This is a static copy of a profile report

Home

Function details for ff_abz_vf_vecsvThis is a static copy of a profile report

Home

ff_abz_vf_vecsv (Calls: 1, Time: 13.700 s)
Generated 07-Jul-2019 00:45:02 using performance time.
function in file C:\Users\fan\CodeDynaAsset\m_abz\solve\ff_abz_vf_vecsv.m
Copy to new window for comparing multiple runs

Parents (calling functions)
No parent
Lines where the most time was spent

Line NumberCodeCallsTotal Time% TimeTime Plot
293
[ar_opti_val_z, ar_opti_idx_z]...
135755.400 s39.4%
283
mt_utility = mt_utility.*(~mt_...
135752.904 s21.2%
273
mt_utility = cl_u_c_store{it_z...
135752.055 s15.0%
250
mt_utility = f_util_crra(mt_c)...
750.966 s7.1%
256
mt_utility(mt_it_c_valid_idx) ...
750.357 s2.6%
All other lines  2.017 s14.7%
Totals  13.700 s100% 
Children (called functions)

Function NameFunction TypeCallsTotal Time% TimeTime Plot
...c)(((c).^(1-fl_crra)-1)./(1-fl_crra))anonymous function1500.927 s6.8%
...unctions>@(coh,bprime)(coh-bprime)anonymous function136500.190 s1.4%
...b>0)+b.*(1+fl_r_borr).*(b<=0)))anonymous function135750.113 s0.8%
Self time (built-ins, overhead, etc.)  12.469 s91.0%
Totals  13.700 s100% 
Code Analyzer results
No Code Analyzer messages.
Coverage results
Show coverage for parent directory
Total lines in function387
Non-code lines (comments, blank lines)238
Code lines (lines that can run)149
Code lines that did run63
Code lines that did not run86
Coverage (did run/can run)42.28 %
Function listing
time 
Calls 
 line
   7 
function result_map = ff_abz_vf_vecsv(varargin)
   8 
%% FF_ABZ_VF_VECSV solve infinite horizon exo shock + endo asset problem
   9 
% This program solves the infinite horizon dynamic single asset and two
  10 
% shocks problem with vectorized codes.
  11 
% <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html
  12 
% ff_abz_vf> shows looped codes.
  13 
% <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html
  14 
% ff_abz_vf_vec> shows vectorized codes. This file shows vectorized codes
  15 
% that is faster but is more memory intensive.
  16 
%
  17 
% The borrowing problem is similar to the savings problem. The main
  18 
% addition here in comparison to the savings only code
  19 
% <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html
  20 
% ff_az_vf_vec> is the ability to deal with default, as well as an
  21 
% additional shock to the borrowing interest rate.
  22 
%
  23 
% See
  24 
% <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html
  25 
% ff_az_vf_vec> how vectorization works within this structure.
  26 
%
  27 
% This _optimized-vectorized_ solution method provides very large speed
  28 
% improvements for this infinite horizon problem because the u(c(z,a,a'))
  29 
% calculation within each iteration is identical. Generally the idea is to
  30 
% identify inside iteration whether the model is infinite horizon or
  31 
% life-cycle based where repeat calculations are taking place. If such
  32 
% calculations can be identified, then potentially they could be stored and
  33 
% retrieved during future iterations/periods rather than recomputed every
  34 
% time. This saves time. 
  35 
%
  36 
% @param param_map container parameter container
  37 
%
  38 
% @param support_map container support container
  39 
%
  40 
% @param armt_map container container with states, choices and shocks
  41 
% grids that are inputs for grid based solution algorithm
  42 
%
  43 
% @param func_map container container with function handles for
  44 
% consumption cash-on-hand etc.
  45 
%
  46 
% @return result_map container contains policy function matrix, value
  47 
% function matrix, iteration results, and policy function, value function
  48 
% and iteration results tables.
  49 
%
  50 
% keys included in result_map:
  51 
%
  52 
% * mt_val matrix states_n by shock_n matrix of converged value function grid
  53 
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
  54 
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
  55 
% difference between iteration
  56 
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
  57 
% function difference between iterations
  58 
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
  59 
% proportion of grid points at which policy function changed between
  60 
% current and last iteration for each element of shock
  61 
%
  62 
% @example
  63 
%
  64 
%    % Get Default Parameters
  65 
%    it_param_set = 2;
  66 
%    [param_map, support_map] = ffs_abz_set_default_param(it_param_set);
  67 
%    % Chnage param_map keys for borrowing
  68 
%    param_map('fl_b_bd') = -20; % borrow bound
  69 
%    param_map('bl_default') = false; % true if allow for default
  70 
%    param_map('fl_c_min') = 0.0001; % u(c_min) when default
  71 
%    % Change Keys in param_map
  72 
%    param_map('it_a_n') = 500;
  73 
%    param_map('it_z_n') = 11;
  74 
%    param_map('fl_a_max') = 100;
  75 
%    param_map('fl_w') = 1.3;
  76 
%    % Change Keys support_map
  77 
%    support_map('bl_display') = false;
  78 
%    support_map('bl_post') = true;
  79 
%    support_map('bl_display_final') = false;
  80 
%    % Call Program with external parameters that override defaults.
  81 
%    ff_abz_vf_vecsv(param_map, support_map);
  82 
%
  83 
% @include
  84 
%
  85 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_abz/paramfunc/html/ffs_abz_set_default_param.html ffs_abz_set_default_param>
  86 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_abz/paramfunc/html/ffs_abz_get_funcgrid.html ffs_abz_get_funcgrid>
  87 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
  88 
%
  89 
% @seealso
  90 
%
  91 
% * save loop: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html ff_az_vf>
  92 
% * save vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html ff_az_vf_vec>
  93 
% * save optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
  94 
% * save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html ff_abz_vf>
  95 
% * save + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html ff_abz_vf_vec>
  96 
% * save + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vecsv.html ff_abz_vf_vecsv>
  97 
%
  98 

  99 
%% Default
 100 
%
 101 
% * it_param_set = 1: quick test
 102 
% * it_param_set = 2: benchmark run
 103 
% * it_param_set = 3: benchmark profile
 104 
% * it_param_set = 4: press publish button
 105 
%
 106 

 107 
it_param_set = 3;
 108 
bl_input_override = true;
 109 
[param_map, support_map] = ffs_abz_set_default_param(it_param_set);
 110 

 111 
% Note: param_map and support_map can be adjusted here or outside to override defaults
 112 
% param_map('it_a_n') = 750;
 113 
% param_map('it_z_n') = 15;
 114 
% param_map('fl_r_save') = 0.025;
 115 
% param_map('fl_r_borr') = 0.035;
 116 

 117 
[armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
 118 
default_params = {param_map support_map armt_map func_map};
 119 

 120 
%% Parse Parameters 1
 121 

 122 
% if varargin only has param_map and support_map,
 123 
params_len = length(varargin);
 124 
[default_params{1:params_len}] = varargin{:};
 125 
param_map = [param_map; default_params{1}];
 126 
support_map = [support_map; default_params{2}];
 127 
if params_len >= 1 && params_len <= 2
 128 
    % If override param_map, re-generate armt and func if they are not
 129 
    % provided
 130 
    bl_input_override = true;
 131 
    [armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map, bl_input_override);
 132 
else
 133 
    % Override all
 134 
    armt_map = [armt_map; default_params{3}];
 135 
    func_map = [func_map; default_params{4}];
 136 
end
 137 

 138 
% append function name
 139 
st_func_name = 'ff_abz_vf_vecsv';
 140 
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
 141 
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
 142 
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
 143 

 144 
%% Parse Parameters 2
 145 

 146 
% armt_map
 147 
params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z_r_borr_mesh_wage', 'ar_z_wage_mesh_r_borr'});
 148 
[ar_a, mt_z_trans, ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr] = params_group{:};
 149 

 150 
% func_map
 151 
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons_checkcmin', 'f_coh', 'f_cons_coh'});
 152 
[f_util_log, f_util_crra, f_cons_checkcmin, f_coh, f_cons_coh] = params_group{:};
 153 

 154 
% param_map
 155 
params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min',...
 156 
    'fl_nan_replace', 'bl_default', 'fl_default_aprime'});
 157 
[it_a_n, it_z_n, fl_crra, fl_beta, fl_c_min, ...
 158 
    fl_nan_replace, bl_default, fl_default_aprime] = params_group{:};
 159 
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
 160 
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
 161 

 162 
% support_map
 163 
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
 164 
    'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
 165 
    'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
 166 
[bl_profile, st_profile_path, ...
 167 
    st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
 168 
    bl_time, bl_display, it_display_every, bl_post] = params_group{:};
 169 

 170 
%% Initialize Output Matrixes
 171 
% include mt_pol_idx which we did not have in looped code
 172 

 173 
mt_val_cur = zeros(it_a_n, it_z_n);
 174 
mt_val = mt_val_cur - 1;
 175 
mt_pol_a = zeros(it_a_n, it_z_n);
 176 
mt_pol_a_cur = mt_pol_a - 1;
 177 
mt_pol_idx = zeros(it_a_n, it_z_n);
 178 

 179 
% We did not need these in ff_abz_vf or ff_abz_vf_vec
 180 
% see
 181 
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
 182 
% fs_u_c_partrepeat_main> for why store using cells.
 183 
cl_u_c_store = cell([it_z_n, 1]);
 184 
cl_c_valid_idx = cell([it_z_n, 1]);
 185 

 186 
%% Initialize Convergence Conditions
 187 

 188 
bl_vfi_continue = true;
 189 
it_iter = 0;
 190 
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
 191 
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
 192 
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
 193 

 194 
%% Iterate Value Function
 195 
% Loop solution with 4 nested loops
 196 
%
 197 
% # loop 1: over exogenous states
 198 
% # loop 2: over endogenous states
 199 
% # loop 3: over choices
 200 
% # loop 4: add future utility, integration--loop over future shocks
 201 
%
 202 

 203 
% Start Profile
 204 
if (bl_profile)
 205 
    close all;
 206 
    profile off;
 207 
    profile on;
< 0.001 
      1 
 208
end 
 209 

 210 
% Start Timer
< 0.001 
      1 
 211
if (bl_time) 
< 0.001 
      1 
 212
    tic; 
< 0.001 
      1 
 213
end 
 214 

 215 
% Value Function Iteration
< 0.001 
      1 
 216
while bl_vfi_continue 
< 0.001 
    181 
 217
    it_iter = it_iter + 1; 
 218 

 219 
    %% Solve Optimization Problem Current Iteration
 220 
    % Only this segment of code differs between ff_abz_vf and ff_abz_vf_vec
 221 
    % Store in cells results and retrieve, this is more memory intensive
 222 
    % than ff_abz_vf_vec.
 223 

 224 
    % loop 1: over exogenous states
< 0.001 
    181 
 225
    for it_z_i = 1:it_z_n 
 226 

 227 
        % Current Shock
  0.003 
  13575 
 228
        fl_z_r_borr = ar_z_r_borr_mesh_wage(it_z_i); 
  0.003 
  13575 
 229
        fl_z_wage = ar_z_wage_mesh_r_borr(it_z_i); 
 230 
        
 231 
        % cash-on-hand
  0.176 
  13575 
 232
        ar_coh = f_coh(fl_z_r_borr, fl_z_wage, ar_a); 
 233 

 234 
        % Consumption and u(c) only need to be evaluated once
  0.004 
  13575 
 235
        if (it_iter == 1) 
 236 

 237 
            % Consumption: fl_z = 1 by 1, ar_a = 1 by N, ar_a' = N by 1
 238 
            % mt_c is N by N: matrix broadcasting, expand to matrix from arrays
  0.120 
     75 
 239
            mt_c = f_cons_coh(ar_coh, ar_a'); 
 240 

 241 
            % EVAL current utility: N by N, f_util defined earlier
 242 
            % slightly faster to explicitly write function
< 0.001 
     75 
 243
            if (fl_crra == 1) 
 244 
                mt_utility = log(mt_c);
 245 
                fl_u_cmin = f_util_log(fl_c_min);
< 0.001 
     75 
 246
            else 
 247 
                % slightly faster if write function here directly, but
 248 
                % speed gain is very small, more important to have single
 249 
                % location control of functions.
  0.966 
     75 
 250
                mt_utility = f_util_crra(mt_c); 
  0.002 
     75 
 251
                fl_u_cmin = f_util_crra(fl_c_min); 
< 0.001 
     75 
 252
            end 
 253 

 254 
            % Eliminate Complex Numbers
  0.038 
     75 
 255
            mt_it_c_valid_idx = (mt_c <= fl_c_min); 
  0.357 
     75 
 256
            mt_utility(mt_it_c_valid_idx) = fl_u_cmin; 
 257 

 258 
            % Store in cells
< 0.001 
     75 
 259
            cl_u_c_store{it_z_i} = mt_utility; 
< 0.001 
     75 
 260
            cl_c_valid_idx{it_z_i} = mt_it_c_valid_idx; 
 261 

< 0.001 
     75 
 262
        end 
 263 

 264 
        % f(z'|z)
  0.019 
  13575 
 265
        ar_z_trans_condi = mt_z_trans(it_z_i,:); 
 266 

 267 
        % EVAL EV((A',K'),Z'|Z) = V((A',K'),Z') x p(z'|z)', (N by Z) x (Z by 1) = N by 1
 268 
        % Note: transpose ar_z_trans_condi from 1 by Z to Z by 1
 269 
        % Note: matrix multiply not dot multiply        
  0.279 
  13575 
 270
        mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi'; 
 271 

 272 
        % EVAL add on future utility, N by N + N by 1
  2.055 
  13575 
 273
        mt_utility = cl_u_c_store{it_z_i} + fl_beta*mt_evzp_condi_z; 
 274 

 275 
        % Index update
 276 
        % using the method below is much faster than index replace
 277 
        % see <https://fanwangecon.github.io/M4Econ/support/speed/index/fs_subscript.html fs_subscript>
  0.017 
  13575 
 278
        mt_it_c_valid_idx = cl_c_valid_idx{it_z_i}; 
 279 
        % Default or Not Utility Handling
  0.003 
  13575 
 280
        if (bl_default) 
 281 
            % if default: only today u(cmin), transition out next period, debt wiped out
  0.119 
  13575 
 282
            fl_v_default = fl_u_cmin + fl_beta*mt_evzp_condi_z(ar_a == fl_default_aprime); 
  2.904 
  13575 
 283
            mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_v_default*(mt_it_c_valid_idx); 
 284 
        else
 285 
            % if default is not allowed: v = u(cmin)
 286 
            mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_nan_replace*(mt_it_c_valid_idx);
  0.002 
  13575 
 287
        end 
 288 

 289 
        % Optimization: remember matlab is column major, rows must be
 290 
        % choices, columns must be states
 291 
        % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
 292 
        % mt_utility is N by N, rows are choices, cols are states.                 
  5.400 
  13575 
 293
        [ar_opti_val_z, ar_opti_idx_z] = max(mt_utility); 
  0.144 
  13575 
 294
        ar_opti_aprime_z = ar_a(ar_opti_idx_z); 
  0.201 
  13575 
 295
        ar_opti_c_z = f_cons_coh(ar_coh, ar_opti_aprime_z); 
 296 

 297 
        % Handle Default is optimal or not
  0.003 
  13575 
 298
        if (bl_default) 
 299 
            % if defaulting is optimal choice, at these states, not required
 300 
            % to default, non-default possible, but default could be optimal
  0.086 
  13575 
 301
            ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = fl_default_aprime; 
  0.133 
  13575 
 302
            ar_opti_idx_z(ar_opti_c_z <= fl_c_min) = find(ar_a == fl_default_aprime); 
 303 
        else
 304 
            % if default is not allowed, then next period same state as now
 305 
            % this is absorbing state, this is the limiting case, single
 306 
            % state space point, lowest a and lowest shock has this.
 307 
            ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = ar_a(ar_opti_c_z <= fl_c_min);
  0.002 
  13575 
 308
        end 
 309 

 310 
        % store optimal values
  0.076 
  13575 
 311
        mt_val(:,it_z_i) = ar_opti_val_z; 
  0.053 
  13575 
 312
        mt_pol_a(:,it_z_i) = ar_opti_aprime_z; 
 313 

  0.003 
  13575 
 314
        if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
     75 
 315
            mt_pol_idx(:,it_z_i) = ar_opti_idx_z; 
< 0.001 
     75 
 316
        end 
  0.004 
  13575 
 317
    end 
 318 

 319 
    %% Check Tolerance and Continuation
 320 

 321 
    % Difference across iterations
  0.276 
    181 
 322
    ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); 
  0.210 
    181 
 323
    ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur); 
  0.021 
    181 
 324
    mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n); 
 325 

 326 
    % Update
  0.007 
    181 
 327
    mt_val_cur = mt_val; 
  0.005 
    181 
 328
    mt_pol_a_cur = mt_pol_a; 
 329 

 330 
    % Print Iteration Results
< 0.001 
    181 
 331
    if (bl_display && (rem(it_iter, it_display_every)==0)) 
 332 
        fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
 333 
            it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
 334 
        tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
 335 
            mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
 336 
        tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
 337 
        tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
 338 
        disp('mval = mean(mt_val_cur,1), average value over a')
 339 
        disp('map  = mean(mt_pol_a_cur,1), average choice over a')
 340 
        disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
 341 
        disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
 342 
        disp(tb_valpol_iter);
 343 
    end
 344 

 345 
    % Continuation Conditions:
 346 
    % 1. if value function convergence criteria reached
 347 
    % 2. if policy function variation over iterations is less than
 348 
    % threshold
< 0.001 
    181 
 349
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 350
        bl_vfi_continue = false; 
  0.003 
    180 
 351
    elseif ((it_iter == it_maxiter_val) || ... 
    180 
 352
            (ar_val_diff_norm(it_iter) < fl_tol_val) || ... 
    180 
 353
            (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) 
 354 
        % Fix to max, run again to save results if needed
< 0.001 
      1 
 355
        it_iter_last = it_iter; 
< 0.001 
      1 
 356
        it_iter = it_maxiter_val; 
< 0.001 
      1 
 357
    end 
 358 

< 0.001 
    181 
 359
end 
 360 

 361 
% End Timer
< 0.001 
      1 
 362
if (bl_time) 
< 0.001 
      1 
 363
    toc; 
< 0.001 
      1 
 364
end 
 365 

 366 
% End Profile
< 0.001 
      1 
 367
if (bl_profile) 
  0.001 
      1 
 368
    profile off 
 369 
    profile viewer
 370 
    st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
 371 
    profsave(profile('info'), strcat(st_profile_path, st_file_name));
 372 
end
 373 

 374 
%% Process Optimal Choices
 375 

 376 
result_map = containers.Map('KeyType','char', 'ValueType','any');
 377 
result_map('mt_val') = mt_val;
 378 
result_map('mt_pol_idx') = mt_pol_idx;
 379 

 380 
result_map('cl_mt_coh') = {f_coh(ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr, ar_a'), zeros(1)};
 381 
result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
 382 
result_map('cl_mt_pol_c') = {f_cons_checkcmin(ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr, ar_a', mt_pol_a), zeros(1)};
 383 
result_map('ar_st_pol_names') = ["cl_mt_pol_a", "cl_mt_coh", "cl_mt_pol_c"];
 384 

 385 
if (bl_post)
 386 
    bl_input_override = true;
 387 
    result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
 388 
    result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
 389 
    result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
 390 
    result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
 391 
end
 392 

 393 
end

Other subfunctions in this file are not included in this listing.