time | Calls | line |
---|
| | 7 | function result_map = ff_abz_vf(varargin)
|
| | 8 | %% FF_ABZ_VF solve infinite horizon exo shock + endo asset problem
|
| | 9 | % This program solves the infinite horizon dynamic single asset and single
|
| | 10 | % shock problem with loops. This file contains codes that processes
|
| | 11 | % borrowing.
|
| | 12 | %
|
| | 13 | % The borrowing problem is very similar to the savings problem. The code
|
| | 14 | % could be identical if one does not have to deal with default. The main
|
| | 15 | % addition here in comparison to the savings only code
|
| | 16 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html
|
| | 17 | % ff_az_vf> is the ability to deal with default.
|
| | 18 | %
|
| | 19 | % @param param_map container parameter container
|
| | 20 | %
|
| | 21 | % @param support_map container support container
|
| | 22 | %
|
| | 23 | % @param armt_map container container with states, choices and shocks
|
| | 24 | % grids that are inputs for grid based solution algorithm
|
| | 25 | %
|
| | 26 | % @param func_map container container with function handles for
|
| | 27 | % consumption cash-on-hand etc.
|
| | 28 | %
|
| | 29 | % @return result_map container contains policy function matrix, value
|
| | 30 | % function matrix, iteration results, and policy function, value function
|
| | 31 | % and iteration results tables.
|
| | 32 | %
|
| | 33 | % keys included in result_map:
|
| | 34 | %
|
| | 35 | % * mt_val matrix states_n by shock_n matrix of converged value function grid
|
| | 36 | % * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
|
| | 37 | % * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
|
| | 38 | % difference between iteration
|
| | 39 | % * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
|
| | 40 | % function difference between iterations
|
| | 41 | % * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
|
| | 42 | % proportion of grid points at which policy function changed between
|
| | 43 | % current and last iteration for each element of shock
|
| | 44 | %
|
| | 45 | % @example
|
| | 46 | %
|
| | 47 | % % Get Default Parameters
|
| | 48 | % it_param_set = 2;
|
| | 49 | % [param_map, support_map] = ffs_abz_set_default_param(it_param_set);
|
| | 50 | % % Chnage param_map keys for borrowing
|
| | 51 | % param_map('fl_b_bd') = -20; % borrow bound
|
| | 52 | % param_map('bl_default') = false; % true if allow for default
|
| | 53 | % param_map('fl_c_min') = 0.0001; % u(c_min) when default
|
| | 54 | % % Change Keys in param_map
|
| | 55 | % param_map('it_a_n') = 500;
|
| | 56 | % param_map('fl_z_r_borr_n') = 5;
|
| | 57 | % param_map('it_z_wage_n') = 15;
|
| | 58 | % param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n');
|
| | 59 | % param_map('fl_a_max') = 100;
|
| | 60 | % param_map('fl_w') = 1.3;
|
| | 61 | % % Change Keys support_map
|
| | 62 | % support_map('bl_display') = false;
|
| | 63 | % support_map('bl_post') = true;
|
| | 64 | % support_map('bl_display_final') = false;
|
| | 65 | % % Call Program with external parameters that override defaults.
|
| | 66 | % ff_abz_vf(param_map, support_map);
|
| | 67 | %
|
| | 68 | % @include
|
| | 69 | %
|
| | 70 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_abz/paramfunc/html/ffs_abz_set_default_param.html ffs_abz_set_default_param>
|
| | 71 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_abz/paramfunc/html/ffs_abz_get_funcgrid.html ffs_abz_get_funcgrid>
|
| | 72 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
|
| | 73 | %
|
| | 74 | % @seealso
|
| | 75 | %
|
| | 76 | % * save loop: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html ff_az_vf>
|
| | 77 | % * save vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html ff_az_vf_vec>
|
| | 78 | % * save optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
|
| | 79 | % * save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html ff_abz_vf>
|
| | 80 | % * save + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html ff_abz_vf_vec>
|
| | 81 | % * save + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vecsv.html ff_abz_vf_vecsv>
|
| | 82 | %
|
| | 83 |
|
| | 84 | %% Default
|
| | 85 | % * it_param_set = 1: quick test
|
| | 86 | % * it_param_set = 2: benchmark run
|
| | 87 | % * it_param_set = 3: benchmark profile
|
| | 88 | % * it_param_set = 4: press publish button
|
| | 89 |
|
| | 90 | it_param_set = 3;
|
| | 91 | bl_input_override = true;
|
| | 92 | [param_map, support_map] = ffs_abz_set_default_param(it_param_set);
|
| | 93 |
|
| | 94 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 95 | param_map('it_a_n') = 75;
|
| | 96 | param_map('fl_z_r_borr_n') = 3;
|
| | 97 | param_map('it_z_wage_n') = 5;
|
| | 98 | param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n');
|
| | 99 | % param_map('fl_r_save') = 0.025;
|
| | 100 | % param_map('fl_r_borr') = 0.035;
|
| | 101 |
|
| | 102 | [armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 103 | default_params = {param_map support_map armt_map func_map};
|
| | 104 |
|
| | 105 | %% Parse Parameters 1
|
| | 106 |
|
| | 107 | % if varargin only has param_map and support_map,
|
| | 108 | params_len = length(varargin);
|
| | 109 | [default_params{1:params_len}] = varargin{:};
|
| | 110 | param_map = [param_map; default_params{1}];
|
| | 111 | support_map = [support_map; default_params{2}];
|
| | 112 | if params_len >= 1 && params_len <= 2
|
| | 113 | % If override param_map, re-generate armt and func if they are not
|
| | 114 | % provided
|
| | 115 | bl_input_override = true;
|
| | 116 | [armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map, bl_input_override);
|
| | 117 | else
|
| | 118 | % Override all
|
| | 119 | armt_map = [armt_map; default_params{3}];
|
| | 120 | func_map = [func_map; default_params{4}];
|
| | 121 | end
|
| | 122 |
|
| | 123 | % append function name
|
| | 124 | st_func_name = 'ff_abz_vf';
|
| | 125 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 126 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 127 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 128 |
|
| | 129 | %% Parse Parameters 2
|
| | 130 |
|
| | 131 | % armt_map
|
| | 132 | params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z_r_borr_mesh_wage', 'ar_z_wage_mesh_r_borr'});
|
| | 133 | [ar_a, mt_z_trans, ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr] = params_group{:};
|
| | 134 |
|
| | 135 | % func_map
|
| | 136 | params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons_checkcmin', 'f_coh', 'f_cons_coh'});
|
| | 137 | [f_util_log, f_util_crra, f_cons_checkcmin, f_coh, f_cons_coh] = params_group{:};
|
| | 138 |
|
| | 139 | % param_map
|
| | 140 | params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min',...
|
| | 141 | 'fl_nan_replace', 'bl_default', 'fl_default_aprime'});
|
| | 142 | [it_a_n, it_z_n, fl_crra, fl_beta, fl_c_min, ...
|
| | 143 | fl_nan_replace, bl_default, fl_default_aprime] = params_group{:};
|
| | 144 | params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
|
| | 145 | [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
|
| | 146 |
|
| | 147 | % support_map
|
| | 148 | params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
|
| | 149 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 150 | 'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
|
| | 151 | [bl_profile, st_profile_path, ...
|
| | 152 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 153 | bl_time, bl_display, it_display_every, bl_post] = params_group{:};
|
| | 154 |
|
| | 155 | %% Initialize Output Matrixes
|
| | 156 |
|
| | 157 | mt_val_cur = zeros(length(ar_a),it_z_n);
|
| | 158 | mt_val = mt_val_cur - 1;
|
| | 159 | mt_pol_a = zeros(length(ar_a),it_z_n);
|
| | 160 | mt_pol_a_cur = mt_pol_a - 1;
|
| | 161 |
|
| | 162 | %% Initialize Convergence Conditions
|
| | 163 |
|
| | 164 | bl_vfi_continue = true;
|
| | 165 | it_iter = 0;
|
| | 166 | ar_val_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 167 | ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 168 | mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
|
| | 169 |
|
| | 170 | %% Iterate Value Function
|
| | 171 | % Loop solution with 4 nested loops
|
| | 172 | %
|
| | 173 | % # loop 1: over exogenous states
|
| | 174 | % # loop 2: over endogenous states
|
| | 175 | % # loop 3: over choices
|
| | 176 | % # loop 4: add future utility, integration--loop over future shocks
|
| | 177 | %
|
| | 178 |
|
| | 179 | % Start Profile
|
| | 180 | if (bl_profile)
|
| | 181 | close all;
|
| | 182 | profile off;
|
| | 183 | profile on;
|
< 0.001 | 1 | 184 | end
|
| | 185 |
|
| | 186 | % Start Timer
|
< 0.001 | 1 | 187 | if (bl_time)
|
< 0.001 | 1 | 188 | tic;
|
< 0.001 | 1 | 189 | end
|
| | 190 |
|
| | 191 | % Utility at-Default/at-limiting-case-when-nodefault
|
< 0.001 | 1 | 192 | if (fl_crra == 1)
|
| | 193 | fl_u_cmin = f_util_log(fl_c_min);
|
< 0.001 | 1 | 194 | else
|
< 0.001 | 1 | 195 | fl_u_cmin = f_util_crra(fl_c_min);
|
< 0.001 | 1 | 196 | end
|
| | 197 |
|
| | 198 |
|
| | 199 | % Value Function Iteration
|
< 0.001 | 1 | 200 | while bl_vfi_continue
|
< 0.001 | 107 | 201 | it_iter = it_iter + 1;
|
| | 202 |
|
| | 203 | %% Iterate over a and z states
|
| | 204 | % Solve Problem if Default: coh < borr_bound, then: u(c_min) + EV(a'=0,z')
|
| | 205 | % these are the values for defaulter
|
| | 206 | % if do not borrow enough to pay debt: a'=0
|
| | 207 | % if save more than what you have: a'=0
|
| | 208 | % if borrowing, possible that all ar_val_cur values are
|
| | 209 | % u(cmin), when that is the case, utility equal to
|
| | 210 | % c_min, this means given current choice set, can only default,
|
| | 211 | % get utility at c_min level, and a' go to 0. See
|
| | 212 | % maximization over loop 3 choices for loop 1+2 states. see
|
| | 213 | % <https://fanwangecon.github.io/CodeDynaAsset/docs/README_cminymin_borrsave.html
|
| | 214 | % README_cminymin_borrsave> for additional discussions.
|
| | 215 | %
|
| | 216 | % when default is not allowed, there should be exactly one
|
| | 217 | % element of the state space where we enter this condition.
|
| | 218 | % That is at a_min and z_min. At this point, the natural
|
| | 219 | % borrowing constraint when fully used up leads to c = 0.
|
| | 220 | % When default is not allowed, this is the limiting case.
|
| | 221 | % We solve the limiting case as if default is possible. see
|
| | 222 | % the figure here:
|
| | 223 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/test/ffs_abz_get_funcgrid/test_borr/html/ffs_abz_get_funcgrid_nodefault.html
|
| | 224 | % ffs_abz_get_funcgrid_nodefault>. For the figure under
|
| | 225 | % section *Generate Borrowing A Grid with Default*, there are
|
| | 226 | % no points to the lower right of the red horizontal and
|
| | 227 | % verticle lines, because no default is allowed. But the
|
| | 228 | % intersection of the two red lines is this limiting case
|
| | 229 | % where c = 0.
|
| | 230 | %
|
| | 231 | % when default is allowed. See again
|
| | 232 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/test/ffs_abz_get_funcgrid/test_borr/html/ffs_abz_get_funcgrid_nodefault.html
|
| | 233 | % ffs_abz_get_funcgrid_nodefault>. Again under section
|
| | 234 | % *Generate Borrowing A Grid with Default*, see that there
|
| | 235 | % is an area to the right bottom of the two blue horizontal
|
| | 236 | % and vertical lines. For all points in that area, the
|
| | 237 | % household has to default, they can not borrow even at max
|
| | 238 | % to get positive consumption. At other points higher than
|
| | 239 | % the blue horizontal line, it is also possible for
|
| | 240 | % defaulting to be the optimal choice.
|
| | 241 |
|
| | 242 | % loop 1: over exogenous states
|
< 0.001 | 107 | 243 | for it_z_i = 1:it_z_n
|
| | 244 |
|
| | 245 | % Current Shock
|
< 0.001 | 1605 | 246 | fl_z_r_borr = ar_z_r_borr_mesh_wage(it_z_i);
|
< 0.001 | 1605 | 247 | fl_z_wage = ar_z_wage_mesh_r_borr(it_z_i);
|
| | 248 |
|
| | 249 | % loop 2: over endogenous states
|
< 0.001 | 1605 | 250 | for it_a_j = 1:length(ar_a)
|
0.005 | 120375 | 251 | fl_a = ar_a(it_a_j);
|
0.097 | 120375 | 252 | ar_val_cur = zeros(size(ar_a));
|
| | 253 |
|
| | 254 | % calculate cash on hand
|
0.230 | 120375 | 255 | fl_coh = f_coh(fl_z_r_borr, fl_z_wage, fl_a);
|
| | 256 |
|
| | 257 | % loop 3: over choices
|
0.006 | 120375 | 258 | for it_ap_k = 1:length(ar_a)
|
| | 259 |
|
| | 260 | % get next period asset choice
|
0.310 | 9028125 | 261 | fl_ap = ar_a(it_ap_k);
|
| | 262 |
|
| | 263 | % calculate consumption
|
13.603 | 9028125 | 264 | fl_c = f_cons_coh(fl_coh, fl_ap);
|
| | 265 |
|
| | 266 | % assign u(c)
|
0.314 | 9028125 | 267 | if (fl_c <= fl_c_min)
|
0.149 | 4295836 | 268 | if (bl_default)
|
| | 269 | % defaults
|
| | 270 | % current utility: only today u(cmin)
|
0.149 | 4295836 | 271 | ar_val_cur(it_ap_k) = fl_u_cmin;
|
| | 272 | % transition out next period, debt wiped out
|
0.168 | 4295836 | 273 | for it_az_q = 1:it_z_n
|
57.845 | 64437540 | 274 | ar_val_cur(it_ap_k) = ar_val_cur(it_ap_k) + ...
|
| 64437540 | 275 | fl_beta*mt_z_trans(it_z_i, it_az_q)*mt_val_cur((ar_a == fl_default_aprime), it_az_q);
|
2.316 | 64437540 | 276 | end
|
| | 277 | else
|
| | 278 | % if default is not allowed: v = fl_nan_replace
|
| | 279 | ar_val_cur(it_ap_k) = fl_nan_replace;
|
0.170 | 4295836 | 280 | end
|
0.156 | 4732289 | 281 | else
|
| | 282 | % Solve Optimization Problem: max_{a'} u(c(a,a',z)) + beta*EV(a',z')
|
| | 283 | % borrowed enough to pay debt (and borrowing limit not exceeded)
|
| | 284 | % saved only the coh available.
|
| | 285 | % current utility
|
0.168 | 4732289 | 286 | if (fl_crra == 1)
|
| | 287 | ar_val_cur(it_ap_k) = f_util_log(fl_c);
|
0.159 | 4732289 | 288 | else
|
7.463 | 4732289 | 289 | ar_val_cur(it_ap_k) = f_util_crra(fl_c);
|
0.145 | 4732289 | 290 | end
|
| | 291 | % loop 4: add future utility, integration--loop over future shocks
|
0.180 | 4732289 | 292 | for it_az_q = 1:it_z_n
|
4.701 | 70984335 | 293 | ar_val_cur(it_ap_k) = ar_val_cur(it_ap_k) + ...
|
| 70984335 | 294 | fl_beta*mt_z_trans(it_z_i, it_az_q)*mt_val_cur(it_ap_k, it_az_q);
|
2.187 | 70984335 | 295 | end
|
0.311 | 9028125 | 296 | end
|
0.333 | 9028125 | 297 | end
|
| | 298 |
|
| | 299 | % optimal choice value
|
0.236 | 120375 | 300 | [fl_opti_val_z, fl_opti_idx_z] = max(ar_val_cur);
|
0.006 | 120375 | 301 | fl_opti_aprime_z = ar_a(fl_opti_idx_z);
|
0.210 | 120375 | 302 | fl_opti_c_z = f_cons_coh(fl_coh, fl_opti_aprime_z);
|
| | 303 |
|
| | 304 | % Handle Default is optimal or not
|
0.005 | 120375 | 305 | if (fl_opti_c_z <= fl_c_min)
|
< 0.001 | 963 | 306 | if (bl_default)
|
| | 307 | % if defaulting is optimal choice, at these states, not required
|
| | 308 | % to default, non-default possible, but default could be optimal
|
< 0.001 | 963 | 309 | fl_opti_aprime_z = fl_default_aprime;
|
| | 310 | else
|
| | 311 | % if default is not allowed, then next period same state as now
|
| | 312 | % this is absorbing state, this is the limiting case, single
|
| | 313 | % state space point, lowest a and lowest shock has this.
|
| | 314 | fl_opti_aprime_z = fl_a;
|
< 0.001 | 963 | 315 | end
|
< 0.001 | 963 | 316 | end
|
| | 317 |
|
| | 318 | %% Store Optimal Choices and Value Given(a,z)
|
0.006 | 120375 | 319 | mt_val(it_a_j,it_z_i) = fl_opti_val_z;
|
0.006 | 120375 | 320 | mt_pol_a(it_a_j,it_z_i) = fl_opti_aprime_z;
|
| | 321 |
|
0.006 | 120375 | 322 | end
|
0.001 | 1605 | 323 | end
|
| | 324 |
|
| | 325 | %% Check Tolerance and Continuation
|
| | 326 |
|
| | 327 | % Difference across iterations
|
0.009 | 107 | 328 | ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
|
0.004 | 107 | 329 | ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur);
|
0.001 | 107 | 330 | mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n);
|
| | 331 |
|
| | 332 | % Update
|
< 0.001 | 107 | 333 | mt_val_cur = mt_val;
|
< 0.001 | 107 | 334 | mt_pol_a_cur = mt_pol_a;
|
| | 335 |
|
| | 336 | % Print Iteration Results
|
< 0.001 | 107 | 337 | if (bl_display && (rem(it_iter, it_display_every)==0))
|
| | 338 | fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
|
| | 339 | it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
|
| | 340 | tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
|
| | 341 | mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
|
| | 342 | tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
|
| | 343 | tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
|
| | 344 | disp('mval = mean(mt_val_cur,1), average value over a')
|
| | 345 | disp('map = mean(mt_pol_a_cur,1), average choice over a')
|
| | 346 | disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
|
| | 347 | disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
|
| | 348 | disp(tb_valpol_iter);
|
| | 349 | end
|
| | 350 |
|
| | 351 | % Continuation Conditions:
|
| | 352 | % 1. if value function convergence criteria reached
|
| | 353 | % 2. if policy function variation over iterations is less than
|
| | 354 | % threshold
|
< 0.001 | 107 | 355 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 1 | 356 | bl_vfi_continue = false;
|
0.001 | 106 | 357 | elseif ((it_iter == it_maxiter_val) || ...
|
| 106 | 358 | (ar_val_diff_norm(it_iter) < fl_tol_val) || ...
|
| 106 | 359 | (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
|
| | 360 | % Fix to max, run again to save results if needed
|
< 0.001 | 1 | 361 | it_iter_last = it_iter;
|
< 0.001 | 1 | 362 | it_iter = it_maxiter_val;
|
< 0.001 | 1 | 363 | end
|
| | 364 |
|
< 0.001 | 107 | 365 | end
|
| | 366 |
|
| | 367 | % End Timer
|
< 0.001 | 1 | 368 | if (bl_time)
|
< 0.001 | 1 | 369 | toc;
|
< 0.001 | 1 | 370 | end
|
| | 371 |
|
| | 372 | % End Profile
|
< 0.001 | 1 | 373 | if (bl_profile)
|
0.004 | 1 | 374 | profile off
|
| | 375 | profile viewer
|
| | 376 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 377 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 378 | end
|
| | 379 |
|
| | 380 | %% Process Optimal Choices
|
| | 381 |
|
| | 382 | result_map = containers.Map('KeyType','char', 'ValueType','any');
|
| | 383 | result_map('mt_val') = mt_val;
|
| | 384 |
|
| | 385 | result_map('cl_mt_coh') = {f_coh(ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr, ar_a'), zeros(1)};
|
| | 386 | result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
|
| | 387 | result_map('cl_mt_pol_c') = {f_cons_checkcmin(ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr, ar_a', mt_pol_a), zeros(1)};
|
| | 388 | result_map('ar_st_pol_names') = ["cl_mt_pol_a", "cl_mt_coh", "cl_mt_pol_c"];
|
| | 389 |
|
| | 390 | if (bl_post)
|
| | 391 | bl_input_override = true;
|
| | 392 | result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
|
| | 393 | result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
|
| | 394 | result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
|
| | 395 | result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 396 | end
|
| | 397 |
|
| | 398 | end
|
Other subfunctions in this file are not included in this listing.