time | Calls | line |
---|
| | 7 | function result_map = ff_wkz_vf_vec(varargin)
|
| | 8 | %% FF_WKZ_VF_VEC solve infinite horizon exo shock + endo asset problem
|
| | 9 | % This program solves the infinite horizon dynamic savings and risky
|
| | 10 | % capital asset problem with some ar1 shock. This is the vectorized version
|
| | 11 | % of
|
| | 12 | % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html
|
| | 13 | % ff_wkz_vf>. See that file for more descriptions.
|
| | 14 | %
|
| | 15 | % @param param_map container parameter container
|
| | 16 | %
|
| | 17 | % @param support_map container support container
|
| | 18 | %
|
| | 19 | % @param armt_map container container with states, choices and shocks
|
| | 20 | % grids that are inputs for grid based solution algorithm
|
| | 21 | %
|
| | 22 | % @param func_map container container with function handles for
|
| | 23 | % consumption cash-on-hand etc.
|
| | 24 | %
|
| | 25 | % @return result_map container contains policy function matrix, value
|
| | 26 | % function matrix, iteration results, and policy function, value function
|
| | 27 | % and iteration results tables.
|
| | 28 | %
|
| | 29 | % keys included in result_map:
|
| | 30 | %
|
| | 31 | % * mt_val matrix states_n by shock_n matrix of converged value function grid
|
| | 32 | % * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
|
| | 33 | % * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
|
| | 34 | % difference between iteration
|
| | 35 | % * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
|
| | 36 | % function difference between iterations
|
| | 37 | % * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
|
| | 38 | % proportion of grid points at which policy function changed between
|
| | 39 | % current and last iteration for each element of shock
|
| | 40 | %
|
| | 41 | % @example
|
| | 42 | %
|
| | 43 | % @include
|
| | 44 | %
|
| | 45 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_evf.html ff_wkz_evf>
|
| | 46 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_default_param.html ffs_akz_set_default_param>
|
| | 47 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_get_funcgrid.html ffs_akz_get_funcgrid>
|
| | 48 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solvepost/html/ff_akz_vf_post.html ff_akz_vf_post>
|
| | 49 | %
|
| | 50 | % @seealso
|
| | 51 | %
|
| | 52 | % * concurrent (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf.html ff_akz_vf>
|
| | 53 | % * concurrent (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vec.html ff_akz_vf_vec>
|
| | 54 | % * concurrent (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vecsv.html ff_akz_vf_vecsv>
|
| | 55 | % * two-stage (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html ff_wkz_vf>
|
| | 56 | % * two-stage (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vec.html ff_wkz_vf_vec>
|
| | 57 | % * two-stage (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vecsv.html ff_wkz_vf_vecsv>
|
| | 58 | % * two-stage + interpolate (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf.html ff_iwkz_vf>
|
| | 59 | % * two-stage + interpolate (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vec.html ff_iwkz_vf_vec>
|
| | 60 | % * two-stage + interpolate (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vecsv.html ff_iwkz_vf_vecsv>
|
| | 61 | %
|
| | 62 |
|
| | 63 | %% Default
|
| | 64 | % * it_param_set = 1: quick test
|
| | 65 | % * it_param_set = 2: benchmark run
|
| | 66 | % * it_param_set = 3: benchmark profile
|
| | 67 | % * it_param_set = 4: press publish button
|
| | 68 |
|
| | 69 | it_param_set = 3;
|
| | 70 | bl_input_override = true;
|
| | 71 | [param_map, support_map] = ffs_akz_set_default_param(it_param_set);
|
| | 72 |
|
| | 73 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 74 | % param_map('it_w_n') = 50;
|
| | 75 | % param_map('it_z_n') = 15;
|
| | 76 |
|
| | 77 | % get armt and func map
|
| | 78 | [armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 79 | default_params = {param_map support_map armt_map func_map};
|
| | 80 |
|
| | 81 | %% Parse Parameters 1
|
| | 82 |
|
| | 83 | % if varargin only has param_map and support_map,
|
| | 84 | params_len = length(varargin);
|
| | 85 | [default_params{1:params_len}] = varargin{:};
|
| | 86 | param_map = [param_map; default_params{1}];
|
| | 87 | support_map = [support_map; default_params{2}];
|
| | 88 | if params_len >= 1 && params_len <= 2
|
| | 89 | % If override param_map, re-generate armt and func if they are not
|
| | 90 | % provided
|
| | 91 | bl_input_override = true;
|
| | 92 | [armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override);
|
| | 93 | else
|
| | 94 | % Override all
|
| | 95 | armt_map = [armt_map; default_params{3}];
|
| | 96 | func_map = [func_map; default_params{4}];
|
| | 97 | end
|
| | 98 |
|
| | 99 | % append function name
|
| | 100 | st_func_name = 'ff_wkz_vf_vec';
|
| | 101 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 102 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 103 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 104 |
|
| | 105 | %% Parse Parameters 2
|
| | 106 |
|
| | 107 | % armt_map
|
| | 108 | params_group = values(armt_map, {'ar_w', 'ar_z'});
|
| | 109 | [ar_w, ar_z] = params_group{:};
|
| | 110 | params_group = values(armt_map, {'ar_a_meshk', 'ar_k_mesha', 'mt_coh_wkb', 'it_ameshk_n'});
|
| | 111 | [ar_a_meshk, ar_k_mesha, mt_coh_wkb, it_ameshk_n] = params_group{:};
|
| | 112 | % func_map
|
| | 113 | params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons', 'f_coh'});
|
| | 114 | [f_util_log, f_util_crra, f_cons, f_coh] = params_group{:};
|
| | 115 | % param_map
|
| | 116 | params_group = values(param_map, {'fl_r_save', 'fl_r_borr', 'fl_w',...
|
| | 117 | 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'});
|
| | 118 | [fl_r_save, fl_r_borr, fl_wage, it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:};
|
| | 119 | params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
|
| | 120 | [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
|
| | 121 | % support_map
|
| | 122 | params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
|
| | 123 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 124 | 'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
|
| | 125 | [bl_profile, st_profile_path, ...
|
| | 126 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 127 | bl_time, bl_display, it_display_every, bl_post] = params_group{:};
|
| | 128 |
|
| | 129 | %% Initialize Output Matrixes
|
| | 130 |
|
| | 131 | mt_val_cur = zeros(length(ar_a_meshk),length(ar_z));
|
| | 132 | mt_val = mt_val_cur - 1;
|
| | 133 | mt_pol_a = zeros(length(ar_a_meshk),length(ar_z));
|
| | 134 | mt_pol_a_cur = mt_pol_a - 1;
|
| | 135 | mt_pol_k = zeros(length(ar_a_meshk),length(ar_z));
|
| | 136 | mt_pol_k_cur = mt_pol_k - 1;
|
| | 137 | mt_pol_idx = zeros(length(ar_a_meshk),length(ar_z));
|
| | 138 |
|
| | 139 | %% Initialize Convergence Conditions
|
| | 140 |
|
| | 141 | bl_vfi_continue = true;
|
| | 142 | it_iter = 0;
|
| | 143 | ar_val_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 144 | ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 145 | mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
|
| | 146 |
|
| | 147 | %% Iterate Value Function
|
| | 148 | % Loop solution with 4 nested loops
|
| | 149 | %
|
| | 150 | % # loop 1: over exogenous states
|
| | 151 | % # loop 2: over endogenous states
|
| | 152 | % # loop 3: over choices
|
| | 153 | % # loop 4: add future utility, integration--loop over future shocks
|
| | 154 | %
|
| | 155 |
|
| | 156 | % Start Profile
|
| | 157 | if (bl_profile)
|
| | 158 | close all;
|
| | 159 | profile off;
|
| | 160 | profile on;
|
< 0.001 | 1 | 161 | end
|
| | 162 |
|
| | 163 | % Start Timer
|
< 0.001 | 1 | 164 | if (bl_time)
|
< 0.001 | 1 | 165 | tic;
|
< 0.001 | 1 | 166 | end
|
| | 167 |
|
| | 168 | % Value Function Iteration
|
< 0.001 | 1 | 169 | while bl_vfi_continue
|
< 0.001 | 101 | 170 | it_iter = it_iter + 1;
|
| | 171 |
|
| | 172 | %% Solve Second Stage Problem k*(w,z)
|
| | 173 | % This is the key difference between this function and
|
| | 174 | % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
|
| | 175 | % ffs_akz_set_functions> which solves the two stages jointly
|
| | 176 |
|
< 0.001 | 101 | 177 | bl_input_override = true;
|
0.083 | 101 | 178 | [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, mt_ev_condi_z_max_bp] = ...
|
| 101 | 179 | ff_wkz_evf(mt_val_cur, param_map, support_map, armt_map, bl_input_override);
|
| | 180 |
|
| | 181 | %% Solve First Stage Problem w*(z) given k*(w,z)
|
| | 182 |
|
| | 183 | % loop 1: over exogenous states
|
< 0.001 | 101 | 184 | for it_z_i = 1:length(ar_z)
|
| | 185 |
|
| | 186 | % Get 2nd Stage Arrays
|
0.004 | 1515 | 187 | ar_coh_z = mt_coh_wkb(:,it_z_i);
|
< 0.001 | 1515 | 188 | ar_ev_condi_z_max_z = mt_ev_condi_z_max(:, it_z_i);
|
< 0.001 | 1515 | 189 | ar_w_kstar_z = mt_ev_condi_z_max_kp(:, it_z_i);
|
< 0.001 | 1515 | 190 | ar_w_astar_z = mt_ev_condi_z_max_bp(:, it_z_i);
|
| | 191 |
|
| | 192 | % Consumption
|
| | 193 | % Note that compared to
|
| | 194 | % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
|
| | 195 | % ffs_akz_set_functions> the mt_c here is much smaller the same
|
| | 196 | % number of columns (states) as in the ffs_akz_set_functions file,
|
| | 197 | % but the number of rows equal to ar_w length.
|
0.250 | 1515 | 198 | mt_c = f_cons(ar_coh_z', ar_w_astar_z, ar_w_kstar_z);
|
| | 199 |
|
| | 200 | % EVAL current utility: N by N, f_util defined earlier
|
< 0.001 | 1515 | 201 | if (fl_crra == 1)
|
| | 202 | mt_utility = f_util_log(mt_c);
|
| | 203 | fl_u_neg_c = f_util_log(fl_c_min);
|
< 0.001 | 1515 | 204 | else
|
2.145 | 1515 | 205 | mt_utility = f_util_crra(mt_c);
|
0.013 | 1515 | 206 | fl_u_neg_c = f_util_crra(fl_c_min);
|
< 0.001 | 1515 | 207 | end
|
| | 208 |
|
| | 209 | % EVAL add on future utility, N by N + N by 1
|
| | 210 | % do not need: mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi'
|
| | 211 | % step because evf_okz_vec solved already.
|
| | 212 |
|
0.047 | 1515 | 213 | mt_utility = mt_utility + fl_beta*ar_ev_condi_z_max_z;
|
0.685 | 1515 | 214 | mt_utility(mt_c <= fl_c_min) = fl_u_neg_c;
|
| | 215 |
|
| | 216 | % Optimization: remember matlab is column major, rows must be
|
| | 217 | % choices, columns must be states
|
| | 218 | % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
|
0.091 | 1515 | 219 | [ar_opti_val1_z, ar_opti_idx_z] = max(mt_utility);
|
0.011 | 1515 | 220 | mt_val(:,it_z_i) = ar_opti_val1_z;
|
0.019 | 1515 | 221 | mt_pol_a(:,it_z_i) = ar_w_astar_z(ar_opti_idx_z);
|
0.015 | 1515 | 222 | mt_pol_k(:,it_z_i) = ar_w_kstar_z(ar_opti_idx_z);
|
| | 223 |
|
| | 224 | %% Obtain Choice Index for Vectorized/Analytical Distribution Programs
|
| | 225 | % For deriving distributions using vectorized and semi-analytical
|
| | 226 | % methods, at convergence, what index do optimal choices correspond
|
| | 227 | % to in terms of the rows of mt_val and mt_pol_a, and mt_pol_k.
|
0.001 | 1515 | 228 | if (it_iter == (it_maxiter_val + 1))
|
| | 229 |
|
< 0.001 | 15 | 230 | ar_a_opti = mt_pol_a(:,it_z_i);
|
< 0.001 | 15 | 231 | ar_k_opti = mt_pol_k(:,it_z_i);
|
| | 232 |
|
| | 233 | % For the LHS matrixes here, each column a different optimal
|
| | 234 | % choice, each row a different element of the a_meshk and
|
| | 235 | % k_mesha vectors.
|
0.134 | 15 | 236 | [mt_a_meshk_mesh_a_opti, mt_a_opti_mesh_a_meshk] = ndgrid(ar_a_meshk, ar_a_opti);
|
0.132 | 15 | 237 | [mt_k_meshk_mesh_k_opti, mt_k_opti_mesh_k_meshk] = ndgrid(ar_k_mesha, ar_k_opti);
|
| | 238 |
|
| | 239 | % For each column (one optimal choice), which row has that
|
| | 240 | % optimal choice's k' and b' values.
|
0.009 | 15 | 241 | mt_a_opti_match = (mt_a_meshk_mesh_a_opti == mt_a_opti_mesh_a_meshk);
|
0.008 | 15 | 242 | mt_k_opti_match = (mt_k_meshk_mesh_k_opti == mt_k_opti_mesh_k_meshk);
|
0.008 | 15 | 243 | mt_ak_joint_match = mt_a_opti_match.*mt_k_opti_match;
|
| | 244 |
|
| | 245 | % Full index, meaning, not in terms of the w=k'+b' grid's
|
| | 246 | % length, but in terms of the full partial triangular matched
|
| | 247 | % up combination of k' and b'.
|
0.006 | 15 | 248 | [~, ar_opti_fullakvec_idx_z] = max(mt_ak_joint_match);
|
| | 249 |
|
| | 250 | % Save full index
|
< 0.001 | 15 | 251 | mt_pol_idx(:,it_z_i) = ar_opti_fullakvec_idx_z;
|
< 0.001 | 15 | 252 | end
|
| | 253 |
|
0.002 | 1515 | 254 | end
|
| | 255 |
|
| | 256 | %% Check Tolerance and Continuation
|
| | 257 |
|
| | 258 | % Difference across iterations
|
0.041 | 101 | 259 | ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
|
0.074 | 101 | 260 | ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur);
|
0.009 | 101 | 261 | ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/(it_ameshk_n);
|
0.006 | 101 | 262 | ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/(it_ameshk_n);
|
0.012 | 101 | 263 | mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]);
|
| | 264 |
|
| | 265 | % Update
|
0.004 | 101 | 266 | mt_val_cur = mt_val;
|
0.002 | 101 | 267 | mt_pol_a_cur = mt_pol_a;
|
0.002 | 101 | 268 | mt_pol_k_cur = mt_pol_k;
|
| | 269 |
|
| | 270 | % Print Iteration Results
|
< 0.001 | 101 | 271 | if (bl_display && (rem(it_iter, it_display_every)==0))
|
| | 272 | fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
|
| | 273 | it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
|
| | 274 | tb_valpol_iter = array2table([mean(mt_val_cur,1);...
|
| | 275 | mean(mt_pol_a_cur,1); ...
|
| | 276 | mean(mt_pol_k_cur,1); ...
|
| | 277 | mt_val_cur(it_ameshk_n,:); ...
|
| | 278 | mt_pol_a_cur(it_ameshk_n,:); ...
|
| | 279 | mt_pol_k_cur(it_ameshk_n,:)]);
|
| | 280 | tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
|
| | 281 | tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'};
|
| | 282 | disp('mval = mean(mt_val_cur,1), average value over a')
|
| | 283 | disp('map = mean(mt_pol_a_cur,1), average choice over a')
|
| | 284 | disp('mkp = mean(mt_pol_k_cur,1), average choice over k')
|
| | 285 | disp('Hval = mt_val_cur(it_ameshk_n,:), highest a state val')
|
| | 286 | disp('Hap = mt_pol_a_cur(it_ameshk_n,:), highest a state choice')
|
| | 287 | disp('mak = mt_pol_k_cur(it_ameshk_n,:), highest k state choice')
|
| | 288 | disp(tb_valpol_iter);
|
| | 289 | end
|
| | 290 |
|
| | 291 | % Continuation Conditions:
|
| | 292 | % 1. if value function convergence criteria reached
|
| | 293 | % 2. if policy function variation over iterations is less than
|
| | 294 | % threshold
|
< 0.001 | 101 | 295 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 1 | 296 | bl_vfi_continue = false;
|
0.001 | 100 | 297 | elseif ((it_iter == it_maxiter_val) || ...
|
| 100 | 298 | (ar_val_diff_norm(it_iter) < fl_tol_val) || ...
|
| 100 | 299 | (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
|
| | 300 | % Fix to max, run again to save results if needed
|
< 0.001 | 1 | 301 | it_iter_last = it_iter;
|
< 0.001 | 1 | 302 | it_iter = it_maxiter_val;
|
< 0.001 | 1 | 303 | end
|
| | 304 |
|
< 0.001 | 101 | 305 | end
|
| | 306 |
|
| | 307 | % End Timer
|
< 0.001 | 1 | 308 | if (bl_time)
|
< 0.001 | 1 | 309 | toc;
|
< 0.001 | 1 | 310 | end
|
| | 311 |
|
| | 312 | % End Profile
|
< 0.001 | 1 | 313 | if (bl_profile)
|
0.005 | 1 | 314 | profile off
|
| | 315 | profile viewer
|
| | 316 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 317 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 318 | end
|
| | 319 |
|
| | 320 | %% Process Optimal Choices
|
| | 321 |
|
| | 322 | result_map = containers.Map('KeyType','char', 'ValueType','any');
|
| | 323 | result_map('mt_val') = mt_val;
|
| | 324 | result_map('mt_pol_idx') = mt_pol_idx;
|
| | 325 |
|
| | 326 | result_map('cl_mt_pol_coh') = {mt_coh_wkb, zeros(1)};
|
| | 327 | result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
|
| | 328 | result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)};
|
| | 329 | result_map('cl_mt_pol_c') = {f_cons(mt_coh_wkb, mt_pol_a, mt_pol_k), zeros(1)};
|
| | 330 | result_map('ar_st_pol_names') = ["cl_mt_pol_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"];
|
| | 331 |
|
| | 332 | if (bl_post)
|
| | 333 | bl_input_override = true;
|
| | 334 | result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
|
| | 335 | result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
|
| | 336 | result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
|
| | 337 | result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 338 | end
|
| | 339 |
|
| | 340 | end
|
Other subfunctions in this file are not included in this listing.