time | Calls | line |
---|
| | 7 | function [result_map] = ff_az_ds_vecsv(varargin)
|
| | 8 | %% FF_AZ_DS_VECSV finds the stationary asset distributions analytically
|
| | 9 | % Here, we implement the iteration free semi-analytical method for finding
|
| | 10 | % asset distributions. The method analytically give the exact
|
| | 11 | % stationary distribution induced by the policy function from the dynamic
|
| | 12 | % programming problem, conditional on discretizations.
|
| | 13 | %
|
| | 14 | % See the appedix of
|
| | 15 | % <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3316939 Wang (2019)>
|
| | 16 | % which develops details on how this works. Suppose endo state size is N and
|
| | 17 | % shock is size M, then our transition matrix is (NxM) by (NxM). We know
|
| | 18 | % the coh(a,z) value associated with each element of the (NxM) by 1 array.
|
| | 19 | % We also know f(a'(a,z),z'|z) transition probability. We contruct a markov
|
| | 20 | % chain that has (NxM) states. Specifically:
|
| | 21 | %
|
| | 22 | % * We need to transform: mt_pol_idx. This matrix is indexing 1 through N,
|
| | 23 | % we need for it to index 1 through (NxM).
|
| | 24 | % * Then we need to duplicate the transition matrix fro shocks.
|
| | 25 | % * Transition Matrix is *sparse*
|
| | 26 | %
|
| | 27 | % Once we have the all states meshed markov transition matrix, then we can
|
| | 28 | % use standard methods to find the stationary distribution. Three options
|
| | 29 | % are offered here that provide identical solutions:
|
| | 30 | %
|
| | 31 | % # The Eigenvector Approach: very fast
|
| | 32 | % # The Projection Approach: medium
|
| | 33 | % # The Power Approach: very slow (especially with sparse matrix)
|
| | 34 | %
|
| | 35 | % The program here builds on the Asset Dynamic Programming Problem
|
| | 36 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html
|
| | 37 | % ff_az_vf_vecsv>, here we solve for the asset distribution using
|
| | 38 | % vectorized codes.
|
| | 39 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds.html
|
| | 40 | % ff_az_ds> shows looped codes for finding asset distribution. The solution
|
| | 41 | % is the same. Both *ff_az_ds* and *ff_az_ds_vec* using
|
| | 42 | % optimized-vectorized dynamic programming code from ff_az_vf_vecsv. The
|
| | 43 | % idea here is that in addition to vectornizing the dynamic programming
|
| | 44 | % funcion, we can also vectorize the distribution code here.
|
| | 45 | %
|
| | 46 | % Distributions of Interest:
|
| | 47 | %
|
| | 48 | % * $p(a,z)$
|
| | 49 | % * $p(Y=y, z) = \sum_{a} \left( 1\left\{Y(a,z)=y\right\} \cdot p(a,z) \right)$
|
| | 50 | % * $p(Y=y, a) = \sum_{z} \left( 1\left\{Y(a,z)=y\right\} \cdot p(a,z) \right)$
|
| | 51 | % * $p(Y=y) = \sum_{a,z} \left( 1\left\{Y(a,z)=y\right\} \cdot p(a,z) \right)$
|
| | 52 | %
|
| | 53 | % Statistics include:
|
| | 54 | %
|
| | 55 | % * $\mu_y = \sum_{y} p(Y=y) \cdot y$
|
| | 56 | % * $\sigma_y = \sqrt{ \sum_{y} p(Y=y) \cdot \left( y - \mu_y \right)^2}$
|
| | 57 | % * $p(y=0)$
|
| | 58 | % * $p(y=\max(y))$
|
| | 59 | % * percentiles: $min_{y} \left\{ P(Y \le y) - percentile \mid P(Y \le y) \ge percentile \right\}$
|
| | 60 | % * fraction of outcome held by up to percentiles: $E(Y<y)/E(Y)$
|
| | 61 | %
|
| | 62 | % @param param_map container parameter container
|
| | 63 | %
|
| | 64 | % @param support_map container support container
|
| | 65 | %
|
| | 66 | % @param armt_map container container with states, choices and shocks
|
| | 67 | % grids that are inputs for grid based solution algorithm
|
| | 68 | %
|
| | 69 | % @param func_map container container with function handles for
|
| | 70 | % consumption cash-on-hand etc.
|
| | 71 | %
|
| | 72 | % @return result_map container contains policy function matrix, value
|
| | 73 | % function matrix, iteration results, and policy function, value function
|
| | 74 | % and iteration results tables.
|
| | 75 | %
|
| | 76 | % new keys included in result_map in addition to the output from
|
| | 77 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html
|
| | 78 | % ff_az_vf_vecsv> are various distribution statistics for each model
|
| | 79 | % outcome, keys include *cl_mt_pol_a*, *cl_mt_pol_c*, *cl_mt_pol_coh*, etc.
|
| | 80 | %
|
| | 81 | % @example
|
| | 82 | %
|
| | 83 | % % Get Default Parameters
|
| | 84 | % it_param_set = 6;
|
| | 85 | % [param_map, support_map] = ffs_az_set_default_param(it_param_set);
|
| | 86 | % % Change Keys in param_map
|
| | 87 | % param_map('it_a_n') = 500;
|
| | 88 | % param_map('it_z_n') = 11;
|
| | 89 | % param_map('fl_a_max') = 100;
|
| | 90 | % param_map('fl_w') = 1.3;
|
| | 91 | % % Change Keys support_map
|
| | 92 | % support_map('bl_display') = false;
|
| | 93 | % support_map('bl_post') = true;
|
| | 94 | % support_map('bl_display_final') = false;
|
| | 95 | % % Call Program with external parameters that override defaults
|
| | 96 | % ff_az_ds_vecsv(param_map, support_map);
|
| | 97 | %
|
| | 98 | %
|
| | 99 | % @include
|
| | 100 | %
|
| | 101 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
|
| | 102 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_ds_post_stats.html ff_az_ds_post_stats>
|
| | 103 | % * <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_stats.html fft_disc_rand_var_stats>
|
| | 104 | % * <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_mass2outcomes.html fft_disc_rand_var_mass2outcomes>
|
| | 105 | %
|
| | 106 | % @seealso
|
| | 107 | %
|
| | 108 | % * derive distribution f(y'(y,z)) one asset *loop*: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds.html ff_az_ds>
|
| | 109 | % * derive distribution f(y'({x,y},z)) two assets *loop*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_ds.html ff_akz_ds>
|
| | 110 | % * derive distribution f(y'({x,y},z, *z'*)) two assets *loop*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_ds.html ff_iwkz_ds>
|
| | 111 | % * derive distribution f(y'({y},z)) or f(y'({x,y},z)) *vectorized*: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds_vec.html ff_az_ds_vec>
|
| | 112 | % * derive distribution f(y'({y},z, *z'*)) or f(y'({x,y},z, *z'*)) *vectorized*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_ds_vec.html ff_iwkz_ds_vec>
|
| | 113 | % * derive distribution f(y'({y},z)) or f(y'({x,y},z)) *semi-analytical*: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds_vecsv.html ff_az_ds_vecsv>
|
| | 114 | % * derive distribution f(y'({y},z, *z'*)) or f(y'({x,y},z, *z'*)) *semi-analytical*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_ds_vecsv.html ff_iwkz_ds_vecsv>
|
| | 115 | %
|
| | 116 |
|
| | 117 | %% Default
|
| | 118 | % Program can be externally invoked with _az_, _abz_ or various other
|
| | 119 | % programs. By default, program invokes using _az_ model programs:
|
| | 120 | %
|
| | 121 | % # it_subset = 5 is basic invoke quick test
|
| | 122 | % # it_subset = 6 is invoke full test
|
| | 123 | % # it_subset = 7 is profiling invoke
|
| | 124 | % # it_subset = 8 is matlab publish
|
| | 125 | % # it_subset = 9 is invoke operational (only final stats) and coh graph
|
| | 126 | %
|
| | 127 |
|
< 0.001 | 1 | 128 | params_len = length(varargin);
|
< 0.001 | 1 | 129 | bl_input_override = 0;
|
< 0.001 | 1 | 130 | if (params_len == 6)
|
< 0.001 | 1 | 131 | bl_input_override = varargin{6};
|
< 0.001 | 1 | 132 | end
|
| | 133 |
|
< 0.001 | 1 | 134 | if (bl_input_override)
|
| | 135 | % if invoked from outside override fully
|
< 0.001 | 1 | 136 | [param_map, support_map, armt_map, func_map, result_map, ~] = varargin{:};
|
| | 137 |
|
| | 138 | else
|
| | 139 | % default invoke
|
| | 140 | close all;
|
| | 141 |
|
| | 142 | it_param_set = 8;
|
| | 143 | bl_input_override = true;
|
| | 144 |
|
| | 145 | % 1. Generate Parameters
|
| | 146 | [param_map, support_map] = ffs_az_set_default_param(it_param_set);
|
| | 147 |
|
| | 148 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 149 | % param_map('it_a_n') = 750;
|
| | 150 | % param_map('it_z_n') = 15;
|
| | 151 |
|
| | 152 | param_map('st_analytical_stationary_type') = 'eigenvector';
|
| | 153 | % param_map('st_analytical_stationary_type') = 'projection';
|
| | 154 | % param_map('st_analytical_stationary_type') = 'power';
|
| | 155 |
|
| | 156 | % 2. Generate function and grids
|
| | 157 | [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 158 |
|
| | 159 | % 3. Solve value and policy function using az_vf_vecsv, if want to solve
|
| | 160 | % other models, solve outside then provide result_map as input
|
| | 161 | [result_map] = ff_az_vf_vecsv(param_map, support_map, armt_map, func_map);
|
| | 162 |
|
< 0.001 | 1 | 163 | end
|
| | 164 |
|
| | 165 | %% Parse Parameters
|
| | 166 |
|
| | 167 | % append function name
|
< 0.001 | 1 | 168 | st_func_name = 'ff_az_ds_vecsv';
|
< 0.001 | 1 | 169 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
< 0.001 | 1 | 170 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
< 0.001 | 1 | 171 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 172 |
|
| | 173 | % result_map
|
| | 174 | % ar_st_pol_names is from section _Process Optimal Choices_ in the value
|
| | 175 | % function code.
|
< 0.001 | 1 | 176 | params_group = values(result_map, {'cl_mt_pol_a', 'mt_pol_idx', 'ar_st_pol_names'});
|
< 0.001 | 1 | 177 | [cl_mt_pol_a, mt_pol_idx, ar_st_pol_names] = params_group{:};
|
< 0.001 | 1 | 178 | mt_pol_a = deal(cl_mt_pol_a{1});
|
| | 179 |
|
| | 180 | % armt_map
|
< 0.001 | 1 | 181 | params_group = values(armt_map, {'mt_z_trans'});
|
< 0.001 | 1 | 182 | [mt_z_trans] = params_group{:};
|
| | 183 |
|
| | 184 | % param_map
|
< 0.001 | 1 | 185 | params_group = values(param_map, { 'it_trans_power_dist', 'st_analytical_stationary_type'});
|
< 0.001 | 1 | 186 | [it_trans_power_dist, st_analytical_stationary_type] = params_group{:};
|
| | 187 |
|
| | 188 |
|
| | 189 | % support_map
|
< 0.001 | 1 | 190 | params_group = values(support_map, {'bl_profile_dist', 'st_profile_path', ...
|
| | 191 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 192 | 'bl_time', 'bl_display_final_dist', 'bl_post'});
|
< 0.001 | 1 | 193 | [bl_profile_dist, st_profile_path, ...
|
| 1 | 194 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| 1 | 195 | bl_time, bl_display_final_dist, bl_post] = params_group{:};
|
| | 196 |
|
| | 197 | %% Start Profiler and Timer
|
| | 198 |
|
| | 199 | % Start Profile
|
< 0.001 | 1 | 200 | if (bl_profile_dist)
|
| | 201 | close all;
|
| | 202 | profile off;
|
| | 203 | profile on;
|
| | 204 | end
|
| | 205 |
|
| | 206 | % Start Timer
|
< 0.001 | 1 | 207 | if (bl_time)
|
< 0.001 | 1 | 208 | tic;
|
< 0.001 | 1 | 209 | end
|
| | 210 |
|
| | 211 | %% Get Size of Endogenous and Exogenous State
|
| | 212 | % The key idea is that all information for policy function is captured by
|
| | 213 | % _mt_pol_idx_ matrix, its rows are the number of endogenous states, and
|
| | 214 | % its columns are the exogenous shocks.
|
| | 215 |
|
< 0.001 | 1 | 216 | [it_endostates_rows_n, it_exostates_cols_n] = size(mt_pol_idx);
|
| | 217 |
|
| | 218 | %% 1. Generate Max Index in (NxM) from (N) array.
|
| | 219 | % Suppose we have:
|
| | 220 | %
|
| | 221 | % mt_pol_idx =
|
| | 222 | %
|
| | 223 | % 1 1 2
|
| | 224 | % 2 2 2
|
| | 225 | % 3 3 3
|
| | 226 | % 4 4 4
|
| | 227 | % 4 5 5
|
| | 228 | %
|
| | 229 | % These become:
|
| | 230 | %
|
| | 231 | % mt_pol_idx_mesh_max =
|
| | 232 | %
|
| | 233 | % 1 6 11
|
| | 234 | % 2 7 12
|
| | 235 | % 3 8 13
|
| | 236 | % 4 9 14
|
| | 237 | % 5 10 15
|
| | 238 | % 1 6 11
|
| | 239 | % 2 7 12
|
| | 240 | % 3 8 13
|
| | 241 | % 4 9 14
|
| | 242 | % 5 10 15
|
| | 243 | % 1 6 11
|
| | 244 | % 2 7 12
|
| | 245 | % 3 8 13
|
| | 246 | % 4 9 14
|
| | 247 | % 5 10 15
|
| | 248 | %
|
| | 249 |
|
| | 250 | % mt_pol_idx_mesh_max is (NxM) by M, mt_pol_idx is N by M
|
< 0.001 | 1 | 251 | mt_pol_idx_mesh_max = mt_pol_idx(:) + (0:1:(it_exostates_cols_n-1))*it_endostates_rows_n;
|
| | 252 |
|
| | 253 | %% 2. Transition Probabilities from (M by M) to (NxM) by M
|
| | 254 | %
|
| | 255 | % mt_trans_prob =
|
| | 256 | %
|
| | 257 | % 0.9332 0.0668 0.0000
|
| | 258 | % 0.9332 0.0668 0.0000
|
| | 259 | % 0.9332 0.0668 0.0000
|
| | 260 | % 0.9332 0.0668 0.0000
|
| | 261 | % 0.9332 0.0668 0.0000
|
| | 262 | % 0.0062 0.9876 0.0062
|
| | 263 | % 0.0062 0.9876 0.0062
|
| | 264 | % 0.0062 0.9876 0.0062
|
| | 265 | % 0.0062 0.9876 0.0062
|
| | 266 | % 0.0062 0.9876 0.0062
|
| | 267 | % 0.0000 0.0668 0.9332
|
| | 268 | % 0.0000 0.0668 0.9332
|
| | 269 | % 0.0000 0.0668 0.9332
|
| | 270 | % 0.0000 0.0668 0.9332
|
| | 271 | % 0.0000 0.0668 0.9332
|
| | 272 | %
|
| | 273 |
|
< 0.001 | 1 | 274 | mt_trans_prob = reshape(repmat(mt_z_trans(:)', [it_endostates_rows_n, 1]), [it_endostates_rows_n*it_exostates_cols_n, it_exostates_cols_n]);
|
| | 275 |
|
| | 276 | %% 3. Fill mt_pol_idx_mesh_idx to mt_full_trans_mat
|
| | 277 | % Try to always use sparse matrix, unless grid sizes very small, keeping
|
| | 278 | % non-sparse code here for comparison. Sparse matrix is important for
|
| | 279 | % allowing the code to be fast and memory efficient. Otherwise this method
|
| | 280 | % is much slower than iterative method.
|
| | 281 |
|
< 0.001 | 1 | 282 | it_sparse_threshold = 100*7;
|
| | 283 |
|
< 0.001 | 1 | 284 | if (it_endostates_rows_n*it_exostates_cols_n > it_sparse_threshold)
|
| | 285 |
|
| | 286 | %% 3.1 Sparse Matrix Approach
|
< 0.001 | 1 | 287 | i = mt_pol_idx_mesh_max(:);
|
< 0.001 | 1 | 288 | j = repmat((1:1:it_endostates_rows_n*it_exostates_cols_n),[1,it_exostates_cols_n])';
|
< 0.001 | 1 | 289 | v = mt_trans_prob(:);
|
< 0.001 | 1 | 290 | m = it_endostates_rows_n*it_exostates_cols_n;
|
< 0.001 | 1 | 291 | n = it_endostates_rows_n*it_exostates_cols_n;
|
0.028 | 1 | 292 | mt_full_trans_mat = sparse(i, j, v, m, n);
|
| | 293 |
|
| | 294 | else
|
| | 295 |
|
| | 296 | %% 3.2 Full Matrix Approach
|
| | 297 | %
|
| | 298 | % ar_lin_idx_start_point =
|
| | 299 | %
|
| | 300 | % 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
|
| | 301 | %
|
| | 302 | % mt_pol_idx_mesh_idx_meshfull =
|
| | 303 | %
|
| | 304 | % 1 6 11
|
| | 305 | % 17 22 27
|
| | 306 | % 33 38 43
|
| | 307 | % 49 54 59
|
| | 308 | % 65 70 75
|
| | 309 | % 76 81 86
|
| | 310 | % 92 97 102
|
| | 311 | % 108 113 118
|
| | 312 | % 124 129 134
|
| | 313 | % 140 145 150
|
| | 314 | % 151 156 161
|
| | 315 | % 167 172 177
|
| | 316 | % 183 188 193
|
| | 317 | % 199 204 209
|
| | 318 | % 215 220 225
|
| | 319 | %
|
| | 320 |
|
| | 321 | % Each row's linear index starting point
|
| | 322 | ar_lin_idx_start_point = ((it_endostates_rows_n*it_exostates_cols_n)*(0:1:(it_endostates_rows_n*it_exostates_cols_n-1)));
|
| | 323 |
|
| | 324 | % mt_pol_idx_mesh_idx_meshfull is (NxM) by M
|
| | 325 | % Full index in (NxM) to (NxM) transition Matrix
|
| | 326 | mt_pol_idx_mesh_idx_meshfull = mt_pol_idx_mesh_max + ar_lin_idx_start_point';
|
| | 327 |
|
| | 328 | % Fill mt_pol_idx_mesh_idx to mt_full_trans_mat
|
| | 329 | mt_full_trans_mat = zeros([it_endostates_rows_n*it_exostates_cols_n, it_endostates_rows_n*it_exostates_cols_n]);
|
| | 330 | mt_full_trans_mat(mt_pol_idx_mesh_idx_meshfull(:)) = mt_trans_prob(:);
|
| | 331 |
|
< 0.001 | 1 | 332 | end
|
| | 333 |
|
| | 334 | %% 4. Stationary Distribution *Method A*, Eigenvector Approach
|
| | 335 | % Given that markov chain we have constructured for all state-space
|
| | 336 | % elements, we can now find the stationary distribution using standard
|
| | 337 | % <https://en.wikipedia.org/wiki/Markov_chain#Stationary_distribution_relation_to_eigenvectors_and_simplices
|
| | 338 | % eigenvector> approach.
|
| | 339 |
|
< 0.001 | 1 | 340 | if (strcmp(st_analytical_stationary_type, 'eigenvector'))
|
0.493 | 1 | 341 | [V, ~] = eigs(mt_full_trans_mat,1,1);
|
< 0.001 | 1 | 342 | ar_stationary = V/sum(V);
|
< 0.001 | 1 | 343 | end
|
| | 344 |
|
| | 345 | %% 5. Stationary Distribution *Method B*, Projection
|
| | 346 | % This uses Projection.
|
| | 347 |
|
< 0.001 | 1 | 348 | if (strcmp(st_analytical_stationary_type, 'projection'))
|
| | 349 |
|
| | 350 | % a. Transition - I
|
| | 351 | % P = P*T
|
| | 352 | % 0 = P*T - P
|
| | 353 | % 0 = P*(T-1)
|
| | 354 | % Q = trans_prob - np.identity(state_count);
|
| | 355 |
|
| | 356 | mt_diag = eye(it_endostates_rows_n*it_exostates_cols_n);
|
| | 357 | if (it_endostates_rows_n*it_exostates_cols_n > it_sparse_threshold)
|
| | 358 | % if larger, use sparse matrix
|
| | 359 | mt_diag = sparse(mt_diag);
|
| | 360 | end
|
| | 361 | mt_Q = mt_full_trans_mat' - mt_diag;
|
| | 362 |
|
| | 363 | % b. add all 1 as final column, (because P*1 = 1)
|
| | 364 | % one_col = np.ones((state_count,1))
|
| | 365 | % Q = np.column_stack((Q, one_col))
|
| | 366 |
|
| | 367 | ar_one = ones([it_endostates_rows_n*it_exostates_cols_n,1]);
|
| | 368 | mt_Q = [mt_Q, ar_one];
|
| | 369 |
|
| | 370 | % c. b is the LHS
|
| | 371 | % b = [0,0,0,...,1]
|
| | 372 | % b = np.zeros((1, (state_count+1)))
|
| | 373 | % b[0, state_count] = 1
|
| | 374 |
|
| | 375 | ar_b = zeros([1, it_endostates_rows_n*it_exostates_cols_n+1]);
|
| | 376 | if (it_endostates_rows_n*it_exostates_cols_n > it_sparse_threshold)
|
| | 377 | % if larger, use sparse matrix
|
| | 378 | ar_b = sparse(ar_b);
|
| | 379 | end
|
| | 380 | ar_b(it_endostates_rows_n*it_exostates_cols_n+1) = 1;
|
| | 381 |
|
| | 382 | % d. solve
|
| | 383 | % b = P*Q
|
| | 384 | % b*Q^{T} = P*Q*Q^{T}
|
| | 385 | % P*Q*Q^{T} = b*Q^{T}
|
| | 386 | % P = (b*Q^{T})[(Q*Q^{T})^{-1}]
|
| | 387 | % Q_t = np.transpose(Q)
|
| | 388 | % b_QT = np.dot(b, Q_t)
|
| | 389 | % Q_QT = np.dot(Q, Q_t)
|
| | 390 |
|
| | 391 | % inv_mt_Q_QT = inv(mt_Q*mt_Q');
|
| | 392 | ar_stationary = (ar_b*mt_Q')/(mt_Q*mt_Q');
|
| | 393 |
|
| | 394 | end
|
| | 395 |
|
| | 396 | %% 6. Stationary Distribution *Method C*, Power
|
| | 397 | % Takes markov chain to Nth power. This is the slowest.
|
| | 398 |
|
< 0.001 | 1 | 399 | if (strcmp(st_analytical_stationary_type, 'power'))
|
| | 400 |
|
| | 401 | mt_stationary_full = (mt_full_trans_mat)^it_trans_power_dist;
|
| | 402 | ar_stationary = mt_stationary_full(:,1);
|
| | 403 | end
|
| | 404 |
|
| | 405 | %% 7. Stationary Vector to Stationary Matrix in Original Dimensions
|
| | 406 |
|
< 0.001 | 1 | 407 | mt_dist_az = reshape(ar_stationary, size(mt_pol_idx));
|
| | 408 |
|
| | 409 | %% End Time and Profiler
|
| | 410 |
|
| | 411 | % End Timer
|
< 0.001 | 1 | 412 | if (bl_time)
|
< 0.001 | 1 | 413 | toc;
|
< 0.001 | 1 | 414 | end
|
| | 415 |
|
| | 416 | % End Profile
|
< 0.001 | 1 | 417 | if (bl_profile_dist)
|
| | 418 | profile off
|
| | 419 | profile viewer
|
| | 420 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 421 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 422 | end
|
| | 423 |
|
| | 424 | %% *f(y), f(c), f(a)*: Generate Key Distributional Statistics for Each outcome
|
| | 425 | % Having derived f(a,z) the probability mass function of the joint discrete
|
| | 426 | % random variables, we now obtain distributional statistics. Note that we
|
| | 427 | % know f(a,z), and we also know relevant policy functions a'(a,z), c(a,z),
|
| | 428 | % or other policy functions. We can simulate any choices that are a
|
| | 429 | % function of the random variables (a,z), using f(a,z). We call function
|
| | 430 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_ds_post_stats.html
|
| | 431 | % ff_az_ds_post_stats> which uses
|
| | 432 | % <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_stats.html
|
| | 433 | % fft_disc_rand_var_stats> and
|
| | 434 | % <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_mass2outcomes.html
|
| | 435 | % fft_disc_rand_var_mass2outcomes> to compute various statistics of
|
| | 436 | % interest.
|
| | 437 |
|
< 0.001 | 1 | 438 | bl_input_override = true;
|
0.344 | 1 | 439 | result_map = ff_az_ds_post_stats(support_map, result_map, mt_dist_az, bl_input_override);
|
| | 440 |
|
0.001 | 1 | 441 | end
|
Other subfunctions in this file are not included in this listing.