This is a static copy of a profile report

Home

Function details for ff_iwkz_vf_vecsvThis is a static copy of a profile report

Home

ff_iwkz_vf_vecsv (Calls: 1, Time: 0.601 s)
Generated 03-Jul-2019 21:34:54 using performance time.
function in file C:\Users\fan\CodeDynaAsset\m_akz\solve\ff_iwkz_vf_vecsv.m
Copy to new window for comparing multiple runs

Parents (calling functions)

Function NameFunction TypeCalls
ff_iwkz_dsfunction1
Lines where the most time was spent

Line NumberCodeCallsTotal Time% TimeTime Plot
264
mt_utility_update = f_grid_int...
16650.098 s16.3%
291
[ar_opti_val1_z, ar_opti_idx_z...
16650.080 s13.3%
236
ff_wkz_evf(mt_val_wkb_interpol...
1110.063 s10.4%
280
mt_utility = cl_u_c_store{it_z...
16650.046 s7.7%
305
ar_pol_diff_norm(it_iter) = no...
1110.042 s6.9%
All other lines  0.272 s45.2%
Totals  0.601 s100% 
Children (called functions)

Function NameFunction TypeCallsTotal Time% TimeTime Plot
ff_wkz_evffunction1110.060 s9.9%
...coh,bprime,kprime)(coh-kprime-bprime)anonymous function16650.022 s3.7%
meanfunction1110.007 s1.2%
Self time (built-ins, overhead, etc.)  0.512 s85.1%
Totals  0.601 s100% 
Code Analyzer results
Line numberMessage
123The value assigned here to 'f_coh' appears to be unused. Consider replacing it by ~.
128The value assigned here to 'fl_r_save' appears to be unused. Consider replacing it by ~.
128The value assigned here to 'fl_r_borr' appears to be unused. Consider replacing it by ~.
128The value assigned here to 'fl_wage' appears to be unused. Consider replacing it by ~.
Coverage results
Show coverage for parent directory
Total lines in function388
Non-code lines (comments, blank lines)212
Code lines (lines that can run)176
Code lines that did run68
Code lines that did not run108
Coverage (did run/can run)38.64 %
Function listing
time 
Calls 
 line
   7 
function result_map = ff_iwkz_vf_vecsv(varargin)
   8 
%% FF_IWKZ_VF_VECSV solve infinite horizon exo shock + endo asset problem
   9 
% This program solves the infinite horizon dynamic savings and risky
  10 
% capital asset problem with some ar1 shock. This is the efficient vectorized version
  11 
% of
  12 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf.html
  13 
% ff_iwkz_vf>. See that file for more descriptions. 
  14 
%
  15 
% @param param_map container parameter container
  16 
%
  17 
% @param support_map container support container
  18 
%
  19 
% @param armt_map container container with states, choices and shocks
  20 
% grids that are inputs for grid based solution algorithm
  21 
%
  22 
% @param func_map container container with function handles for
  23 
% consumption cash-on-hand etc.
  24 
%
  25 
% @return result_map container contains policy function matrix, value
  26 
% function matrix, iteration results, and policy function, value function
  27 
% and iteration results tables. 
  28 
%
  29 
% keys included in result_map:
  30 
%
  31 
% * mt_val matrix states_n by shock_n matrix of converged value function grid
  32 
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
  33 
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
  34 
% difference between iteration
  35 
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
  36 
% function difference between iterations
  37 
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
  38 
% proportion of grid points at which policy function changed between
  39 
% current and last iteration for each element of shock
  40 
%
  41 
% @example
  42 
%
  43 
% @include
  44 
%
  45 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/ff_wkz_evf.m ff_wkz_evf>
  46 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/ffs_akz_set_default_param.m ffs_akz_set_default_param>
  47 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/ffs_akz_get_funcgrid.m ffs_akz_get_funcgrid>
  48 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solvepost/ff_akz_vf_post.m ff_akz_vf_post>
  49 
%
  50 
% @seealso
  51 
%
  52 
% * concurrent (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf.html ff_akz_vf>
  53 
% * concurrent (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vec.html ff_akz_vf_vec>
  54 
% * concurrent (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vecsv.html ff_akz_vf_vecsv>
  55 
% * two-stage (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html ff_wkz_vf>
  56 
% * two-stage (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vec.html ff_wkz_vf_vec>
  57 
% * two-stage (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vecsv.html ff_wkz_vf_vecsv>
  58 
% * two-stage + interpolate (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf.html ff_iwkz_vf>
  59 
% * two-stage + interpolate (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vec.html ff_iwkz_vf_vec>
  60 
% * two-stage + interpolate (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vecsv.html ff_iwkz_vf_vecsv>
  61 
%
  62 

  63 

  64 
%% Default
  65 
% * it_param_set = 1: quick test
  66 
% * it_param_set = 2: benchmark run
  67 
% * it_param_set = 3: benchmark profile
  68 
% * it_param_set = 4: press publish button
  69 

  70 
it_param_set = 4;
  71 
bl_input_override = true;
  72 
[param_map, support_map] = ffs_akz_set_default_param(it_param_set);
  73 

  74 
% Note: param_map and support_map can be adjusted here or outside to override defaults
  75 
% param_map('it_w_n') = 50;
  76 
% param_map('it_ak_n') = param_map('it_w_n');
  77 
% param_map('it_z_n') = 15;
  78 
% param_map('fl_coh_interp_grid_gap') = 0.1;
  79 
% param_map('it_c_interp_grid_gap') = 10^-4;
  80 

  81 
% get armt and func map
  82 
[armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
  83 
default_params = {param_map support_map armt_map func_map};
  84 

  85 
%% Parse Parameters 1
  86 

  87 
% if varargin only has param_map and support_map,
  88 
params_len = length(varargin);
  89 
[default_params{1:params_len}] = varargin{:};
  90 
param_map = [param_map; default_params{1}];
  91 
support_map = [support_map; default_params{2}];
  92 
if params_len >= 1 && params_len <= 2
  93 
    % If override param_map, re-generate armt and func if they are not
  94 
    % provided
  95 
    bl_input_override = true;
  96 
    [armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override);
  97 
else
  98 
    % Override all
  99 
    armt_map = [armt_map; default_params{3}];
 100 
    func_map = [func_map; default_params{4}];
 101 
end
 102 

 103 
% append function name
 104 
st_func_name = 'ff_iwkz_vf_vecsv';
 105 
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
 106 
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
 107 
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
 108 

 109 
%% Parse Parameters 2
 110 

 111 
% armt_map
 112 
params_group = values(armt_map, {'ar_w', 'ar_z'});
 113 
[ar_w, ar_z] = params_group{:};
 114 
params_group = values(armt_map, {'ar_interp_c_grid', 'ar_interp_coh_grid', ...
 115 
    'mt_interp_coh_grid_mesh_z', 'mt_z_mesh_coh_interp_grid'});
 116 
[ar_interp_c_grid, ar_interp_coh_grid, ...
 117 
    mt_interp_coh_grid_mesh_z, mt_z_mesh_coh_interp_grid] = params_group{:};
 118 
params_group = values(armt_map, {'mt_coh_wkb', 'mt_z_mesh_coh_wkb'});
 119 
[mt_coh_wkb, mt_z_mesh_coh_wkb] = params_group{:};
 120 

 121 
% func_map
 122 
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons', 'f_coh'});
 123 
[f_util_log, f_util_crra, f_cons, f_coh] = params_group{:};
 124 

 125 
% param_map
 126 
params_group = values(param_map, {'fl_r_save', 'fl_r_borr', 'fl_w',...
 127 
    'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'});
 128 
[fl_r_save, fl_r_borr, fl_wage, it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:};
 129 
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
 130 
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
 131 

 132 
% support_map
 133 
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
 134 
    'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
 135 
    'bl_time', 'bl_graph_evf', 'bl_display', 'it_display_every', 'bl_post'});
 136 
[bl_profile, st_profile_path, ...
 137 
    st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
 138 
    bl_time, bl_graph_evf, bl_display, it_display_every, bl_post] = params_group{:};
 139 

 140 
%% Initialize Output Matrixes
 141 

 142 
mt_val_cur = zeros(length(ar_interp_coh_grid),length(ar_z));
 143 
mt_val = mt_val_cur - 1;
 144 
mt_pol_a = zeros(length(ar_interp_coh_grid),length(ar_z));
 145 
mt_pol_a_cur = mt_pol_a - 1;
 146 
mt_pol_k = zeros(length(ar_interp_coh_grid),length(ar_z));
 147 
mt_pol_k_cur = mt_pol_k - 1;
 148 
mt_pol_idx = zeros(length(ar_interp_coh_grid),length(ar_z));
 149 

 150 
mt_ev_condi_z_max_kp = zeros(length(ar_w),length(ar_z));
 151 
mt_ev_condi_z_max_kp_cur = mt_ev_condi_z_max_kp - 1;
 152 

 153 
% We did not need these in ff_oz_vf or ff_oz_vf_vec
 154 
% see
 155 
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
 156 
% fs_u_c_partrepeat_main> for why store using cells.
 157 
cl_u_c_store = cell([it_z_n, 1]);
 158 
cl_c_valid_idx = cell([it_z_n, 1]);
 159 

 160 
%% Initialize Convergence Conditions
 161 

 162 
bl_vfi_continue = true;
 163 
it_iter = 0;
 164 
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
 165 
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
 166 
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
 167 

 168 
%% Pre-calculate u(c)
 169 
% Interpolation, see
 170 
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
 171 
% fs_u_c_partrepeat_main> for why interpolate over u(c)
 172 

 173 
% Evaluate
 174 
if (fl_crra == 1)
 175 
    ar_interp_u_of_c_grid = f_util_log(ar_interp_c_grid);
 176 
    fl_u_neg_c = f_util_log(fl_c_min);
 177 
else
 178 
    ar_interp_u_of_c_grid = f_util_crra(ar_interp_c_grid);
 179 
    fl_u_neg_c = f_util_crra(fl_c_min);
 180 
end
 181 
ar_interp_u_of_c_grid(ar_interp_c_grid <= fl_c_min) = fl_u_neg_c;
 182 

 183 
% Get Interpolant
 184 
f_grid_interpolant_spln = griddedInterpolant(ar_interp_c_grid, ar_interp_u_of_c_grid, 'spline');
 185 

 186 
%% Iterate Value Function
 187 
% Loop solution with 4 nested loops
 188 
%
 189 
% # loop 1: over exogenous states
 190 
% # loop 2: over endogenous states
 191 
% # loop 3: over choices
 192 
% # loop 4: add future utility, integration--loop over future shocks
 193 
%
 194 

 195 
% Start Profile
 196 
if (bl_profile)
 197 
    close all;
 198 
    profile off;
 199 
    profile on;
< 0.001 
      1 
 200
end 
 201 

 202 
% Start Timer
< 0.001 
      1 
 203
if (bl_time) 
< 0.001 
      1 
 204
    tic; 
      1 
 205
end 
 206 

 207 
% Value Function Iteration
< 0.001 
      1 
 208
while bl_vfi_continue 
< 0.001 
    111 
 209
    it_iter = it_iter + 1; 
 210 
    
 211 
    %% Interpolate (1) reacahble v(coh(k(w,z),b(w,z),z),z) given v(coh, z)
 212 
    % v(coh,z) solved on ar_interp_coh_grid, ar_z grids, see
 213 
    % ffs_iwkz_get_funcgrid.m. Generate interpolant based on that, Then
 214 
    % interpolate for the coh reachable levels given the k(w,z) percentage
 215 
    % choice grids in the second stage of the problem
 216 

 217 
    % Generate Interpolant for v(coh,z)
  0.023 
    111 
 218
    f_grid_interpolant_value = griddedInterpolant(... 
    111 
 219
        mt_z_mesh_coh_interp_grid', mt_interp_coh_grid_mesh_z', mt_val_cur', 'linear'); 
 220 
    
 221 
    % Interpoalte for v(coh(k(w,z),b(w,z),z),z)
  0.041 
    111 
 222
    mt_val_wkb_interpolated = f_grid_interpolant_value(mt_z_mesh_coh_wkb, mt_coh_wkb); 
 223 
        
 224 
    %% Solve Second Stage Problem k*(w,z)
 225 
    % This is the key difference between this function and
 226 
    % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
 227 
    % ffs_akz_set_functions> which solves the two stages jointly    
 228 
    % Interpolation first, because solution coh grid is not the same as all
 229 
    % points reachable by k and b choices given w. 
  0.007 
    111 
 230
    support_map('bl_graph_evf') = false; 
< 0.001 
    111 
 231
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 232
        support_map('bl_graph_evf') = bl_graph_evf; 
      1 
 233
    end 
< 0.001 
    111 
 234
    bl_input_override = true; 
  0.063 
    111 
 235
    [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, mt_ev_condi_z_max_bp] = ... 
    111 
 236
        ff_wkz_evf(mt_val_wkb_interpolated, param_map, support_map, armt_map, bl_input_override); 
 237 
    
 238 
    %% Find which k choice differ across iterations?
< 0.001 
    111 
 239
    mt_w_kstar_diff_idx = (mt_ev_condi_z_max_kp_cur ~= mt_ev_condi_z_max_kp); 
 240 
    
 241 
    %% Solve First Stage Problem w*(z) given k*(w,z)
 242 
        
 243 
    % loop 1: over exogenous states
< 0.001 
    111 
 244
    for it_z_i = 1:length(ar_z) 
 245 

 246 
        % State Array fixed
  0.002 
   1665 
 247
        ar_coh_z = mt_interp_coh_grid_mesh_z(:,it_z_i); 
 248 
        
 249 
        % Get 2nd Stage Choice Arrays
 250 
        % Update rows where opti k given w=k'+b' is changing        
< 0.001 
   1665 
 251
        ar_w_kstar_diff_idx = mt_w_kstar_diff_idx(:, it_z_i); 
  0.005 
   1665 
 252
        ar_w_kstar_z = mt_ev_condi_z_max_kp(ar_w_kstar_diff_idx, it_z_i); 
  0.004 
   1665 
 253
        ar_w_astar_z = mt_ev_condi_z_max_bp(ar_w_kstar_diff_idx, it_z_i);         
 254 
        
 255 
        % Consumption Update
 256 
        % Note that compared to
 257 
        % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
 258 
        % ffs_akz_set_functions> the mt_c here is much smaller the same
 259 
        % number of columns (states) as in the ffs_akz_set_functions file,
 260 
        % but the number of rows equal to ar_w length.            
  0.034 
   1665 
 261
        mt_c = f_cons(ar_coh_z', ar_w_astar_z, ar_w_kstar_z); 
 262 
                
 263 
        % Interpolate (2) EVAL current utility: N by N, f_util defined earlier
  0.098 
   1665 
 264
        mt_utility_update = f_grid_interpolant_spln(mt_c); 
 265 
        
 266 
        % Eliminate Complex Numbers
  0.005 
   1665 
 267
        mt_it_c_valid_idx = (mt_c <= fl_c_min); 
 268 
        
 269 
        % Update Storage
< 0.001 
   1665 
 270
        if (it_iter == 1) 
< 0.001 
     15 
 271
            cl_u_c_store{it_z_i} = mt_utility_update; 
< 0.001 
     15 
 272
            cl_c_valid_idx{it_z_i} = mt_it_c_valid_idx; 
< 0.001 
   1650 
 273
        else 
  0.011 
   1650 
 274
            cl_u_c_store{it_z_i}(ar_w_kstar_diff_idx,:) = mt_utility_update;                 
  0.006 
   1650 
 275
            cl_c_valid_idx{it_z_i}(ar_w_kstar_diff_idx,:) = mt_it_c_valid_idx;  
< 0.001 
   1665 
 276
        end 
 277 
                
 278 
        % EVAL add on future utility, N by N + N by 1
< 0.001 
   1665 
 279
        ar_evzp_ak_condi_z = mt_ev_condi_z_max(:, it_z_i); 
  0.046 
   1665 
 280
        mt_utility = cl_u_c_store{it_z_i} + fl_beta*ar_evzp_ak_condi_z; 
 281 
        
 282 
        % Index update
 283 
        % using the method below is much faster than index replace
 284 
        % see <https://fanwangecon.github.io/M4Econ/support/speed/index/fs_subscript.html fs_subscript>
  0.003 
   1665 
 285
        mt_it_c_valid_idx = cl_c_valid_idx{it_z_i};         
  0.035 
   1665 
 286
        mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_u_neg_c*(mt_it_c_valid_idx); 
 287 
        
 288 
        % Optimization: remember matlab is column major, rows must be
 289 
        % choices, columns must be states
 290 
        % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
  0.080 
   1665 
 291
        [ar_opti_val1_z, ar_opti_idx_z] = max(mt_utility); 
  0.008 
   1665 
 292
        mt_val(:,it_z_i) = ar_opti_val1_z; 
  0.013 
   1665 
 293
        mt_pol_a(:,it_z_i) = mt_ev_condi_z_max_bp(ar_opti_idx_z, it_z_i); 
  0.012 
   1665 
 294
        mt_pol_k(:,it_z_i) = mt_ev_condi_z_max_kp(ar_opti_idx_z, it_z_i);         
< 0.001 
   1665 
 295
        if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
     15 
 296
            mt_pol_idx(:,it_z_i) = ar_opti_idx_z; 
< 0.001 
     15 
 297
        end 
 298 

  0.002 
   1665 
 299
    end 
 300 
    
 301 
    %% Check Tolerance and Continuation
 302 
    
 303 
    % Difference across iterations
  0.026 
    111 
 304
    ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); 
  0.042 
    111 
 305
    ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur); 
  0.005 
    111 
 306
    ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/(length(ar_interp_coh_grid)); 
  0.004 
    111 
 307
    ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/(length(ar_interp_coh_grid));     
  0.010 
    111 
 308
    mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]); 
 309 
    
 310 
    % Update
  0.002 
    111 
 311
    mt_val_cur = mt_val; 
< 0.001 
    111 
 312
    mt_pol_a_cur = mt_pol_a; 
< 0.001 
    111 
 313
    mt_pol_k_cur = mt_pol_k; 
< 0.001 
    111 
 314
    mt_ev_condi_z_max_kp_cur = mt_ev_condi_z_max_kp; 
 315 
    
 316 
    % Print Iteration Results
< 0.001 
    111 
 317
    if (bl_display && (rem(it_iter, it_display_every)==0)) 
 318 
        fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
 319 
            it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
 320 
        tb_valpol_iter = array2table([mean(mt_val_cur,1);...
 321 
                                      mean(mt_pol_a_cur,1); ...
 322 
                                      mean(mt_pol_k_cur,1); ...
 323 
                                      mt_val_cur(length(ar_interp_coh_grid),:); ...
 324 
                                      mt_pol_a_cur(length(ar_interp_coh_grid),:); ...
 325 
                                      mt_pol_k_cur(length(ar_interp_coh_grid),:)]);
 326 
        tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
 327 
        tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'};
 328 
        disp('mval = mean(mt_val_cur,1), average value over a')
 329 
        disp('map  = mean(mt_pol_a_cur,1), average choice over a')
 330 
        disp('mkp  = mean(mt_pol_k_cur,1), average choice over k')
 331 
        disp('Hval = mt_val_cur(it_ameshk_n,:), highest a state val')
 332 
        disp('Hap = mt_pol_a_cur(it_ameshk_n,:), highest a state choice')
 333 
        disp('mak = mt_pol_k_cur(it_ameshk_n,:), highest k state choice')                
 334 
        disp(tb_valpol_iter);
 335 
    end
 336 
    
 337 
    % Continuation Conditions:
 338 
    % 1. if value function convergence criteria reached
 339 
    % 2. if policy function variation over iterations is less than
 340 
    % threshold
< 0.001 
    111 
 341
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 342
        bl_vfi_continue = false; 
  0.001 
    110 
 343
    elseif ((it_iter == it_maxiter_val) || ... 
    110 
 344
            (ar_val_diff_norm(it_iter) < fl_tol_val) || ... 
    110 
 345
            (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) 
 346 
        % Fix to max, run again to save results if needed
< 0.001 
      1 
 347
        it_iter_last = it_iter; 
      1 
 348
        it_iter = it_maxiter_val;         
      1 
 349
    end 
 350 
    
< 0.001 
    111 
 351
end 
 352 

 353 
% End Timer
< 0.001 
      1 
 354
if (bl_time) 
< 0.001 
      1 
 355
    toc; 
< 0.001 
      1 
 356
end 
 357 

 358 
% End Profile
< 0.001 
      1 
 359
if (bl_profile) 
  0.004 
      1 
 360
    profile off 
 361 
    profile viewer
 362 
    st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
 363 
    profsave(profile('info'), strcat(st_profile_path, st_file_name));
 364 
end
 365 

 366 
%% Process Optimal Choices
 367 

 368 
result_map = containers.Map('KeyType','char', 'ValueType','any');
 369 
result_map('mt_val') = mt_val;
 370 
result_map('mt_pol_idx') = mt_pol_idx;
 371 

 372 
result_map('cl_mt_pol_coh') = {mt_interp_coh_grid_mesh_z, zeros(1)};
 373 
result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
 374 
result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)};
 375 
result_map('cl_mt_pol_c') = {f_cons(mt_interp_coh_grid_mesh_z, mt_pol_a, mt_pol_k), zeros(1)};
 376 
result_map('ar_st_pol_names') = ["cl_mt_pol_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"];
 377 

 378 
if (bl_post)
 379 
    bl_input_override = true;
 380 
    result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
 381 
    result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
 382 
    result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
 383 
    
 384 
    % graphing based on coh_wkb, but that does not match optimal choice
 385 
    % matrixes for graphs. 
 386 
    armt_map('mt_coh_wkb') = mt_interp_coh_grid_mesh_z;
 387 
    armt_map('it_ameshk_n') = length(ar_interp_coh_grid);
 388 
    armt_map('ar_a_meshk') = mt_interp_coh_grid_mesh_z(:,1);
 389 
    armt_map('ar_k_mesha') = zeros(size(mt_interp_coh_grid_mesh_z(:,1)) + 0);
 390 
    
 391 
    result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
 392 
end
 393 

 394 
end

Other subfunctions in this file are not included in this listing.