time | Calls | line |
---|
| | 7 | function result_map = ff_az_vf_vecsv(varargin)
|
| | 8 | %% FF_AZ_VF_VECSV solve infinite horizon exo shock + endo asset problem
|
| | 9 | % This program solves the infinite horizon dynamic single asset and single
|
| | 10 | % shock problem with vectorized codes.
|
| | 11 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html
|
| | 12 | % ff_az_vf> shows looped codes.
|
| | 13 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html
|
| | 14 | % ff_az_vf_vec> shows vectorized codes. This file shows vectorized codes
|
| | 15 | % that is faster but is more memory intensive.
|
| | 16 | %
|
| | 17 | % See
|
| | 18 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html
|
| | 19 | % ff_az_vf_vec> how vectorization works within this structure.
|
| | 20 | %
|
| | 21 | % This _optimized-vectorized_ solution method provides very large speed
|
| | 22 | % improvements for this infinite horizon problem because the u(c(z,a,a'))
|
| | 23 | % calculation within each iteration is identical. Generally the idea is to
|
| | 24 | % identify inside iteration whether the model is infinite horizon or
|
| | 25 | % life-cycle based where repeat calculations are taking place. If such
|
| | 26 | % calculations can be identified, then potentially they could be stored and
|
| | 27 | % retrieved during future iterations/periods rather than recomputed every
|
| | 28 | % time. This saves time.
|
| | 29 | %
|
| | 30 | % @param param_map container parameter container
|
| | 31 | %
|
| | 32 | % @param support_map container support container
|
| | 33 | %
|
| | 34 | % @param armt_map container container with states, choices and shocks
|
| | 35 | % grids that are inputs for grid based solution algorithm
|
| | 36 | %
|
| | 37 | % @param func_map container container with function handles for
|
| | 38 | % consumption cash-on-hand etc.
|
| | 39 | %
|
| | 40 | % @return result_map container contains policy function matrix, value
|
| | 41 | % function matrix, iteration results, and policy function, value function
|
| | 42 | % and iteration results tables.
|
| | 43 | %
|
| | 44 | % keys included in result_map:
|
| | 45 | %
|
| | 46 | % * mt_val matrix states_n by shock_n matrix of converged value function grid
|
| | 47 | % * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
|
| | 48 | % * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
|
| | 49 | % difference between iteration
|
| | 50 | % * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
|
| | 51 | % function difference between iterations
|
| | 52 | % * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
|
| | 53 | % proportion of grid points at which policy function changed between
|
| | 54 | % current and last iteration for each element of shock
|
| | 55 | %
|
| | 56 | % @example
|
| | 57 | %
|
| | 58 | % % Get Default Parameters
|
| | 59 | % it_param_set = 2;
|
| | 60 | % [param_map, support_map] = ffs_abz_set_default_param(it_param_set);
|
| | 61 | % % Change Keys in param_map
|
| | 62 | % param_map('it_a_n') = 500;
|
| | 63 | % param_map('it_z_n') = 11;
|
| | 64 | % param_map('fl_a_max') = 100;
|
| | 65 | % param_map('fl_w') = 1.3;
|
| | 66 | % % Change Keys support_map
|
| | 67 | % support_map('bl_display') = false;
|
| | 68 | % support_map('bl_post') = true;
|
| | 69 | % support_map('bl_display_final') = false;
|
| | 70 | % % Call Program with external parameters that override defaults.
|
| | 71 | % ff_az_vf_vecsv(param_map, support_map);
|
| | 72 | %
|
| | 73 | % @include
|
| | 74 | %
|
| | 75 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/paramfunc/html/ffs_az_set_default_param.html ffs_az_set_default_param>
|
| | 76 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/paramfunc/html/ffs_az_get_funcgrid.html ffs_az_get_funcgrid>
|
| | 77 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
|
| | 78 | %
|
| | 79 | % @seealso
|
| | 80 | %
|
| | 81 | % * save loop: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html ff_az_vf>
|
| | 82 | % * save vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vec.html ff_az_vf_vec>
|
| | 83 | % * save optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf_vecsv.html ff_az_vf_vecsv>
|
| | 84 | % * save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf.html ff_abz_vf>
|
| | 85 | % * save + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vec.html ff_abz_vf_vec>
|
| | 86 | % * save + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_abz/solve/html/ff_abz_vf_vecsv.html ff_abz_vf_vecsv>
|
| | 87 | %
|
| | 88 |
|
| | 89 |
|
| | 90 | %% Default
|
| | 91 | %
|
| | 92 | % * it_param_set = 1: quick test
|
| | 93 | % * it_param_set = 2: benchmark run
|
| | 94 | % * it_param_set = 3: benchmark profile
|
| | 95 | % * it_param_set = 4: press publish button
|
| | 96 | %
|
| | 97 | % go to
|
| | 98 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/paramfunc/html/ffs_az_set_default_param.html
|
| | 99 | % ffs_az_set_default_param> to change parameters in param_map container.
|
| | 100 | % The parameters can also be updated here directly after obtaining them
|
| | 101 | % from ffs_az_set_default_param as we possibly change it_a_n and it_z_n
|
| | 102 | % here.
|
| | 103 |
|
| | 104 | it_param_set = 3;
|
| | 105 | bl_input_override = true;
|
| | 106 | [param_map, support_map] = ffs_az_set_default_param(it_param_set);
|
| | 107 |
|
| | 108 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 109 | % param_map('it_a_n') = 750;
|
| | 110 | % param_map('it_z_n') = 15;
|
| | 111 |
|
| | 112 | [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 113 | default_params = {param_map support_map armt_map func_map};
|
| | 114 |
|
| | 115 | %% Parse Parameters 1
|
| | 116 |
|
| | 117 | % if varargin only has param_map and support_map,
|
| | 118 | params_len = length(varargin);
|
| | 119 | [default_params{1:params_len}] = varargin{:};
|
| | 120 | param_map = [param_map; default_params{1}];
|
| | 121 | support_map = [support_map; default_params{2}];
|
| | 122 | if params_len >= 1 && params_len <= 2
|
| | 123 | % If override param_map, re-generate armt and func if they are not
|
| | 124 | % provided
|
| | 125 | bl_input_override = true;
|
| | 126 | [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override);
|
| | 127 | else
|
| | 128 | % Override all
|
| | 129 | armt_map = [armt_map; default_params{3}];
|
| | 130 | func_map = [func_map; default_params{4}];
|
| | 131 | end
|
| | 132 |
|
| | 133 | % append function name
|
| | 134 | st_func_name = 'ff_az_vf_vecsv';
|
| | 135 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 136 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 137 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 138 |
|
| | 139 | %% Parse Parameters 2
|
| | 140 |
|
| | 141 | % armt_map
|
| | 142 | params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z'});
|
| | 143 | [ar_a, mt_z_trans, ar_z] = params_group{:};
|
| | 144 | % func_map
|
| | 145 | params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons', 'f_coh'});
|
| | 146 | [f_util_log, f_util_crra, f_cons, f_coh] = params_group{:};
|
| | 147 | % param_map
|
| | 148 | params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_nan_replace'});
|
| | 149 | [it_a_n, it_z_n, fl_crra, fl_beta, fl_nan_replace] = params_group{:};
|
| | 150 | params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
|
| | 151 | [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
|
| | 152 |
|
| | 153 | % support_map
|
| | 154 | params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
|
| | 155 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 156 | 'bl_time', 'bl_display_defparam', 'bl_display', 'it_display_every', 'bl_post'});
|
| | 157 | [bl_profile, st_profile_path, ...
|
| | 158 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 159 | bl_time, bl_display_defparam, bl_display, it_display_every, bl_post] = params_group{:};
|
| | 160 | params_group = values(support_map, {'it_display_summmat_rowmax', 'it_display_summmat_colmax'});
|
| | 161 | [it_display_summmat_rowmax, it_display_summmat_colmax] = params_group{:};
|
| | 162 |
|
| | 163 | %% Initialize Output Matrixes
|
| | 164 | % include mt_pol_idx which we did not have in looped code
|
| | 165 |
|
| | 166 | mt_val_cur = zeros(length(ar_a),length(ar_z));
|
| | 167 | mt_val = mt_val_cur - 1;
|
| | 168 | mt_pol_a = zeros(length(ar_a),length(ar_z));
|
| | 169 | mt_pol_a_cur = mt_pol_a - 1;
|
| | 170 | mt_pol_idx = zeros(length(ar_a),length(ar_z));
|
| | 171 |
|
| | 172 | % We did not need these in ff_az_vf or ff_az_vf_vec
|
| | 173 | % see
|
| | 174 | % <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
|
| | 175 | % fs_u_c_partrepeat_main> for why store using cells.
|
| | 176 | cl_u_c_store = cell([it_z_n, 1]);
|
| | 177 | cl_c_valid_idx = cell([it_z_n, 1]);
|
| | 178 |
|
| | 179 | %% Initialize Convergence Conditions
|
| | 180 |
|
| | 181 | bl_vfi_continue = true;
|
| | 182 | it_iter = 0;
|
| | 183 | ar_val_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 184 | ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 185 | mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
|
| | 186 |
|
| | 187 | %% Iterate Value Function
|
| | 188 | % Loop solution with 4 nested loops
|
| | 189 | %
|
| | 190 | % # loop 1: over exogenous states
|
| | 191 | % # loop 2: over endogenous states
|
| | 192 | % # loop 3: over choices
|
| | 193 | % # loop 4: add future utility, integration--loop over future shocks
|
| | 194 | %
|
| | 195 |
|
| | 196 | % Start Profile
|
| | 197 | if (bl_profile)
|
| | 198 | close all;
|
| | 199 | profile off;
|
| | 200 | profile on;
|
< 0.001 | 1 | 201 | end
|
| | 202 |
|
| | 203 | % Start Timer
|
< 0.001 | 1 | 204 | if (bl_time)
|
< 0.001 | 1 | 205 | tic;
|
< 0.001 | 1 | 206 | end
|
| | 207 |
|
| | 208 | % Value Function Iteration
|
< 0.001 | 1 | 209 | while bl_vfi_continue
|
< 0.001 | 106 | 210 | it_iter = it_iter + 1;
|
| | 211 |
|
| | 212 | %% Solve Optimization Problem Current Iteration
|
| | 213 | % Only this segment of code differs between ff_az_vf and ff_az_vf_vec
|
| | 214 | % Store in cells results and retrieve, this is more memory intensive
|
| | 215 | % than ff_az_vf_vec.
|
| | 216 |
|
| | 217 | % loop 1: over exogenous states
|
< 0.001 | 106 | 218 | for it_z_i = 1:length(ar_z)
|
| | 219 |
|
| | 220 | % Current Shock
|
< 0.001 | 1590 | 221 | fl_z = ar_z(it_z_i);
|
| | 222 |
|
| | 223 | % Consumption and u(c) only need to be evaluated once
|
0.001 | 1590 | 224 | if (it_iter == 1)
|
| | 225 |
|
| | 226 | % Consumption: fl_z = 1 by 1, ar_a = 1 by N, ar_a' = N by 1
|
| | 227 | % mt_c is N by N: matrix broadcasting, expand to matrix from arrays
|
0.024 | 15 | 228 | mt_c = f_cons(fl_z, ar_a, ar_a');
|
| | 229 |
|
| | 230 | % EVAL current utility: N by N, f_util defined earlier
|
| | 231 | % slightly faster to explicitly write function
|
< 0.001 | 15 | 232 | if (fl_crra == 1)
|
| | 233 | mt_utility = log(mt_c);
|
< 0.001 | 15 | 234 | else
|
| | 235 | % slightly faster if write function here directly, but
|
| | 236 | % speed gain is very small, more important to have single
|
| | 237 | % location control of functions.
|
0.189 | 15 | 238 | mt_utility = f_util_crra(mt_c);
|
< 0.001 | 15 | 239 | end
|
| | 240 |
|
| | 241 | % Eliminate Complex Numbers
|
0.005 | 15 | 242 | mt_it_c_valid_idx = (mt_c <= 0);
|
0.064 | 15 | 243 | mt_utility(mt_it_c_valid_idx) = fl_nan_replace;
|
| | 244 |
|
| | 245 | % Store in cells
|
< 0.001 | 15 | 246 | cl_u_c_store{it_z_i} = mt_utility;
|
< 0.001 | 15 | 247 | cl_c_valid_idx{it_z_i} = mt_it_c_valid_idx;
|
| | 248 |
|
< 0.001 | 15 | 249 | end
|
| | 250 |
|
| | 251 | % f(z'|z)
|
0.001 | 1590 | 252 | ar_z_trans_condi = mt_z_trans(it_z_i,:);
|
| | 253 |
|
| | 254 | % EVAL EV((A',K'),Z'|Z) = V((A',K'),Z') x p(z'|z)', (N by Z) x (Z by 1) = N by 1
|
| | 255 | % Note: transpose ar_z_trans_condi from 1 by Z to Z by 1
|
| | 256 | % Note: matrix multiply not dot multiply
|
0.008 | 1590 | 257 | mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi';
|
| | 258 |
|
| | 259 | % EVAL add on future utility, N by N + N by 1
|
0.176 | 1590 | 260 | mt_utility = cl_u_c_store{it_z_i} + fl_beta*mt_evzp_condi_z;
|
| | 261 |
|
| | 262 | % Index update
|
| | 263 | % using the method below is much faster than index replace
|
| | 264 | % see <https://fanwangecon.github.io/M4Econ/support/speed/index/fs_subscript.html fs_subscript>
|
0.001 | 1590 | 265 | mt_it_c_valid_idx = cl_c_valid_idx{it_z_i};
|
0.257 | 1590 | 266 | mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_nan_replace*(mt_it_c_valid_idx);
|
| | 267 |
|
| | 268 | % Optimization: remember matlab is column major, rows must be
|
| | 269 | % choices, columns must be states
|
| | 270 | % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
|
| | 271 | % mt_utility is N by N, rows are choices, cols are states.
|
0.533 | 1590 | 272 | [ar_opti_val1_z, ar_opti_idx_z] = max(mt_utility);
|
0.011 | 1590 | 273 | mt_val(:,it_z_i) = ar_opti_val1_z;
|
0.014 | 1590 | 274 | mt_pol_a(:,it_z_i) = ar_a(ar_opti_idx_z);
|
< 0.001 | 1590 | 275 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 15 | 276 | mt_pol_idx(:,it_z_i) = ar_opti_idx_z;
|
< 0.001 | 15 | 277 | end
|
0.001 | 1590 | 278 | end
|
| | 279 |
|
| | 280 | %% Check Tolerance and Continuation
|
| | 281 |
|
| | 282 | % Difference across iterations
|
0.042 | 106 | 283 | ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
|
0.032 | 106 | 284 | ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur);
|
0.008 | 106 | 285 | mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n);
|
| | 286 |
|
| | 287 | % Update
|
0.003 | 106 | 288 | mt_val_cur = mt_val;
|
0.002 | 106 | 289 | mt_pol_a_cur = mt_pol_a;
|
| | 290 |
|
| | 291 | % Print Iteration Results
|
< 0.001 | 106 | 292 | if (bl_display && (rem(it_iter, it_display_every)==0))
|
| | 293 | fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
|
| | 294 | it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
|
| | 295 | tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
|
| | 296 | mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
|
| | 297 | tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
|
| | 298 | tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
|
| | 299 | disp('mval = mean(mt_val_cur,1), average value over a')
|
| | 300 | disp('map = mean(mt_pol_a_cur,1), average choice over a')
|
| | 301 | disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
|
| | 302 | disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
|
| | 303 | disp(tb_valpol_iter);
|
| | 304 | end
|
| | 305 |
|
| | 306 | % Continuation Conditions:
|
| | 307 | % 1. if value function convergence criteria reached
|
| | 308 | % 2. if policy function variation over iterations is less than
|
| | 309 | % threshold
|
< 0.001 | 106 | 310 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 1 | 311 | bl_vfi_continue = false;
|
0.002 | 105 | 312 | elseif ((it_iter == it_maxiter_val) || ...
|
| 105 | 313 | (ar_val_diff_norm(it_iter) < fl_tol_val) || ...
|
| 105 | 314 | (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
|
| | 315 | % Fix to max, run again to save results if needed
|
< 0.001 | 1 | 316 | it_iter_last = it_iter;
|
< 0.001 | 1 | 317 | it_iter = it_maxiter_val;
|
< 0.001 | 1 | 318 | end
|
| | 319 |
|
< 0.001 | 106 | 320 | end
|
| | 321 |
|
| | 322 | % End Timer
|
< 0.001 | 1 | 323 | if (bl_time)
|
< 0.001 | 1 | 324 | toc;
|
< 0.001 | 1 | 325 | end
|
| | 326 |
|
| | 327 | % End Profile
|
< 0.001 | 1 | 328 | if (bl_profile)
|
0.001 | 1 | 329 | profile off
|
| | 330 | profile viewer
|
| | 331 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 332 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 333 | end
|
| | 334 |
|
| | 335 | %% Process Optimal Choices
|
| | 336 | % for choices outcomes, store as cell with two elements, first element is
|
| | 337 | % the y(a,z), outcome given states, the second element will be solved found
|
| | 338 | % in
|
| | 339 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_ds_vf.html
|
| | 340 | % ff_ds_vf> and other distributions files. It stores what are the
|
| | 341 | % probability mass function of y, along with sorted unique values of y.
|
| | 342 |
|
| | 343 | result_map = containers.Map('KeyType','char', 'ValueType','any');
|
| | 344 | result_map('mt_val') = mt_val;
|
| | 345 | result_map('mt_pol_idx') = mt_pol_idx;
|
| | 346 |
|
| | 347 | result_map('cl_mt_coh') = {f_coh(ar_z, ar_a'), zeros(1)};
|
| | 348 | result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
|
| | 349 | result_map('cl_mt_pol_c') = {f_cons(ar_z, ar_a', mt_pol_a), zeros(1)};
|
| | 350 | result_map('ar_st_pol_names') = ["cl_mt_pol_a", "cl_mt_coh", "cl_mt_pol_c"];
|
| | 351 |
|
| | 352 | if (bl_post)
|
| | 353 | bl_input_override = true;
|
| | 354 | result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
|
| | 355 | result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
|
| | 356 | result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
|
| | 357 | result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 358 | end
|
| | 359 |
|
| | 360 | %% Display Various Containers
|
| | 361 |
|
| | 362 | if (bl_display_defparam)
|
| | 363 |
|
| | 364 | %% Display 1 support_map
|
| | 365 | fft_container_map_display(support_map, it_display_summmat_rowmax, it_display_summmat_colmax);
|
| | 366 |
|
| | 367 | %% Display 2 armt_map
|
| | 368 | fft_container_map_display(armt_map, it_display_summmat_rowmax, it_display_summmat_colmax);
|
| | 369 |
|
| | 370 | %% Display 3 param_map
|
| | 371 | fft_container_map_display(param_map, it_display_summmat_rowmax, it_display_summmat_colmax);
|
| | 372 |
|
| | 373 | %% Display 4 func_map
|
| | 374 | fft_container_map_display(func_map, it_display_summmat_rowmax, it_display_summmat_colmax);
|
| | 375 |
|
| | 376 | %% Display 5 result_map
|
| | 377 | fft_container_map_display(result_map, it_display_summmat_rowmax, it_display_summmat_colmax);
|
| | 378 |
|
| | 379 | end
|
| | 380 |
|
| | 381 | end
|
Other subfunctions in this file are not included in this listing.