time | Calls | line |
---|
| | 7 | function result_map = ff_az_vf_vec(varargin)
|
| | 8 | %% FF_AZ_VF_VEC solve infinite horizon exo shock + endo asset problem
|
| | 9 | % This program solves the infinite horizon dynamic single asset and single
|
| | 10 | % shock problem with vectorized codes.
|
| | 11 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html
|
| | 12 | % ff_az_vf> shows looped codes. The solution is the same.
|
| | 13 | %
|
| | 14 | % The vectorization takes advantage of implicit parallization that modern
|
| | 15 | % computers have when <https://en.wikipedia.org/wiki/SIMD same instructions
|
| | 16 | % are given for different blocks of data> With vectorization, we face a
|
| | 17 | % tradeoff between memory and speed. Suppose we have many shock points and
|
| | 18 | % many states points, if we build all states and choices into one single
|
| | 19 | % matrix and compute consumption, utility, etc over that entire matrix, that
|
| | 20 | % might be more efficient than computing consumption, utility, etc by
|
| | 21 | % subset of that matrix over a loop, but there is time required for
|
| | 22 | % generating that large input matrix, and if there are too many states, a
|
| | 23 | % computer could run out of memory.
|
| | 24 | %
|
| | 25 | % The design philosophy here is that we vectorize the endogenous states and
|
| | 26 | % choices into matrixes, but do not include the exogeous states (shocks).
|
| | 27 | % The exogenous shocks remain looped. This means we can potentially have
|
| | 28 | % multiple shock variables discretized over a large number of shock states,
|
| | 29 | % and the computer would not run into memory problems. The speed gain from
|
| | 30 | % vectoring the rest of the problem conditional on shocks is very large
|
| | 31 | % compared to the pure looped version of the problem. Even if more memory
|
| | 32 | % is available, including the exogenous states in the vectorization process
|
| | 33 | % might not be speed improving.
|
| | 34 | %
|
| | 35 | % Note one key issue is whether a programming language is
|
| | 36 | % <https://en.wikipedia.org/wiki/Row-_and_column-major_order row or column
|
| | 37 | % major> depending on which, states should be rows or columns.
|
| | 38 | %
|
| | 39 | % Another programming issue is the idea of *broadcasting* vs matrix
|
| | 40 | % algebra, both are used here. Since Matlab R2016b,
|
| | 41 | % <https://blogs.mathworks.com/loren/2016/10/24/matlab-arithmetic-expands-in-r2016b/
|
| | 42 | % matrix broadcasting> has been allowed, which means the sum of a N by 1
|
| | 43 | % and 1 by M is N by M. This is unrelated to matrix algebra. Matrix array
|
| | 44 | % broadcasting is very useful because it reduces the dimensionality of our
|
| | 45 | % model input state and choice and shock vectors, offering greater code
|
| | 46 | % clarity.
|
| | 47 | %
|
| | 48 | % @param param_map container parameter container
|
| | 49 | %
|
| | 50 | % @param support_map container support container
|
| | 51 | %
|
| | 52 | % @param armt_map container container with states, choices and shocks
|
| | 53 | % grids that are inputs for grid based solution algorithm
|
| | 54 | %
|
| | 55 | % @param func_map container container with function handles for
|
| | 56 | % consumption cash-on-hand etc.
|
| | 57 | %
|
| | 58 | % @return result_map container contains policy function matrix, value
|
| | 59 | % function matrix, iteration results, and policy function, value function
|
| | 60 | % and iteration results tables.
|
| | 61 | %
|
| | 62 | % keys included in result_map:
|
| | 63 | %
|
| | 64 | % * mt_val matrix states_n by shock_n matrix of converged value function grid
|
| | 65 | % * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
|
| | 66 | % * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
|
| | 67 | % difference between iteration
|
| | 68 | % * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
|
| | 69 | % function difference between iterations
|
| | 70 | % * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
|
| | 71 | % proportion of grid points at which policy function changed between
|
| | 72 | % current and last iteration for each element of shock
|
| | 73 | %
|
| | 74 | % @example
|
| | 75 | %
|
| | 76 | % % Get Default Parameters
|
| | 77 | % it_param_set = 2;
|
| | 78 | % [param_map, support_map] = ffs_abz_set_default_param(it_param_set);
|
| | 79 | % % Change Keys in param_map
|
| | 80 | % param_map('it_a_n') = 500;
|
| | 81 | % param_map('it_z_n') = 11;
|
| | 82 | % param_map('fl_a_max') = 100;
|
| | 83 | % param_map('fl_w') = 1.3;
|
| | 84 | % % Change Keys support_map
|
| | 85 | % support_map('bl_display') = false;
|
| | 86 | % support_map('bl_post') = true;
|
| | 87 | % support_map('bl_display_final') = false;
|
| | 88 | % % Call Program with external parameters that override defaults.
|
| | 89 | % ff_az_vf_vec(param_map, support_map);
|
| | 90 | %
|
| | 91 | % @include
|
| | 92 | %
|
| | 93 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/paramfunc/html/ffs_az_set_default_param.html ffs_az_set_default_param>
|
| | 94 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/paramfunc/html/ffs_az_get_funcgrid.html ffs_az_get_funcgrid>
|
| | 95 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
|
| | 96 | %
|
| | 97 | % @seealso
|
| | 98 | %
|
| | 99 | % * save loop: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html ff_az_vf>
|
| | 100 | % * save vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html ff_az_vf_vec>
|
| | 101 | % * save optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
|
| | 102 | % * save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html ff_abz_vf>
|
| | 103 | % * save + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html ff_abz_vf_vec>
|
| | 104 | % * save + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vecsv.html ff_abz_vf_vecsv>
|
| | 105 | %
|
| | 106 |
|
| | 107 |
|
| | 108 | %% Default
|
| | 109 | % * it_param_set = 1: quick test
|
| | 110 | % * it_param_set = 2: benchmark run
|
| | 111 | % * it_param_set = 3: benchmark profile
|
| | 112 | % * it_param_set = 4: press publish button
|
| | 113 |
|
| | 114 | it_param_set = 3;
|
| | 115 | bl_input_override = true;
|
| | 116 | [param_map, support_map] = ffs_az_set_default_param(it_param_set);
|
| | 117 |
|
| | 118 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 119 | % param_map('it_a_n') = 750;
|
| | 120 | % param_map('it_z_n') = 15;
|
| | 121 |
|
| | 122 | [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 123 | default_params = {param_map support_map armt_map func_map};
|
| | 124 |
|
| | 125 | %% Parse Parameters 1
|
| | 126 |
|
| | 127 | % if varargin only has param_map and support_map,
|
| | 128 | params_len = length(varargin);
|
| | 129 | [default_params{1:params_len}] = varargin{:};
|
| | 130 | param_map = [param_map; default_params{1}];
|
| | 131 | support_map = [support_map; default_params{2}];
|
| | 132 | if params_len >= 1 && params_len <= 2
|
| | 133 | % If override param_map, re-generate armt and func if they are not
|
| | 134 | % provided
|
| | 135 | bl_input_override = true;
|
| | 136 | [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override);
|
| | 137 | else
|
| | 138 | % Override all
|
| | 139 | armt_map = [armt_map; default_params{3}];
|
| | 140 | func_map = [func_map; default_params{4}];
|
| | 141 | end
|
| | 142 |
|
| | 143 | % append function name
|
| | 144 | st_func_name = 'ff_az_vf_vec';
|
| | 145 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 146 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 147 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 148 |
|
| | 149 | %% Parse Parameters 2
|
| | 150 |
|
| | 151 | % armt_map
|
| | 152 | params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z'});
|
| | 153 | [ar_a, mt_z_trans, ar_z] = params_group{:};
|
| | 154 | % func_map
|
| | 155 | params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons', 'f_coh'});
|
| | 156 | [f_util_log, f_util_crra, f_cons, f_coh] = params_group{:};
|
| | 157 | % param_map
|
| | 158 | params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_nan_replace'});
|
| | 159 | [it_a_n, it_z_n, fl_crra, fl_beta, fl_nan_replace] = params_group{:};
|
| | 160 | params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
|
| | 161 | [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
|
| | 162 |
|
| | 163 | % support_map
|
| | 164 | params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
|
| | 165 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 166 | 'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
|
| | 167 | [bl_profile, st_profile_path, ...
|
| | 168 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 169 | bl_time, bl_display, it_display_every, bl_post] = params_group{:};
|
| | 170 |
|
| | 171 | %% Initialize Output Matrixes
|
| | 172 | % include mt_pol_idx which we did not have in looped code
|
| | 173 |
|
| | 174 | mt_val_cur = zeros(length(ar_a),length(ar_z));
|
| | 175 | mt_val = mt_val_cur - 1;
|
| | 176 | mt_pol_a = zeros(length(ar_a),length(ar_z));
|
| | 177 | mt_pol_a_cur = mt_pol_a - 1;
|
| | 178 | mt_pol_idx = zeros(length(ar_a),length(ar_z));
|
| | 179 |
|
| | 180 | %% Initialize Convergence Conditions
|
| | 181 |
|
| | 182 | bl_vfi_continue = true;
|
| | 183 | it_iter = 0;
|
| | 184 | ar_val_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 185 | ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 186 | mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
|
| | 187 |
|
| | 188 | %% Iterate Value Function
|
| | 189 | % Loop solution with 4 nested loops
|
| | 190 | %
|
| | 191 | % # loop 1: over exogenous states
|
| | 192 | % # loop 2: over endogenous states
|
| | 193 | % # loop 3: over choices
|
| | 194 | % # loop 4: add future utility, integration--loop over future shocks
|
| | 195 | %
|
| | 196 |
|
| | 197 | % Start Profile
|
| | 198 | if (bl_profile)
|
| | 199 | close all;
|
| | 200 | profile off;
|
| | 201 | profile on;
|
< 0.001 | 1 | 202 | end
|
| | 203 |
|
| | 204 | % Start Timer
|
< 0.001 | 1 | 205 | if (bl_time)
|
< 0.001 | 1 | 206 | tic;
|
< 0.001 | 1 | 207 | end
|
| | 208 |
|
| | 209 | % Value Function Iteration
|
< 0.001 | 1 | 210 | while bl_vfi_continue
|
< 0.001 | 106 | 211 | it_iter = it_iter + 1;
|
| | 212 |
|
| | 213 | %% Solve Optimization Problem Current Iteration
|
| | 214 | % Only this segment of code differs between ff_az_vf and ff_az_vf_vec
|
| | 215 |
|
| | 216 | % loop 1: over exogenous states
|
| | 217 | % incorporating these shocks into vectorization has high memory burden
|
| | 218 | % but insignificant speed gains. Keeping this loop allows for large
|
| | 219 | % number of shocks without overwhelming memory
|
< 0.001 | 106 | 220 | for it_z_i = 1:length(ar_z)
|
| | 221 |
|
| | 222 | % Current Shock
|
< 0.001 | 1590 | 223 | fl_z = ar_z(it_z_i);
|
| | 224 |
|
| | 225 | % Consumption: fl_z = 1 by 1, ar_a = 1 by N, ar_a' = N by 1
|
| | 226 | % mt_c is N by N: matrix broadcasting, expand to matrix from arrays
|
3.056 | 1590 | 227 | mt_c = f_cons(fl_z, ar_a, ar_a');
|
| | 228 |
|
| | 229 | % EVAL current utility: N by N, f_util defined earlier
|
0.001 | 1590 | 230 | if (fl_crra == 1)
|
| | 231 | mt_utility = f_util_log(mt_c);
|
< 0.001 | 1590 | 232 | else
|
21.762 | 1590 | 233 | mt_utility = f_util_crra(mt_c);
|
< 0.001 | 1590 | 234 | end
|
| | 235 |
|
| | 236 | % f(z'|z), 1 by Z
|
0.005 | 1590 | 237 | ar_z_trans_condi = mt_z_trans(it_z_i,:);
|
| | 238 |
|
| | 239 | % EVAL EV((A',K'),Z'|Z) = V((A',K'),Z') x p(z'|z)', (N by Z) x (Z by 1) = N by 1
|
| | 240 | % Note: transpose ar_z_trans_condi from 1 by Z to Z by 1
|
| | 241 | % Note: matrix multiply not dot multiply
|
0.030 | 1590 | 242 | mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi';
|
| | 243 |
|
| | 244 | % EVAL add on future utility, N by N + N by 1, broadcast again
|
0.344 | 1590 | 245 | mt_utility = mt_utility + fl_beta*mt_evzp_condi_z;
|
8.671 | 1590 | 246 | mt_utility(mt_c <= 0) = fl_nan_replace;
|
| | 247 |
|
| | 248 | % Optimization: remember matlab is column major, rows must be
|
| | 249 | % choices, columns must be states
|
| | 250 | % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
|
| | 251 | % mt_utility is N by N, rows are choices, cols are states.
|
0.584 | 1590 | 252 | [ar_opti_val1_z, ar_opti_idx_z] = max(mt_utility);
|
0.029 | 1590 | 253 | mt_val(:,it_z_i) = ar_opti_val1_z;
|
0.028 | 1590 | 254 | mt_pol_a(:,it_z_i) = ar_a(ar_opti_idx_z);
|
0.001 | 1590 | 255 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 15 | 256 | mt_pol_idx(:,it_z_i) = ar_opti_idx_z;
|
< 0.001 | 15 | 257 | end
|
0.002 | 1590 | 258 | end
|
| | 259 |
|
| | 260 | %% Check Tolerance and Continuation
|
| | 261 |
|
| | 262 | % Difference across iterations
|
0.065 | 106 | 263 | ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
|
0.051 | 106 | 264 | ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur);
|
0.007 | 106 | 265 | mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n);
|
| | 266 |
|
| | 267 | % Update
|
0.004 | 106 | 268 | mt_val_cur = mt_val;
|
0.003 | 106 | 269 | mt_pol_a_cur = mt_pol_a;
|
| | 270 |
|
| | 271 | % Print Iteration Results
|
< 0.001 | 106 | 272 | if (bl_display && (rem(it_iter, it_display_every)==0))
|
| | 273 | fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
|
| | 274 | it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
|
| | 275 | tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
|
| | 276 | mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
|
| | 277 | tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
|
| | 278 | tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
|
| | 279 | disp('mval = mean(mt_val_cur,1), average value over a')
|
| | 280 | disp('map = mean(mt_pol_a_cur,1), average choice over a')
|
| | 281 | disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
|
| | 282 | disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
|
| | 283 | disp(tb_valpol_iter);
|
| | 284 | end
|
| | 285 |
|
| | 286 | % Continuation Conditions:
|
| | 287 | % 1. if value function convergence criteria reached
|
| | 288 | % 2. if policy function variation over iterations is less than
|
| | 289 | % threshold
|
< 0.001 | 106 | 290 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 1 | 291 | bl_vfi_continue = false;
|
0.002 | 105 | 292 | elseif ((it_iter == it_maxiter_val) || ...
|
| 105 | 293 | (ar_val_diff_norm(it_iter) < fl_tol_val) || ...
|
| 105 | 294 | (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
|
| | 295 | % Fix to max, run again to save results if needed
|
< 0.001 | 1 | 296 | it_iter_last = it_iter;
|
< 0.001 | 1 | 297 | it_iter = it_maxiter_val;
|
< 0.001 | 1 | 298 | end
|
| | 299 |
|
< 0.001 | 106 | 300 | end
|
| | 301 |
|
| | 302 | % End Timer
|
< 0.001 | 1 | 303 | if (bl_time)
|
< 0.001 | 1 | 304 | toc;
|
< 0.001 | 1 | 305 | end
|
| | 306 |
|
| | 307 | % End Profile
|
< 0.001 | 1 | 308 | if (bl_profile)
|
0.001 | 1 | 309 | profile off
|
| | 310 | profile viewer
|
| | 311 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 312 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 313 | end
|
| | 314 |
|
| | 315 | %% Process Optimal Choices
|
| | 316 |
|
| | 317 | result_map = containers.Map('KeyType','char', 'ValueType','any');
|
| | 318 | result_map('mt_val') = mt_val;
|
| | 319 | result_map('mt_pol_a') = mt_pol_a;
|
| | 320 | result_map('mt_pol_c') = f_coh(ar_z, ar_a') - mt_pol_a
|
| | 321 | result_map('ar_st_pol_names') = ['mt_pol_a', 'mt_pol_c'];
|
| | 322 | result_map('mt_pol_idx') = mt_pol_idx;
|
| | 323 |
|
| | 324 | if (bl_post)
|
| | 325 | bl_input_override = true;
|
| | 326 | result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
|
| | 327 | result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
|
| | 328 | result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
|
| | 329 | result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 330 | end
|
| | 331 |
|
| | 332 | end
|
Other subfunctions in this file are not included in this listing.