time | Calls | line |
---|
| | 7 | function [result_map] = ff_az_ds_vec(varargin)
|
| | 8 | %% FF_AZ_DS_VEC finds the stationary asset distributions Vectorized
|
| | 9 | % Building on the Asset Dynamic Programming Problem
|
| | 10 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html
|
| | 11 | % ff_az_vf_vecsv>, here we solve for the asset distribution using
|
| | 12 | % vectorized codes.
|
| | 13 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds.html
|
| | 14 | % ff_az_ds> shows looped codes for finding asset distribution. The solution
|
| | 15 | % is the same. Both *ff_az_ds* and *ff_az_ds_vec* using
|
| | 16 | % optimized-vectorized dynamic programming code from ff_az_vf_vecsv. The
|
| | 17 | % idea here is that in addition to vectornizing the dynamic programming
|
| | 18 | % funcion, we can also vectorize the distribution code here.
|
| | 19 | %
|
| | 20 | % This function finds the distributio based on the outputs of several
|
| | 21 | % dynamic programming problems, both single and multiple assets:
|
| | 22 | %
|
| | 23 | % # One Asset DP Savings <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
|
| | 24 | % # One Asset DP Savings and Borrowing <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vecsv.html ff_abz_vf_vecsv>
|
| | 25 | % # Risky + Safe Asset Concurrent DP <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vecsv.html ff_akz_vf_vecsv>
|
| | 26 | % # Risky + Safe Asset Two-Stage DP <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vecsv.html ff_wkz_vf_vecsv>
|
| | 27 | %
|
| | 28 | % Similar to
|
| | 29 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds.html
|
| | 30 | % ff_az_ds>. The code here works when we are looking for the distribution
|
| | 31 | % of f(a,z), where a'(a,z), meaning that the a next period is determined by
|
| | 32 | % a last period and some shock. Given this, the a' is fixed for all z'. If
|
| | 33 | % however, the outcome of interest is such that: y'(y,z,z'), meaning that
|
| | 34 | % y' is different depending on realized z', the code below does not work.
|
| | 35 | %
|
| | 36 | % Distributions of Interest:
|
| | 37 | %
|
| | 38 | % * $p(a,z)$
|
| | 39 | % * $p(Y=y, z) = \sum_{a} \left( 1\left\{Y(a,z)=y\right\} \cdot p(a,z) \right)$
|
| | 40 | % * $p(Y=y, a) = \sum_{z} \left( 1\left\{Y(a,z)=y\right\} \cdot p(a,z) \right)$
|
| | 41 | % * $p(Y=y) = \sum_{a,z} \left( 1\left\{Y(a,z)=y\right\} \cdot p(a,z) \right)$
|
| | 42 | %
|
| | 43 | % Statistics include:
|
| | 44 | %
|
| | 45 | % * $\mu_y = \sum_{y} p(Y=y) \cdot y$
|
| | 46 | % * $\sigma_y = \sqrt{ \sum_{y} p(Y=y) \cdot \left( y - \mu_y \right)^2}$
|
| | 47 | % * $p(y=0)$
|
| | 48 | % * $p(y=\max(y))$
|
| | 49 | % * percentiles: $min_{y} \left\{ P(Y \le y) - percentile \mid P(Y \le y) \ge percentile \right\}$
|
| | 50 | % * fraction of outcome held by up to percentiles: $E(Y<y)/E(Y)$
|
| | 51 | %
|
| | 52 | % @param param_map container parameter container
|
| | 53 | %
|
| | 54 | % @param support_map container support container
|
| | 55 | %
|
| | 56 | % @param armt_map container container with states, choices and shocks
|
| | 57 | % grids that are inputs for grid based solution algorithm
|
| | 58 | %
|
| | 59 | % @param func_map container container with function handles for
|
| | 60 | % consumption cash-on-hand etc.
|
| | 61 | %
|
| | 62 | % @return result_map container contains policy function matrix, value
|
| | 63 | % function matrix, iteration results, and policy function, value function
|
| | 64 | % and iteration results tables.
|
| | 65 | %
|
| | 66 | % new keys included in result_map in addition to the output from
|
| | 67 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html
|
| | 68 | % ff_az_vf_vecsv> are various distribution statistics for each model
|
| | 69 | % outcome, keys include *cl_mt_pol_a*, *cl_mt_pol_c*, *cl_mt_pol_coh*, etc.
|
| | 70 | %
|
| | 71 | % @example
|
| | 72 | %
|
| | 73 | % % Get Default Parameters
|
| | 74 | % it_param_set = 6;
|
| | 75 | % [param_map, support_map] = ffs_az_set_default_param(it_param_set);
|
| | 76 | % % Change Keys in param_map
|
| | 77 | % param_map('it_a_n') = 500;
|
| | 78 | % param_map('it_z_n') = 11;
|
| | 79 | % param_map('fl_a_max') = 100;
|
| | 80 | % param_map('fl_w') = 1.3;
|
| | 81 | % % Change Keys support_map
|
| | 82 | % support_map('bl_display') = false;
|
| | 83 | % support_map('bl_post') = true;
|
| | 84 | % support_map('bl_display_final') = false;
|
| | 85 | % % Call Program with external parameters that override defaults
|
| | 86 | % ff_az_ds_vec(param_map, support_map);
|
| | 87 | %
|
| | 88 | %
|
| | 89 | % @include
|
| | 90 | %
|
| | 91 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
|
| | 92 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_ds_post_stats.html ff_az_ds_post_stats>
|
| | 93 | % * <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_stats.html fft_disc_rand_var_stats>
|
| | 94 | % * <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_mass2outcomes.html fft_disc_rand_var_mass2outcomes>
|
| | 95 | %
|
| | 96 | % @seealso
|
| | 97 | %
|
| | 98 | % * derive distribution f(y'(y,z)) one asset *loop*: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds.html ff_az_ds>
|
| | 99 | % * derive distribution f(y'({x,y},z)) two assets *loop*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_ds.html ff_akz_ds>
|
| | 100 | % * derive distribution f(y'({x,y},z, *z'*)) two assets *loop*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_ds.html ff_iwkz_ds>
|
| | 101 | % * derive distribution f(y'({y},z)) or f(y'({x,y},z)) *vectorized*: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds_vec.html ff_az_ds_vec>
|
| | 102 | % * derive distribution f(y'({y},z, *z'*)) or f(y'({x,y},z, *z'*)) *vectorized*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_ds_vec.html ff_iwkz_ds_vec>
|
| | 103 | % * derive distribution f(y'({y},z)) or f(y'({x,y},z)) *semi-analytical*: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds_vecsv.html ff_az_ds_vecsv>
|
| | 104 | % * derive distribution f(y'({y},z, *z'*)) or f(y'({x,y},z, *z'*)) *semi-analytical*: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_ds_vecsv.html ff_iwkz_ds_vecsv>
|
| | 105 | %
|
| | 106 |
|
| | 107 | %% Default
|
| | 108 | % Program can be externally invoked with _az_, _abz_ or various other
|
| | 109 | % programs. By default, program invokes using _az_ model programs:
|
| | 110 | %
|
| | 111 | % # it_subset = 5 is basic invoke quick test
|
| | 112 | % # it_subset = 6 is invoke full test
|
| | 113 | % # it_subset = 7 is profiling invoke
|
| | 114 | % # it_subset = 8 is matlab publish
|
| | 115 | % # it_subset = 9 is invoke operational (only final stats) and coh graph
|
| | 116 | %
|
| | 117 |
|
| | 118 | params_len = length(varargin);
|
| | 119 | bl_input_override = 0;
|
| | 120 | if (params_len == 6)
|
| | 121 | bl_input_override = varargin{6};
|
| | 122 | end
|
| | 123 |
|
| | 124 | if (bl_input_override)
|
| | 125 | % if invoked from outside override fully
|
| | 126 | [param_map, support_map, armt_map, ~, result_map, ~] = varargin{:};
|
| | 127 |
|
| | 128 | else
|
| | 129 | % default invoke
|
| | 130 | close all;
|
| | 131 |
|
| | 132 | it_param_set = 7;
|
| | 133 | bl_input_override = true;
|
| | 134 |
|
| | 135 | % 1. Generate Parameters
|
| | 136 | [param_map, support_map] = ffs_az_set_default_param(it_param_set);
|
| | 137 |
|
| | 138 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 139 | % param_map('it_a_n') = 750;
|
| | 140 | % param_map('it_z_n') = 15;
|
| | 141 |
|
| | 142 | % 2. Generate function and grids
|
| | 143 | [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 144 |
|
| | 145 | % 3. Solve value and policy function using az_vf_vecsv, if want to solve
|
| | 146 | % other models, solve outside then provide result_map as input
|
| | 147 | [result_map] = ff_az_vf_vecsv(param_map, support_map, armt_map, func_map);
|
| | 148 |
|
| | 149 | end
|
| | 150 |
|
| | 151 | %% Parse Parameters
|
| | 152 |
|
| | 153 | % append function name
|
| | 154 | st_func_name = 'ff_az_ds_vec';
|
| | 155 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 156 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 157 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 158 |
|
| | 159 | % result_map
|
| | 160 | % ar_st_pol_names is from section _Process Optimal Choices_ in the value
|
| | 161 | % function code.
|
| | 162 | params_group = values(result_map, {'mt_pol_idx'});
|
| | 163 | [mt_pol_idx] = params_group{:};
|
| | 164 |
|
| | 165 | % armt_map
|
| | 166 | params_group = values(armt_map, {'mt_z_trans'});
|
| | 167 | [mt_z_trans] = params_group{:};
|
| | 168 |
|
| | 169 | % param_map
|
| | 170 | params_group = values(param_map, {'it_maxiter_dist', 'fl_tol_dist'});
|
| | 171 | [it_maxiter_dist, fl_tol_dist] = params_group{:};
|
| | 172 |
|
| | 173 | % support_map
|
| | 174 | params_group = values(support_map, {'bl_profile_dist', 'st_profile_path', ...
|
| | 175 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 176 | 'bl_time', 'bl_display_dist', 'it_display_every'});
|
| | 177 | [bl_profile_dist, st_profile_path, ...
|
| | 178 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 179 | bl_time, bl_display_dist, it_display_every] = params_group{:};
|
| | 180 |
|
| | 181 | %% Start Profiler and Timer
|
| | 182 |
|
| | 183 | % Start Profile
|
| | 184 | if (bl_profile_dist)
|
| | 185 | close all;
|
| | 186 | profile off;
|
| | 187 | profile on;
|
< 0.001 | 1 | 188 | end
|
| | 189 |
|
| | 190 | % Start Timer
|
< 0.001 | 1 | 191 | if (bl_time)
|
< 0.001 | 1 | 192 | tic;
|
< 0.001 | 1 | 193 | end
|
| | 194 |
|
| | 195 | %% Get Size of Endogenous and Exogenous State
|
| | 196 | % The key idea is that all information for policy function is captured by
|
| | 197 | % _mt_pol_idx_ matrix, its rows are the number of endogenous states, and
|
| | 198 | % its columns are the exogenous shocks.
|
| | 199 |
|
< 0.001 | 1 | 200 | [it_endostates_rows_n, it_exostates_cols_n] = size(mt_pol_idx);
|
| | 201 |
|
| | 202 | %% *f(a,z)*: Initialize Output Matrixes
|
| | 203 | % Initialize the distribution to be uniform
|
< 0.001 | 1 | 204 | mt_dist_az_init = ones(it_endostates_rows_n,it_exostates_cols_n)/it_endostates_rows_n/it_exostates_cols_n;
|
< 0.001 | 1 | 205 | mt_dist_az_cur = mt_dist_az_init;
|
< 0.001 | 1 | 206 | mt_dist_az_zeros = zeros(it_endostates_rows_n,it_exostates_cols_n);
|
| | 207 |
|
| | 208 | %% *f(a,z)*: Initialize Convergence Conditions
|
| | 209 |
|
< 0.001 | 1 | 210 | bl_histiter_continue = true;
|
< 0.001 | 1 | 211 | it_iter = 0;
|
< 0.001 | 1 | 212 | ar_dist_diff_norm = zeros([it_maxiter_dist, 1]);
|
< 0.001 | 1 | 213 | mt_dist_perc_change = zeros([it_maxiter_dist, it_exostates_cols_n]);
|
| | 214 |
|
| | 215 | %% *f(a,z)*: Derive Stationary Distribution
|
| | 216 | % Iterate over the discrete joint random variable variables (a,z)
|
< 0.001 | 1 | 217 | while (bl_histiter_continue)
|
| | 218 |
|
< 0.001 | 101 | 219 | it_iter = it_iter + 1;
|
| | 220 |
|
| | 221 | %% *f(a,z)*: Vectorized Solution
|
| | 222 | % this is the only part of the code that differs from
|
| | 223 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_ds.html
|
| | 224 | % ff_az_ds.html> the looped code.
|
| | 225 |
|
| | 226 | % 1. initialize empty
|
< 0.001 | 101 | 227 | mt_dist_az = mt_dist_az_zeros;
|
| | 228 |
|
| | 229 | % 2. One loop remains
|
< 0.001 | 101 | 230 | for i = 1:it_exostates_cols_n
|
| | 231 |
|
| | 232 | % 3. Get Unique Index (future states receive from multiple current states)
|
0.154 | 1515 | 233 | [ar_idx_full, ~, ar_idx_of_unique] = unique(mt_pol_idx(:,i));
|
0.055 | 1515 | 234 | mt_zi_prob = mt_dist_az_cur(:,i) * mt_z_trans(i,:);
|
| | 235 |
|
| | 236 | % 4. Cumulative probability received at state from zi
|
0.163 | 1515 | 237 | [mt_idx_of_unique_mesh, mt_col_idx] = ndgrid(ar_idx_of_unique, 1:size(mt_zi_prob,2));
|
0.268 | 1515 | 238 | mt_zi_cumu_prob = accumarray([mt_idx_of_unique_mesh(:) mt_col_idx(:)], mt_zi_prob(:));
|
| | 239 |
|
| | 240 | % 5. Adding up
|
0.113 | 1515 | 241 | mt_dist_az(ar_idx_full, :) = mt_zi_cumu_prob + mt_dist_az(ar_idx_full,:);
|
0.001 | 1515 | 242 | end
|
| | 243 |
|
| | 244 |
|
| | 245 | %% *f(a,z)*: Check Tolerance and Continuation
|
| | 246 |
|
| | 247 | % Difference across iterations
|
0.028 | 101 | 248 | ar_dist_diff_norm(it_iter) = norm(mt_dist_az - mt_dist_az_cur);
|
0.007 | 101 | 249 | mt_dist_perc_change(it_iter, :) = sum((mt_dist_az ~= mt_dist_az))/(it_endostates_rows_n);
|
| | 250 |
|
| | 251 | % Update
|
0.002 | 101 | 252 | mt_dist_az_cur = mt_dist_az;
|
| | 253 |
|
| | 254 | % Print Iteration Results
|
< 0.001 | 101 | 255 | if (bl_display_dist && (rem(it_iter, it_display_every)==0))
|
| | 256 | fprintf('Dist it_iter:%d, fl_dist_diff:%d\n', it_iter, ar_dist_diff_norm(it_iter));
|
| | 257 | tb_hist_iter = array2table([sum(mt_dist_az_cur,1); std(mt_dist_az_cur,1); ...
|
| | 258 | mt_dist_az_cur(1,:); mt_dist_az_cur(it_endostates_rows_n,:)]);
|
| | 259 | tb_hist_iter.Properties.VariableNames = strcat('z', string((1:size(mt_dist_az,2))));
|
| | 260 | tb_hist_iter.Properties.RowNames = {'mdist','sddist', 'Ldist', 'Hdist'};
|
| | 261 | disp('mdist = sum(mt_dist_az_cur,1) = sum_{a}(p(a)|z)')
|
| | 262 | disp('sddist = std(mt_pol_a_cur,1) = std_{a}(p(a)|z)')
|
| | 263 | disp('Ldist = mt_dist_az_cur(1,:) = p(min(a)|z)')
|
| | 264 | disp('Hdist = mt_dist_az_cur(it_a_n,:) = p(max(a)|z)')
|
| | 265 | disp(tb_hist_iter);
|
| | 266 | end
|
| | 267 |
|
| | 268 | % Continuation Conditions:
|
< 0.001 | 101 | 269 | if (it_iter == (it_maxiter_dist + 1))
|
< 0.001 | 1 | 270 | bl_histiter_continue = false;
|
< 0.001 | 100 | 271 | elseif ((it_iter == it_maxiter_dist) || ...
|
| 100 | 272 | (ar_dist_diff_norm(it_iter) < fl_tol_dist))
|
< 0.001 | 1 | 273 | it_iter_last = it_iter;
|
< 0.001 | 1 | 274 | it_iter = it_maxiter_dist;
|
< 0.001 | 1 | 275 | end
|
| | 276 |
|
< 0.001 | 101 | 277 | end
|
| | 278 |
|
| | 279 | %% End Time and Profiler
|
| | 280 |
|
| | 281 | % End Timer
|
< 0.001 | 1 | 282 | if (bl_time)
|
< 0.001 | 1 | 283 | toc;
|
< 0.001 | 1 | 284 | end
|
| | 285 |
|
| | 286 | % End Profile
|
< 0.001 | 1 | 287 | if (bl_profile_dist)
|
0.004 | 1 | 288 | profile off
|
| | 289 | profile viewer
|
| | 290 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 291 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 292 | end
|
| | 293 |
|
| | 294 | %% *f(y), f(c), f(a)*: Generate Key Distributional Statistics for Each outcome
|
| | 295 | % Having derived f(a,z) the probability mass function of the joint discrete
|
| | 296 | % random variables, we now obtain distributional statistics. Note that we
|
| | 297 | % know f(a,z), and we also know relevant policy functions a'(a,z), c(a,z),
|
| | 298 | % or other policy functions. We can simulate any choices that are a
|
| | 299 | % function of the random variables (a,z), using f(a,z). We call function
|
| | 300 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_ds_post_stats.html
|
| | 301 | % ff_az_ds_post_stats> which uses
|
| | 302 | % <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_stats.html
|
| | 303 | % fft_disc_rand_var_stats> and
|
| | 304 | % <https://fanwangecon.github.io/CodeDynaAsset/tools/html/fft_disc_rand_var_mass2outcomes.html
|
| | 305 | % fft_disc_rand_var_mass2outcomes> to compute various statistics of
|
| | 306 | % interest.
|
| | 307 |
|
| | 308 | bl_input_override = true;
|
| | 309 | result_map = ff_az_ds_post_stats(support_map, result_map, mt_dist_az, bl_input_override);
|
| | 310 |
|
| | 311 | end
|
Other subfunctions in this file are not included in this listing.