20th (10th) percentile.

The most populous Asian country, China, has an annual average AOD of 0.7 (≈ 35.58µg/m3

of PM2.5), which is behind WHO interim target 1, indicating very hazardous levels of average

air pollution by aerosols. China’s average exposure level corresponds to a global excess aerosol

burden of 0.55, meaning that China’s global share of air pollution by aerosols is 55% larger than

its population share. Exposure inequalities are large within China—Chinese population at the

80th (90th) percentile of aerosol distribution are 111% (216%) more exposed than those at the

20th (10th) percentile. One of the least populous countries in Asia, Qatar, has an average annual

AOD of 0.60, which is similar to the level in China. Relative population exposure percentiles

are equal to 1 due to the geographical confines of Qatar.

In Asia, populations in Kuwait and East Timor are at the opposite ends of the air pollution

by aerosol exposure spectrum. Both countries’ relative within country exposure percentiles

are close to 1. At 0.99 (≈ 49.06µg/m3 of PM2.5), Kuwaiti population face the highest aver-

age annual AOD in Asia, which is substantially behind WHO interim target 1. In contrast, at

0.17 (≈ 10.74µg/m3 of PM2.5), East Timor population have the lowest average annual AOD

in Asia, which almost achieved WHO interim target 4. In terms of global excess aerosol bur-

dens, Kuwait’s share of global ambient air pollution by aerosol is 118% larger than its global

population share, and East Timor’s air pollution share is 60% less than its population share.

Inequalities within Europe Figure 6 shows air pollution by aerosol distributions for coun-

tries in Eastern, Northern, Southern, and Western Europe. Compared to Africa and Asia, dis-

tributions in European regions have limited variabilities.

Eastern Europe has the highest average annual AOD at 0.28 (≈ 15.53µg/m3 of PM2.5), just

reaching WHO interim target 3. Southern Europe has the lowest average annual AOD at 0.21

(≈ 12.51µg/m3 of PM2.5), exceeding interim target 3.

The most populous European country, Russia, has an annual average AOD of 0.29 (≈
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16.39µg/m3 of PM2.5), which is behind WHO interim target 3. Russia’s average exposure level

corresponds to a global excess aerosol burden of -0.34, meaning that Russia’s global share of

air pollution by aerosols is 34% smaller than its population share. Exposure inequalities are

significant within Russia—Russian population at the 80th (90th) percentile of aerosol distribu-

tion are 67% (130%) more exposed than those at the 20th (10th) percentile. One of the least

populous countries in Europe, Iceland, has an average annual AOD of 0.21 (≈ 12.68µg/m3

of PM2.5), close to reaching WHO interim target 4. Despite its limited population, there are

exposure variabilities in Iceland due to its large geography—Icelandic population at the 80th

(90th) percentile of aerosol distribution are 39% (49%) more exposed than those at the 20th (10th)

percentile.

Russia has the highest average annual AOD in Europe. In contrast, at 0.15, population in

Norway face the lowest average annual AOD in Europe. Norway’s global share of air pollution

by aerosols is 65% smaller than its population share. Exposure inequalities are limited but

present in Norway—Norwegian population at the 80th (90th) percentile of aerosol distribution

are 21% (31%) more exposed than those at the 20th (10th) percentile.

Inequalities within Oceania Figure 7 shows air pollution by aerosol distributions for coun-

tries in Oceania, which has a small number of countries dominated in population by Australia,

Papua New Guinea, and New Zealand. Melanesia has the highest average annual AOD at 0.20

(≈ 12µg/m3 of PM2.5), which is just above WHO interim target 4. As a region, Australia and

New Zealand have the lowest average annual AOD at 0.11 (≈ 7.65µg/m3 of PM2.5), which ex-

ceeds WHO interim target 4. Compared to the rest of the world, all populated cells in Oceania

have relative low levels of air pollution by aerosol exposures.

4 Air pollution by aerosols and GDP per capita

In this section we analyze the national and subnational level relationships between air pol-

lution by aerosols, as measured by AOD, and economic development, as measured by GDP

(PPP-adjusted) per capita (Gennaioli et al. 2013; Kummu, Taka, and Guillaume 2018). Specif-

ically, we regress GDP per capita on global excess aerosol burdens at the national and sub-

national levels. We allow for homogeneous or heterogeneous bivariate relationships across

continents and account for continental and sub-continental regional fixed effects. We present
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our results in Table 1 and Figure 8. Results from various estimations jointly inform the di-

rection and magnitude of the GDP and aerosol association globally and for each continent,

and explain whether the findings are due to across region—variations in regional means—or

within region—variations in national and subnational values conditional on regional means—

associations.

Global association In this section, we analyze the global association between air pollution

by aerosols and GDP per capita. We find a strong negative association using both national and

subnational data, which are largely explained by associations of continental means.

In Table 1, the global country-level result from column (1) of Panel (a) presents the slope

from a bivariate regression of excess aerosol burden on GDP per capita, treating each coun-

try with equal weight. We find an estimated slope of -0.075 (s.e. 0.018). This means that a

doubling of GDP per capita is associated with reducing a country’s excess aerosol burden by

7.5 percentage points—this is a 7.5 percentage points reduction in the percentage deviation

between the country-specific AOD value the the global mean. In column (2) of Panel (a), we

incorporate in country-specific weights, which leads to a doubling of the slope coefficient to

-0.144 (s.e. 0.023). This means that countries with larger population tend to have a stronger

negative aerosol to GDP associations.

Given the large heterogeneities in within country air pollution by aerosol distribution as

well as large heterogeneities in economic development within countries, patterns based on

national aggregates might differ from subnational results. In columns (4) and (5) of Panel

(a), we estimate the same relationships as in columns (1) and (2) of Panel (a), but using more

granular subnational data. We find similar negative slopes of -0.083 (s.e. 0.007) and -0.118 (s.e.

0.008) from the equal weight and population-weighted results.

In both national and subnational regressions, variations in global GDP per capita explain

a significant proportion of variabilities in excess aerosol burden. From the national results,

for the unweighted and weighted regressions, 9% and 19% of the variabilities in air pollution

by aerosols are accounted for by variabilities in GDP per capita, respectively. For subnational

results, the shares of variabilities explained are still substantially at 4% and 5% for the un-

weighted and weighted regressions, respectively.

There are large differences in mean levels of economic development and air pollution across

continents, as is visible from the differentiated concentration of countries from each continent
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along the x-axis and y-axis in Figure 8. Specifically, Africa and Asia populate all the quad-

rants of the figure. In contrast, Europe, the Americas, and Oceania are concentrated in the

lower quadrants with dispersion in economic activities but limited variations in air pollution.

We analyze the extent to which the air pollution by aerosol and GDP per capita association

just documented is explained by the association in continental-level means. We accomplish

this in columns (3) and (6) of Panel (a) by introducing continental-level fixed effects to the

weighted national and subnational regressions from columns (2) and (5). Globally, we con-

tinue to find that higher GDP per capita is associated with less aerosol exposures, but the

relationship is significantly weakened—the national-level slope estimate is -0.037 (0.024) and

the subnational-level slope estimate is -0.009 (0.009). This result indicates that continental-level

mean correlations explain most of the global aerosol and GDP correlation.

Continent-specific Associations In this section, we allow for heterogeneous associations be-

tween air pollution by aerosols and GDP per capita in each continent. The previous section

assumed that this association is homogeneous across all countries, but depending on the pre-

dominant stage that countries in a continent are undergoing, the relationship between air pol-

lution and economic development might differ. In Panel (b) of Table 1, we present estimates

for continent-specific associations by allowing for both continent-specific fixed effects as well

as continent-specific slopes.

Focusing on the national and subnational population-weighted results in columns (2) and

(5) in Panel (b), we find significant variations in the magnitudes of aerosol and GDP associa-

tion by continents. We find positive slopes for Africa with estimates of 0.023 (s.e. 0.054) and

0.052 (s.e. 0.020) using national and subnational data. The subnational estimate shows that a

doubling of GDP per capita for a subnational unit in Africa is associated with a 5.2 percentage

points increase in the percentage deviation between the subnational AOD value the the global

mean. In contrast, we find significant negative associations in Europe, the Americas, and Ocea-

nia, with slopes estimates of -0.016 (s.e. 0.006), -0.019 (s.e. 0.005), and -0.071 (s.e. 0.006) from the

subnational results. These indicate that in these areas, higher levels of economic development

is associated with lower levels of air pollution by aerosol. Our results for Asia is statistically in-

significant, indicating a lack of relationship between economic development and air pollution

at the continental level across Asia. We present continent-specific scatter plots using national

and subnational data in Appendix Figure C.5.
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In columns (3) and (6) of Panel (b), we continue to analyze continent-specific correlations

after adding in sub-continental regional group fixed effects. We previously documented sig-

nificant heterogeneities in sub-continental regional air pollution by aerosol distributions, es-

pecially in Asia and Africa. Within each continent, regional average associations between

economic development and air pollution could reinforce or mask the GDP and aerosol as-

sociations across subnational economic units within each region.

Including subcontinental regional fixed effects and focusing on the subnational results from

column (6), our results for Africa, the Americas, Oceania, and Asia are in the same direction

but stronger compared to results from column (5) without the subcontinental regional fixed

effects. Specifically, we find a positive slope estimate of 0.088 (s.e. 0.023) for Africa. For the

Americas and Oceania, we find slope estimates of -0.022 (0.008) and -0.077 (s.e. 0.009). For

Asia, the insignificant negative association from column (5) is strengthened to a negative slope

of -0.099 (s.e. 0.022)—this means that a doubling of GDP per capita for a subnational unit in

Asia is associated with a 9.9 percentage points reduction in the percentage deviation between

the subnational AOD value the the global mean. The strengthening of the magnitudes of the

slope estimates indicates that the association between GDP and aerosols across subcontinental

regions and within subcontinental regions tend to be in opposite directions, especially for Asia.

In contrast to the other continents, in Europe, the slope switches signs after including sub-

continental regional fixed effects, column (6) reports a positive slope of 0.053 (s.e. 0.008). This

means that looking only at within region variations in GDP and aerosols, a doubling of GDP

per capita for a subnational unit in Europe is associated with a 5.3 percentage points increase in

the percentage deviation between the subnational AOD value the the global mean. The switch

in the sign of the slope indicates that in Europe, regions with higher average GDP per capita

tend to have lower average levels of air pollution by aerosols, but controlling for regional

means, subnational units with higher GDP tend to have higher air pollution.

5 Discussion and Conclusion

In this paper, using data from around 2010—the most recent year around which reliable granu-

lar global population, air pollution by aerosol, and GDP per capita data are jointly available—

we document the global relative distribution of air pollution by aerosols across and within

regions and countries, and we analyze the global and continental associations between air
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pollution by aerosol and GDP per capita.

Our focus on population-weighted distribution of air pollution contrasts with much of the

focus in the scientific literature on climate change, which focuses largely on the distribution

of climatic burden across locations, with relatively little attention to the relative population

exposures to climatic burdens across locations (Mehta et al. 2016; Tian et al. 2023). This paper

follows recent works that have combined global gridded population with air pollution data

(Shaddick et al. 2018; Van Donkelaar et al. 2021; Van Donkelaar et al. 2016), which have gen-

erally focused on analyzing variabilities in regional and national means as well as aggregate

distributions for large supra-national groupings. In contrast, our population weighted anal-

ysis decomposes the overall global population-weighted air pollution by aerosol distribution

into both cross and within region and country components.

The results suggest the existence of pollution inequalities across locations over the globe,

with Asian population facing the highest average exposure, followed by populations in Africa,

Europe, the Americas, and Oceania. At the continental extremes, Asia’s global shares of air

pollution by aerosols is 26% larger than its population share, but Oceania’s is 63% smaller. We

find that the Americas, Europe, and Oceania have distributions with relatively limited vari-

abilities. Europe is the most equal continent in the world with population at the 80th percentile

of air pollution by aerosol exposure only 28% more exposed than those at the 20th percentile.

In contrast, in Africa and Asia, populations at the 80th percentile of the air pollution by aerosol

distribution are 141% and 109% more exposed than population at the 20th percentile, respec-

tively. Across subcontinental regions, the percentage increases in exposure between the 80th

and 20th percentiles range from 2% to 208%. This range widens further to from 0% to 359%

when we condition further on within country air pollution by aerosol distributions.

The paper also provides evidence about the relationship between pollution burden and

economic activity measured by GDP per capita. Overall, we find a strong negative global cor-

relation. In particular, using subnational population-weighted data, we find that a doubling of

GDP per capita is associated with a 11.8 percentage points reduction in the percentage devia-

tion between the a subnational unit’s population-weighted air pollution by aerosol level and

the global population-weighted mean. The association is significantly weakened when conti-

nental fixed effects are included, which means the global association is largely explained by

correlation between continental-level mean GDP per capita and air pollution by aerosol.

Furthermore, we analyze the GDP and air pollution relationship within each continent.
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Exploiting variabilities in subnational data and controlling for aggregate regional variabili-

ties through subcontinental regional fixed effects, we find a positive association between air

pollution by aerosols and GDP per capita in Africa and Europe, but negative association in

the Americas, Asia, and Oceania. Specifically, we find the strongest negative association in

Asia and the strongest positive association in Africa—a doubling of GDP per capita for a sub-

national unit in Asia and Europe are associated with a 9.9 percentage points reduction and

8.8 percentage points increase in the percentage deviation between the a subnational unit’s

population-weighted air pollution by aerosol level and the global population-weighted mean,

respectively.

There are limitations to our analysis. First, our analysis is centered around one year. While

it would be of great interest to compare changes over time, the population census and register

data we rely on are from different years centered around 2010 (CIESIN Columbia University

2018), and the subnational GDP dataset we use only has data up to 2010 (Gennaioli et al. 2013)

and requires extrapolation to extend the dataset to later years (Kummu, Taka, and Guillaume

2018). Second there are trade-offs between the granularity of cells at which we merge popu-

lation and air pollution by aerosol data and the precision and availability of cell-specific aver-

ages. We use 1◦ × 1◦ longitude–latitude grid, which reduces the precision of our population-

weighted air pollution by aerosol estimates for smaller countries, but improves the number of

raw satellite-based measurements we can draw on to measure air pollution by aerosol expo-

sures for each cell. Third, rather than using climate models to transform AOD to particulate

matter measurements (Hammer et al. 2020), for transparency and to reduce the number of in-

termediating estimation and approximation layers between raw satellite data measurements

and inputs for empirical analysis, we use AOD-based measures directly to assess the global

distribution of air pollution by aerosols. We present results in AOD levels and in units of

relative global excess aerosol burdens. Given the importance of particulate matter to human

health, we also provide approximately translated PM2.5 values to facilitate the interpretation

of our AOD-based results.
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Figure 1: Global population-weighted distribution of air pollution by aerosols, 2010

(a) Country as the unit of observation (weighted by country-population)

Excess aerosol burden relative to the global weighted mean
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(b) 1◦ cell as the unit of observation (weighted by cell-population)
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Notes: The panels present the global relative distribution of air pollution by aerosols as measured
by Aerosol Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longi-
tude–latitude grid) and then generate country-specific AOD as cell-population weighted averages. The
country-based distribution in Panel (a) uses country-specific AOD, weighted by aggregate population
estimates for each country. The cell-based distribution in Panel (b) uses cell-specific AOD, weighted by
cell-specific population estimates. The x-axes are in units of what we call global excess aerosol burden:
A value of 0.5 (-0.5) indicates that a country or cell’s AOD measure is 50 percent greater (smaller) than
the global weighted mean.
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Figure 2: Continental population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell (1◦ × 1◦ longitude–latitude grid) as the unit of observation map

(b) 1◦ cell as the unit of observation (weighted by cell-population), by regions

Excess aerosol burden relative to the global weighted mean

Notes: The panels present the global relative distribution of air pollution by aerosols as measured by Aerosol
Optical Depth (AOD). We compute annual average AOD for each 1◦ cell. The map in Panel (a) matches cell-
specific AOD to cell locations. The distribution in Panel (b) uses cell-specific AOD, weighted by cell-specific
population estimates. The y-axis in Panel (b) shows cell population weighted density approximations. The
colors in Panel (a) and x-axis in Panel (b) correspond to what we call global excess aerosol burden: A value of
0.5 (-0.5) indicates that a cell’s AOD measure is 50 percent greater (smaller) than the global weighted mean.
In Panel (b), darker shades of green (red) correspond to greater magnitudes of negative (positive) excess
burdens.
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Figure 3: African population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD/PM2.5 (AOD < 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the African distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units, and the
tick-labels show AOD values and corresponding PM 2.5 estimates in µg/m3 units, separated by backslash.
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Figure 4: American population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD/PM2.5 (AOD < 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the American distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the 80th
percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across cells
corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations. The x-
axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD measure
is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units, and the tick-
labels show AOD values and corresponding PM 2.5 estimates in µg/m3 units, separated by backslash.
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Figure 5: Asian population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD/PM2.5 (AOD < 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the Asian distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units, and the
tick-labels show AOD values and corresponding PM 2.5 estimates in µg/m3 units, separated by backslash.

27



Figure 6: European population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD/PM2.5 (AOD < 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present the European distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units, and the
tick-labels show AOD values and corresponding PM 2.5 estimates in µg/m3 units, separated by backslash.
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Figure 7: Oceanian population-weighted distribution of air pollution by aerosols, 2010

(a) 1◦ cell as the unit of observation (weighted by cell-population), by sub-regions

Excess aerosol burden relative to the global weighted mean

(b) Country-specific distributional ranges: P20 (left-dot), mean (center-dot), P80 (right-dot)

AOD/PM2.5 (AOD < 0.1 indicates crystal clear sky and AOD of 1 indicates very hazy conditions)
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Notes: The panels present Oceanian distribution of air pollution by aerosols as measured by Aerosol Optical Depth
(AOD). We compute annual average AOD for each 1◦ cell. Panel (b) lines mark the 20th percentile, mean, and the
80th percentile of a country’s AOD distribution, computed based on the distribution of AOD and population across
cells corresponding to each country. In Panel (a), the y-axis shows cell population weighted density approximations.
The x-axis in Panel (a) corresponds to levels of excess aerosol burden, a value of 0.5 (-0.5) indicates that a cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean. The x-axis in Panel (b) is in AOD units, and the
tick-labels show AOD values and corresponding PM 2.5 estimates in µg/m3 units, separated by backslash.
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Figure 8: Global association between air pollution by aerosols and GDP per capita, 2010

(a) National scatter plot, continental color groups, circle size represents relative population sizes

GDP (PPP-adjusted) per capita (in log base e units)
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(b) National scatter plot, national population
weighted bivariate regression line

GDP (PPP-adjusted) per capita (in log base e units)
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(c) Subnational scatter plot, subnational popula-
tion weighted bivariate regression line

GDP (PPP-adjusted) per capita (in log base e units)
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Notes: Panels (a) and (b) present national aggregates. Panel (c) presents subnational—first-level subna-
tional administrative division—results. Across the panels, the x-axes correspond to levels of economic
development as measured by GDP (Purchasing Price Parity adjusted) per capita in log base e units, and
the y-axes correspond to relative exposures to air pollution by aerosols as measured by Aerosol Optical
Depth (AOD). In Panel (a), colors distinguish countries by continental groupings, and the size of the
scatter points are proportional to population sizes of each country. Additionally, in Panel (a), the black
lines mark global weighted averages along each axis and divide countries into four quadrants for rela-
tive comparisons: upper-right, higher GDP per capita and AOD; upper-left, lower GDP per capita and
higher AOD; bottom-left, lower GDP per capita and AOD; and bottom-right, higher GDP per capita
and lower AOD. The y-axes across panels are in units of what we call global excess aerosol burden:
A value of 0.5 (-0.5) indicates that a national or subnational unit’s AOD measure is 50 percent greater
(smaller) than the global weighted mean. We compute annual average AOD for each cell (1◦ × 1◦ lon-
gitude–latitude grid) and then generate national and subnational AOD as cell-population weighted
averages. Subnational GDP and boundaries come from Kummu, Taka, and Guillaume (2018).
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Table 1: Global association between air pollution by aerosols and GDP per capita, 2010

Dependent variable: global excess aerosol burden

National regressions Subnational regressions

(1) (2) (3) (4) (5) (6)

(a): Common-slope global regressions

GDP (PPP-adjusted) per capita (in log base e units)

× Global -0.075*** -0.144*** -0.037 -0.083*** -0.118*** -0.009
(0.018) (0.023) (0.024) (0.007) (0.008) (0.009)

R2 0.09 0.19 0.57 0.04 0.05 0.37
Observations 178 178 178 3,902 3,712 3,709

Population weights No Yes Yes No Yes Yes
Continental fixed effects No No Yes No No Yes

(b): Continent-specific slope regressions

GDP (PPP-adjusted) per capita (in log base e units)

× Africa -0.031 0.023 0.032 0.099*** 0.052** 0.088***
(0.053) (0.054) (0.060) (0.027) (0.020) (0.023)

× Americas -0.031 -0.027 -0.074* -0.057*** -0.019*** -0.022***
(0.021) (0.018) (0.041) (0.011) (0.005) (0.008)

× Asia -0.013 -0.053 -0.253*** -0.030 -0.026 -0.099***
(0.044) (0.054) (0.045) (0.022) (0.021) (0.022)

× Europe -0.019 -0.037** 0.032 -0.055*** -0.016** 0.053***
(0.014) (0.014) (0.020) (0.006) (0.006) (0.008)

× Oceania -0.040*** -0.065*** -0.064** -0.061*** -0.071*** -0.077***
(0.013) (0.005) (0.024) (0.012) (0.006) (0.009)

Observations 178 178 178 3,902 3,712 3,709

Population weights No Yes Yes No Yes Yes
Continental fixed effects Yes Yes Yes Yes Yes Yes
Sub-continental fixed effects No No Yes No No Yes

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. We regress global excess aerosol burden—which cap-
tures global relative exposures to air pollution by aerosols as measured by Aerosol Optical Depth
(AOD)—on GDP (Purchasing Price Parity adjusted) per capita in log base e units. Results in Panel
(a) present the global association, and results in Panel (b) allow for continent-specific associations.
In columns (1)–(3), we use country-level data; in columns (4)–(6), we use subnational—first-level
subnational administrative division—data. Results from columns (1) and (4) give equal weights
to each national and subnational unit. Results from columns (2) and (5) use national or subna-
tional population weights. In Panel (a), results from columns (3) and (6) control for continental
fixed effects. In Panel (b), all columns allow for continent-specific slopes and intercepts, and
columns (3) and (6) also control for sub-continental fixed effects for each sub-region shown in
Panel (a) from Figures 3–6 (e.g., Northern Africa, East Asia, etc.). The dependent variable across
regressions is in units of what we call global excess aerosol burden: A value of 0.5 (-0.5) indicates
that a national or subnational unit’s AOD measure is 50 percent greater (smaller) than the global
weighted mean. We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid)
and then generate national and subnational AOD as cell-population weighted averages. Subna-
tional GDP and boundaries come from Kummu, Taka, and Guillaume (2018). See Figure 8 and
Appendix Figure C.5 for scatter plots corresponding to panels (a) and (b).
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ONLINE APPENDIX

Population burdens of air pollution around the world: Distributions,
inequalities, and links to per capita GDP

Angelo Santos, Oscar Morales, Jere Behrman, Emily Hannum, Fan Wang

A Program and Framework for analysis

The key file inputs make possible the merge between the geocoded pollution, population, and

country datasets. In our analysis, we used two file inputs:

1. k̈ey_loc.csvänd

2. k̈ey_country_code_finer_subregions.csv.̈

The first key file has an id for every latitude-longitude combination at 1 degree level. The

IDs were constructed using the following pattern. The latitude and longitude numbers were

transformed into strings and concatenated (using "_" to separate the numbers) into one string

called "geo_id ". For example, the location defined by latitude 45 and longitude -67 has the

geo_id as "45_-67". After constructing all the possible geo_ids combinations, we sorted the

location by latitude and longitude and assigned a number to each geo_id following the as-

cending order. This new column is called id_location and it is used to merge locations across

different datasets, such as the pollution and the population geocoded information.

The second key file has the id_location and geo_id columns associated with geographical

locations in the world. four layers of location: continent, subregion, and country. For instance,

we know what are the latitude and longitude combinations that are associated with specific

continents, sub-regions, and countries, which makes it possible to merge geocoded informa-

tion from other datasets.
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B Additional Figures and Tables

Figure C.1: Number of days with AOD data available at each 1◦ × 1◦ longitude–latitude grid,
2010

Notes: The figure presents the geographical and temporal availability of Aerosol Optical Depth (AOD)
data, our global proxy for ambient particulate matter pollution exposures. For our analysis, we down-
load raw AOD data available at 3km × 3km resolution and compute average daily AOD on each day
of the year with available AOD measurements for each 1◦ × 1◦ longitude–latitude grid (cell). The fig-
ure shows the number of days in 2010 during which AOD data was available within each cell. The
days are represented through shades of red from the darkest red (0 days) to the lightest red (all days
in the year). On days in which we do not have available AOD information for a particular cell, we use
information in neighboring locations and time periods to perform 3-dimensional—longitude, latitude,
and time—interpolation and extrapolation to generate estimates for missing AOD data. Given daily
information, we compute annual average AOD exposures for each cell, first using only the raw data
ignoring the days with missing values, and then separately using the raw data complemented with the
interpolated and extrapolated estimates. Due to the concentration of missing AOD data in regions with
the least population, our population-weighted AOD distributional results based on the raw data and
interpolated and extrapolated data are very similar. Our global inequality results presented in the text
are based on annual averages of the raw data.
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Figure C.2: Global dispersion of air pollution by aerosols, 2010

(a) Country as the unit of observation (equal weight for each country)

Excess aerosol burden relative to the global weighted mean
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(b) 1◦ cell as the unit of observation (equal weight for each cell)

Excess aerosol burden relative to the global weighted mean
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Notes: The panels present the global relative dispersion of air pollution by aerosols as measured
by Aerosol Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longi-
tude–latitude grid) and then generate country-specific AOD as cell-population weighted averages. In
contrast to Figure 1, Panel (a) and (b) here treat each country or cell as a unit of observation with equal
weights. The y-axis shows frequencies, counting the number of countries or cells. The x-axis is in units
of what we call global excess aerosol burden: A value of 0.5 (-0.5) indicates that a country or cell’s AOD
measure is 50 percent greater (smaller) than the global weighted mean.
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Figure C.3: Continental dispersion of air pollution by aerosols, 2010

(a) Country as the unit of observation (weighted by country-population), by continents

Excess aerosol burden relative to the global weighted mean

(b) Country as the unit of observation map

Notes: The panels present the global relative dispersion of air pollution by aerosols as measured by Aerosol
Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid) and
then generate country-specific AOD as cell-population weighted averages. In contrast to Figure 2, Panel (a)
treats each country as the unit of observation, weighted by aggregate population estimates for each country,
and Panel (b) matches country-specific AOD to country locations. In Panel (a), the y-axis shows country
population weighted density approximations. The x-axis in Panel (a) and colors in Panel (b) correspond to
what we call global excess aerosol burden: A value of 0.5 (-0.5) indicates that a country’s AOD measure
is 50 percent greater (smaller) than the global weighted mean. In Panel (b), darker shades of green (red)
correspond to greater magnitudes of negative (positive) excess burdens.
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Figure C.4: Continental dispersion of air pollution by aerosols, relative to continent-specific
weighted means, 2010

(a) Africa (b) Americas

(c) Asia

Note: The panels present the continent-specific relative dispersion of air pollution by aerosols as measured by
Aerosol Optical Depth (AOD). We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid)
and then generate country-specific AOD as cell-population weighted averages. The colors in each Panel corre-
spond to levels of what we call continental excess aerosol burden: A value of 0.5 (-0.5) indicates that a country’s
AOD measure is 50 percent greater (smaller) than the continental weighted mean. In all Panels, darker shades of
green (red) correspond to greater magnitudes of negative (positive) excess burdens.
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Figure C.5: Continental association between air pollution by aerosols and GDP per capita, 2010

(a) National scatter plots, national population weighted bivariate regression lines

GDP (PPP-adjusted) per capita (in log base e units)
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(b) Subnational scatter plots, subnational population weighted bivariate regression lines

GDP (PPP-adjusted) per capita (in log base e units)
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Notes: Across the panels, the x-axes correspond to levels of economic development as measured by
GDP (Purchasing Price Parity adjusted) per capita in log base e units, and the y-axes correspond to
relative exposures to air pollution by aerosols as measured by Aerosol Optical Depth (AOD). The y-
axes across panels are in units of what we call global excess aerosol burden: A value of 0.5 (-0.5) indi-
cates that a national or subnational unit’s AOD measure is 50 percent greater (smaller) than the global
weighted mean. We compute annual average AOD for each cell (1◦ × 1◦ longitude–latitude grid) and
then generate national and subnational AOD as cell-population weighted averages. Subnational GDP
and boundaries come from Kummu, Taka, and Guillaume (2018). See Figure 8 for global results and see
Table 1 for regression coefficients.
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Table C.1: Continental population-weighted distribution of air pollution by aerosols, 2010

Population weighted means Within-group AOD distributions

Continent AOD Excess aerosol burden P80 to P20 ratio P90 to P10 ratio

Africa 0.37 -0.18 2.78 4.01
Americas 0.21 -0.54 1.56 2.23
Asia 0.57 0.25 2.25 3.18
Europe 0.25 -0.44 1.36 1.68
Oceania 0.14 -0.70 1.76 2.24

Note: The panels present key statistics from the global distribution of air pollution by
aerosols as measured by Aerosol Optical Depth (AOD). In data columns 1 and 2, we
show continent-specific population-weighted means. In data columns 3 and 4, we sum-
marise within-continent AOD distributions using relative percentile ratios. The statistics
in this table are computed based on the distribution of AOD and population across cells
(1◦ × 1◦ longitude–latitude grid) corresponding to each continent. More specifically, the
interpretation of AOD is that AOD < 0.1 indicates crystal clear sky and AOD of 1 in-
dicates very hazy conditions. For excess aerosol burden, a value of 0.5 (-0.5) indicates
that a continent’s AOD measure is 50 percent greater (smaller) than the global weighted
mean. Finally, the P80 (P90) to P20 (P10) ratios are based on dividing the 80th (90th)
percentile of the within continent AOD distribution by the 20th (10th) percentile of that
distribution.
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