Risky + Safe Asset (Save + Borr + R Shock) Interpolated-Percentage (Optimized-Vectorized)
back to Fan's Dynamic Assets Repository Table of Content.
Contents
- FF_IPWKBZR_VF_VECSV solve infinite horizon exo shock + endo asset problem
- Default
- Parse Parameters 1
- Parse Parameters 2, Asset Arrays
- Parse Parameters 2, interp_coh related matrixes
- Parse Parameters 3, reachable cash-on-hand
- Parse Parameters 4, other asset arrays
- Parse Parameters 5, Others
- Initialize Output Matrixes
- Initialize Convergence Conditions
- Pre-calculate u(c)
- Iterate Value Function
- Interpolate V(coh, Z) 1: Splinterp2
- Interpolate V(coh, Z) 2: griddedInterpolant(V)
- Interpolate V(coh, Z) 3: Store in Cell
- Interpolate V(coh, Z) 4: Single Call Full Matrix
- Interpolate V(coh, Z) 5: Matrix Store
- Solve Second Stage Problem k*(w,z)
- Solve First Stage Problem w*(z) given k*(w,z)
- A. Interpolate FULL to get k*(w_perc, z), b*(k,w) based on k*(w_level, z)
- B. Calculate UPDATE u(c): u(c(coh_level, w_perc)) given k*_interp, b*_interp
- C. Interpolate FULL EV(k*(coh_level, w_perc, z), w - b*|z) based on EV(k*(w_level, z))
- D. Compute FULL U(coh_level, w_perc, z) over all w_perc
- E. Optimize Over Choices: max_{w_perc} U(coh_level, w_perc, z)
- F. Store Results
- Check Tolerance and Continuation
- Process Optimal Choices
- Display Various Containers
- Display 1 support_map
- Display 2 armt_map
- Display 3 param_map
- Display 4 func_map
- Display 5 result_map
function result_map = ff_ipwkbzr_vf_vecsv(varargin)
FF_IPWKBZR_VF_VECSV solve infinite horizon exo shock + endo asset problem
This program solves the infinite horizon dynamic savings and risky capital asset problem with some ar1 shock. This is the two step solution with interpolation and with percentage asset grids version of ff_iwkz_vf_vecsv. See that file for more descriptions.
@param param_map container parameter container
@param support_map container support container
@param armt_map container container with states, choices and shocks grids that are inputs for grid based solution algorithm
@param func_map container container with function handles for consumption cash-on-hand etc.
@return result_map container contains policy function matrix, value function matrix, iteration results, and policy function, value function and iteration results tables.
keys included in result_map:
- mt_val matrix states_n by shock_n matrix of converged value function grid
- mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
- ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function difference between iteration
- ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy function difference between iterations
- mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the proportion of grid points at which policy function changed between current and last iteration for each element of shock
@example
@include
Default
- it_param_set = 1: quick test
- it_param_set = 2: benchmark run
- it_param_set = 3: benchmark profile
- it_param_set = 4: press publish button
it_param_set = 4; [param_map, support_map] = ffs_ipwkbzr_set_default_param(it_param_set); % parameters can be set inside ffs_ipwkbzr_set_default_param or updated here % param_map('it_w_perc_n') = 50; % param_map('it_ak_perc_n') = param_map('it_w_perc_n'); % param_map('fl_coh_interp_grid_gap') = 0.025; % param_map('it_c_interp_grid_gap') = 0.001; % param_map('fl_w_interp_grid_gap') = 0.25; % param_map('it_w_perc_n') = 100; % param_map('it_ak_perc_n') = param_map('it_w_perc_n'); % param_map('fl_z_r_borr_n') = 5; % param_map('it_z_wage_n') = 15; % param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n'); % param_map('fl_coh_interp_grid_gap') = 0.1; % param_map('it_c_interp_grid_gap') = 10^-4; % param_map('fl_w_interp_grid_gap') = 0.1; st_param_which = 'default'; if (ismember(st_param_which, ['default'])) % default elseif (ismember(st_param_which, ['small'])) param_map('it_w_perc_n') = 20; param_map('it_ak_perc_n') = param_map('it_w_perc_n'); param_map('it_z_wage_n') = 4; param_map('fl_z_r_borr_n') = 4; param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n'); elseif ismember(st_param_which, ['ff_ipwkbz_vf_vecsv']) % ff_ipwkbzr_evf default param_map('fl_z_r_borr_min') = 0.095; param_map('fl_z_r_borr_max') = 0.095; param_map('fl_z_r_borr_n') = 1; param_map('fl_r_save') = 0.025; param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n'); end % get armt and func map [armt_map, func_map] = ffs_ipwkbzr_get_funcgrid(param_map, support_map); % 1 for override default_params = {param_map support_map armt_map func_map};
Parse Parameters 1
% if varargin only has param_map and support_map, params_len = length(varargin); [default_params{1:params_len}] = varargin{:}; param_map = [param_map; default_params{1}]; support_map = [support_map; default_params{2}]; if params_len >= 1 && params_len <= 2 % If override param_map, re-generate armt and func if they are not % provided bl_input_override = true; [armt_map, func_map] = ffs_ipwkbzr_get_funcgrid(param_map, support_map); else % Override all armt_map = [armt_map; default_params{3}]; func_map = [func_map; default_params{4}]; end % append function name st_func_name = 'ff_ipwkbzr_vf_vecsv'; support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')]; support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')]; support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
Parse Parameters 2, Asset Arrays
Dimensions of Various Grids: I for level grid, M for shock grid, P for percent grid
- ar_interp_c_grid: 1 by I^c, 1st stage consumption interpolation
- ar_interp_coh_grid: 1 by I^{coh}, 1st stage value function V(coh,z)
- ar_w_perc: 1 by P^{W=k+b}, 1st stage w \in {w_perc(coh)} choice set
- ar_w_level: 1 by I^{W=k+b}, 2nd stage k*(w,z) w grid
- ar_ak_perc: 1 by P^{k and b}, 2nd stage k \in {ask_perc(w,z)} set
params_group = values(armt_map, {... 'ar_interp_c_grid', 'ar_interp_coh_grid', ... 'ar_w_perc', 'ar_w_level', 'ar_ak_perc'}); [ar_interp_c_grid, ar_interp_coh_grid, ... ar_w_perc, ar_w_level, ar_ak_perc] = params_group{:};
Parse Parameters 2, interp_coh related matrixes
Dimensions of Various Grids: I for level grid, M for shock grid, P for percent grid. These are grids for 1st stage solution
- mt_interp_coh_grid_mesh_z_wage: I^{coh} by M^w
- mt_z_wage_mesh_interp_coh_grid: I^{coh} by M^w
- mt_interp_coh_grid_mesh_w_perc: I^{coh} by P^{LAM=k+b}
- mt_w_perc_mesh_interp_coh_grid: I^{coh} by P^{LAM=k+b}
params_group = values(armt_map, {... 'mt_interp_coh_grid_mesh_z_wage', ... 'mt_interp_coh_grid_mesh_w_perc', ... 'mt_z_wage_mesh_interp_coh_grid', ... 'mt_w_perc_mesh_interp_coh_grid', ... 'mt_interp_coh_grid_mesh_z', 'mt_z_mesh_interp_coh_grid', ... 'cl_mt_coh_wkb_mesh_z_r_borr', 'mt_z_mesh_coh_wkb_seg'}); [mt_interp_coh_grid_mesh_z_wage, ... mt_interp_coh_grid_mesh_w_perc, ... mt_z_wage_mesh_interp_coh_grid, ... mt_w_perc_mesh_interp_coh_grid, ... mt_interp_coh_grid_mesh_z, mt_z_mesh_interp_coh_grid, ... cl_mt_coh_wkb_mesh_z_r_borr, mt_z_mesh_coh_wkb_seg] = params_group{:};
Parse Parameters 3, reachable cash-on-hand
Dimensions of Various Grids: I for level grid, M for shock grid, P for percent grid. These are grids for 1st stage solution
- mt_coh_wkb: (I^k x I^w x M^r) by (M^z)
- mt_z_wage_mesh_coh_wkb: (I^k x I^w x M^r) by (M^z)
params_group = values(armt_map, {... 'mt_coh_wkb', 'mt_coh_wkb_mesh_z_r_borr', 'mt_z_mesh_coh_wkb', 'mt_z_wage_mesh_coh_wkb'}); [mt_coh_wkb, mt_coh_wkb_mesh_z_r_borr, mt_z_mesh_coh_wkb, mt_z_wage_mesh_coh_wkb] = params_group{:};
Parse Parameters 4, other asset arrays
params_group = values(armt_map, {'ar_a_meshk', 'ar_k_mesha'}); [ar_a_meshk, ar_k_mesha] = params_group{:};
Parse Parameters 5, Others
% func_map params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons'}); [f_util_log, f_util_crra, f_cons] = params_group{:}; % param_map params_group = values(param_map, {'fl_crra', 'fl_beta', ... 'fl_nan_replace', 'fl_c_min', 'bl_default', 'fl_default_wprime'}); [fl_crra, fl_beta, fl_nan_replace, fl_c_min, bl_default, fl_default_wprime] = params_group{:}; params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'}); [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:}; params_group = values(param_map, {'it_z_n', 'fl_z_r_borr_n', 'it_z_wage_n'}); [it_z_n, fl_z_r_borr_n, it_z_wage_n] = params_group{:}; params_group = values(param_map, {'st_v_coh_z_interp_method'}); [st_v_coh_z_interp_method] = params_group{:}; % support_map params_group = values(support_map, {'bl_profile', 'st_profile_path', ... 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',... 'bl_time', 'bl_display_defparam', 'bl_graph_evf', 'bl_display', 'it_display_every', 'bl_post'}); [bl_profile, st_profile_path, ... st_profile_prefix, st_profile_name_main, st_profile_suffix, ... bl_time, bl_display_defparam, bl_graph_evf, bl_display, it_display_every, bl_post] = params_group{:}; params_group = values(support_map, {'it_display_summmat_rowmax', 'it_display_summmat_colmax'}); [it_display_summmat_rowmax, it_display_summmat_colmax] = params_group{:};
Initialize Output Matrixes
mt_val_cur = zeros(length(ar_interp_coh_grid),it_z_n); mt_val = mt_val_cur - 1; mt_pol_a = zeros(length(ar_interp_coh_grid),it_z_n); mt_pol_a_cur = mt_pol_a - 1; mt_pol_k = zeros(length(ar_interp_coh_grid),it_z_n); mt_pol_k_cur = mt_pol_k - 1; mt_pol_idx = zeros(length(ar_interp_coh_grid),it_z_n); % We did not need these in ff_oz_vf or ff_oz_vf_vec % see % <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html % fs_u_c_partrepeat_main> for why store using cells. cl_u_c_store = cell([it_z_n, 1]); cl_c_valid_idx = cell([it_z_n, 1]); cl_w_kstar_interp_z = cell([it_z_n, 1]); for it_z_i = 1:it_z_n cl_w_kstar_interp_z{it_z_i} = zeros([length(ar_w_perc), length(ar_interp_coh_grid)]) - 1; end clmt_val_wkb_interpolated = cell([fl_z_r_borr_n, 1]);
Initialize Convergence Conditions
bl_vfi_continue = true; it_iter = 0; ar_val_diff_norm = zeros([it_maxiter_val, 1]); ar_pol_diff_norm = zeros([it_maxiter_val, 1]); mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
Pre-calculate u(c)
Interpolation, see fs_u_c_partrepeat_main for why interpolate over u(c)
% Evaluate if (fl_crra == 1) ar_interp_u_of_c_grid = f_util_log(ar_interp_c_grid); fl_u_cmin = f_util_log(fl_c_min); else ar_interp_u_of_c_grid = f_util_crra(ar_interp_c_grid); fl_u_cmin = f_util_crra(fl_c_min); end ar_interp_u_of_c_grid(ar_interp_c_grid <= fl_c_min) = fl_u_cmin; % Get Interpolant f_grid_interpolant_spln = griddedInterpolant(ar_interp_c_grid, ar_interp_u_of_c_grid, 'spline', 'nearest');
Iterate Value Function
Loop solution with 4 nested loops
- loop 1: over exogenous states
- loop 2: over endogenous states
- loop 3: over choices
- loop 4: add future utility, integration--loop over future shocks
% Start Profile if (bl_profile) close all; profile off; profile on; end % Start Timer if (bl_time) tic; end % Value Function Iteration while bl_vfi_continue
it_iter = it_iter + 1;
Interpolate V(coh, Z) 1: Splinterp2
Interpolate reacahble V(coh(k'(w),b'(w),zr,zw'),zw',zr')) given v(coh, z)
if (strcmp(st_v_coh_z_interp_method, 'method_idx_a')) for it_z_r_borr_ctr = 1:1:fl_z_r_borr_n clmt_val_wkb_interpolated{it_z_r_borr_ctr} = ... splinterp2(mt_val_cur,mt_z_mesh_coh_wkb_seg,cl_mt_coh_wkb_mesh_z_r_borr{it_z_r_borr_ctr}); end end
Interpolate V(coh, Z) 2: griddedInterpolant(V)
Interpolate reacahble V(coh(k'(w),b'(w),zr,zw'),zw',zr')) given v(coh, z)
if (strcmp(st_v_coh_z_interp_method, 'method_idx_b')) % Generate Interpolant for v(coh,z) % mt_z_wage_mesh_interp_coh_grid is: (I^{coh_interp}) by (M^z) f_grid_interpolant_value = griddedInterpolant(mt_val_cur', 'linear', 'nearest'); for it_z_r_borr_ctr = 1:1:fl_z_r_borr_n clmt_val_wkb_interpolated{it_z_r_borr_ctr} = ... f_grid_interpolant_value(mt_z_mesh_coh_wkb_seg,... cl_mt_coh_wkb_mesh_z_r_borr{it_z_r_borr_ctr}); end end
Interpolate V(coh, Z) 3: Store in Cell
Interpolate reacahble V(coh(k'(w),b'(w),zr,zw'),zw',zr')) given v(coh, z)
if (strcmp(st_v_coh_z_interp_method, 'method_cell')) f_grid_interpolant_value = griddedInterpolant(... mt_z_mesh_interp_coh_grid', mt_interp_coh_grid_mesh_z', ... mt_val_cur', 'linear', 'nearest'); for it_z_r_borr_ctr = 1:1:fl_z_r_borr_n clmt_val_wkb_interpolated{it_z_r_borr_ctr} = ... f_grid_interpolant_value(mt_z_mesh_coh_wkb_seg,... cl_mt_coh_wkb_mesh_z_r_borr{it_z_r_borr_ctr}); end end
Interpolate V(coh, Z) 4: Single Call Full Matrix
Interpolate reacahble V(coh(k'(w),b'(w),zr,zw'),zw',zr')) given v(coh, z)
if (strcmp(st_v_coh_z_interp_method, 'method_matrix')) % Generate Interpolant for v(coh,z) % mt_z_wage_mesh_interp_coh_grid is: (I^{coh_interp}) by (M^z) f_grid_interpolant_value = griddedInterpolant(... mt_z_mesh_interp_coh_grid', mt_interp_coh_grid_mesh_z', ... mt_val_cur', 'linear', 'nearest'); % Interpolate V(coh(k',b',z',r),z',r') for a specific r' % mt_z_wage_mesh_coh_wkb and mt_coh_wkb are: (I^k x I^w x M^r) by (M^z) clmt_val_wkb_interpolated = f_grid_interpolant_value(mt_z_mesh_coh_wkb, mt_coh_wkb_mesh_z_r_borr); end
Interpolate V(coh, Z) 5: Matrix Store
Interpolate reacahble V(coh(k'(w),b'(w),zr,zw'),zw',zr')) given v(coh, z)
if (strcmp(st_v_coh_z_interp_method, 'method_mat_seg')) % 1. Number of W/B/K Choice Combinations it_ak_perc_n = length(ar_ak_perc); it_w_interp_n = length(ar_w_level); it_wak_n = it_w_interp_n*it_ak_perc_n; % 2. Initialize V(coh(k'(w),b'(w),zr,zw'),zw',zr')) % mt_val_wkb_interpolated is: (I^k x I^w x M^r) by (M^z x M^r) % reachable cash-on-hand (as rows) and shocks next period given choices % and shocks next period. clmt_val_wkb_interpolated = zeros([it_wak_n*fl_z_r_borr_n, it_z_n]); % 3. Loop over possible shocks over interest rate for it_z_r_borr_ctr = 1:1:fl_z_r_borr_n % 4. Interpolate V(coh(k',b',z',r),z',r') for a specific r' % v(coh,z) solved on ar_interp_coh_grid, ar_z grids, see % ffs_ipwkbzr_get_funcgrid.m. Generate interpolant based on that, Then % interpolate for the coh reachable levels given the k(w,z) percentage % choice grids in the second stage of the problem. % % Note mt_val_cur/mt_val dimension is based on interpolant % cash-on-hand for rows, and meshed shocks for columns. The meshed % shock structure, see % <https://fanwangecon.github.io/CodeDynaAsset/m_ipwkbzr/paramfunc/html/ffs_ipwkbzr_get_funcgrid.html % ffs_ipwkbzr_get_funcgrid> for details on how the shock grids are % formed. % Get current z_r_borr from mt_val it_mt_val_col_start = it_z_wage_n*(it_z_r_borr_ctr-1) + 1; it_mt_val_col_end = it_mt_val_col_start + it_z_wage_n - 1; mt_val_cur_rcolseg = mt_val_cur(:, it_mt_val_col_start:it_mt_val_col_end); % Generate Interpolant for v(coh,z) % mt_z_wage_mesh_interp_coh_grid is: (I^{coh_interp}) by (M^z) f_grid_interpolant_value = griddedInterpolant(... mt_z_wage_mesh_interp_coh_grid', mt_interp_coh_grid_mesh_z_wage', ... mt_val_cur_rcolseg', 'linear', 'nearest'); % Interpolate V(coh(k',b',z',r),z',r') for a specific r' % mt_z_wage_mesh_coh_wkb and mt_coh_wkb are: (I^k x I^w x M^r) by (M^z) mt_val_wkb_interpolated_seg = f_grid_interpolant_value(mt_z_wage_mesh_coh_wkb, mt_coh_wkb); clmt_val_wkb_interpolated(:, it_mt_val_col_start:it_mt_val_col_end) = mt_val_wkb_interpolated_seg; end end
Solve Second Stage Problem k*(w,z)
This is the key difference between this function and ffs_akz_set_functions which solves the two stages jointly Interpolation first, because solution coh grid is not the same as all points reachable by k and b choices given w.
support_map('bl_graph_evf') = false; if (it_iter == (it_maxiter_val + 1)) support_map('bl_graph_evf') = bl_graph_evf; end bl_input_override = true; [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, ~] = ... ff_ipwkbzr_evf(clmt_val_wkb_interpolated, param_map, support_map, armt_map, bl_input_override);
Solve First Stage Problem w*(z) given k*(w,z)
% loop 1: over exogenous states for it_z_i = 1:it_z_n
A. Interpolate FULL to get k*(w_perc, z), b*(k,w) based on k*(w_level, z)
Generate interpolant for (2) k*(ar_w_perc) from k*(ar_w_level,z) There are two w=k'+b' arrays. ar_w_level is the level even grid based on which we solve the 2nd stage problem in ff_ipwkbzr_evf.m. Here for each coh level, we have a different vector of w levels, but the same vector of percentage ws. So we need to interpolate to get the optimal k* and b* choices at each percentage level of w.
f_interpolante_w_level_kstar_z = griddedInterpolant(ar_w_level, mt_ev_condi_z_max_kp(:, it_z_i)', 'linear', 'nearest'); % Interpolate (2), shift from w_level to w_perc mt_w_kstar_interp_z = f_interpolante_w_level_kstar_z(mt_w_perc_mesh_interp_coh_grid); mt_w_astar_interp_z = mt_w_perc_mesh_interp_coh_grid - mt_w_kstar_interp_z; % changes in w_perc kstar choices mt_w_kstar_diff_idx = (cl_w_kstar_interp_z{it_z_i} ~= mt_w_kstar_interp_z);
B. Calculate UPDATE u(c): u(c(coh_level, w_perc)) given k*_interp, b*_interp
Note that compared to ffs_akz_set_functions the mt_c here is much smaller the same number of columns (states) as in the ffs_akz_set_functions file, but the number of rows equal to ar_w length.
ar_c = f_cons(mt_interp_coh_grid_mesh_w_perc(mt_w_kstar_diff_idx), ... mt_w_astar_interp_z(mt_w_kstar_diff_idx), ... mt_w_kstar_interp_z(mt_w_kstar_diff_idx)); ar_it_c_valid_idx = (ar_c <= fl_c_min); % EVAL current utility: N by N, f_util defined earlier ar_utility_update = f_grid_interpolant_spln(ar_c); % Update Storage if (it_iter == 1) cl_u_c_store{it_z_i} = reshape(ar_utility_update, [length(ar_w_perc), length(ar_interp_coh_grid)]); cl_c_valid_idx{it_z_i} = reshape(ar_it_c_valid_idx, [length(ar_w_perc), length(ar_interp_coh_grid)]); else cl_u_c_store{it_z_i}(mt_w_kstar_diff_idx) = ar_utility_update; cl_c_valid_idx{it_z_i}(mt_w_kstar_diff_idx) = ar_it_c_valid_idx; end cl_w_kstar_interp_z{it_z_i} = mt_w_kstar_interp_z;
C. Interpolate FULL EV(k*(coh_level, w_perc, z), w - b*|z) based on EV(k*(w_level, z))
Generate Interpolant for (3) EV(k*(ar_w_perc),Z)
f_interpolante_ev_condi_z_max_z = griddedInterpolant(ar_w_level, mt_ev_condi_z_max(:, it_z_i)', 'linear', 'nearest'); % Interpolate (3), EVAL add on future utility, N by N + N by N mt_ev_condi_z_max_interp_z = f_interpolante_ev_condi_z_max_z(mt_w_perc_mesh_interp_coh_grid);
D. Compute FULL U(coh_level, w_perc, z) over all w_perc
mt_utility = cl_u_c_store{it_z_i} + fl_beta*mt_ev_condi_z_max_interp_z; % Index update % using the method below is much faster than index replace % see <https://fanwangecon.github.io/M4Econ/support/speed/index/fs_subscript.html fs_subscript> mt_it_c_valid_idx = cl_c_valid_idx{it_z_i}; % Default or Not Utility Handling if (bl_default) % if default: only today u(cmin), transition out next period, debt wiped out fl_v_default = fl_u_cmin + fl_beta*f_interpolante_ev_condi_z_max_z(fl_default_wprime); mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_v_default*(mt_it_c_valid_idx); else % if default is not allowed: v = u(cmin) mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_nan_replace*(mt_it_c_valid_idx); end % percentage algorithm does not have invalid (check to make sure % min percent is not 0 in ffs_ipwkbzr_get_funcgrid.m) % mt_utility = mt_utility.*(~mt_it_c_valid_idx) + fl_u_neg_c*(mt_it_c_valid_idx);
E. Optimize Over Choices: max_{w_perc} U(coh_level, w_perc, z)
Optimization: remember matlab is column major, rows must be choices, columns must be states COLUMN-MAJOR
[ar_opti_val_z, ar_opti_idx_z] = max(mt_utility); % Generate Linear Opti Index [it_choies_n, it_states_n] = size(mt_utility); ar_add_grid = linspace(0, it_choies_n*(it_states_n-1), it_states_n); ar_opti_linear_idx_z = ar_opti_idx_z + ar_add_grid; ar_opti_aprime_z = mt_w_astar_interp_z(ar_opti_linear_idx_z); ar_opti_kprime_z = mt_w_kstar_interp_z(ar_opti_linear_idx_z); ar_opti_c_z = f_cons(ar_interp_coh_grid, ar_opti_aprime_z, ar_opti_kprime_z); % Handle Default is optimal or not if (bl_default) % if defaulting is optimal choice, at these states, not required % to default, non-default possible, but default could be optimal fl_default_opti_kprime = f_interpolante_w_level_kstar_z(fl_default_wprime); ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = fl_default_wprime - fl_default_opti_kprime; ar_opti_kprime_z(ar_opti_c_z <= fl_c_min) = fl_default_opti_kprime; else % if default is not allowed, then next period same state as now % this is absorbing state, this is the limiting case, single % state space point, lowest a and lowest shock has this. ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = min(ar_a_meshk); ar_opti_kprime_z(ar_opti_c_z <= fl_c_min) = min(ar_k_mesha); end
F. Store Results
mt_val(:,it_z_i) = ar_opti_val_z; mt_pol_a(:,it_z_i) = ar_opti_aprime_z; mt_pol_k(:,it_z_i) = ar_opti_kprime_z; if (it_iter == (it_maxiter_val + 1)) mt_pol_idx(:,it_z_i) = ar_opti_linear_idx_z; end
end
Check Tolerance and Continuation
% Difference across iterations ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur); ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/(length(ar_interp_coh_grid)); ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/(length(ar_interp_coh_grid)); mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]); % Update mt_val_cur = mt_val; mt_pol_a_cur = mt_pol_a; mt_pol_k_cur = mt_pol_k; % Print Iteration Results if (bl_display && (rem(it_iter, it_display_every)==0)) fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ... it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter)); tb_valpol_iter = array2table([mean(mt_val_cur,1);... mean(mt_pol_a_cur,1); ... mean(mt_pol_k_cur,1); ... mt_val_cur(length(ar_interp_coh_grid),:); ... mt_pol_a_cur(length(ar_interp_coh_grid),:); ... mt_pol_k_cur(length(ar_interp_coh_grid),:)]); tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2)))); tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'}; disp('mval = mean(mt_val_cur,1), average value over a') disp('map = mean(mt_pol_a_cur,1), average choice over a') disp('mkp = mean(mt_pol_k_cur,1), average choice over k') disp('Hval = mt_val_cur(it_ameshk_n,:), highest a state val') disp('Hap = mt_pol_a_cur(it_ameshk_n,:), highest a state choice') disp('mak = mt_pol_k_cur(it_ameshk_n,:), highest k state choice') disp(tb_valpol_iter); end % Continuation Conditions: % 1. if value function convergence criteria reached % 2. if policy function variation over iterations is less than % threshold if (it_iter == (it_maxiter_val + 1)) bl_vfi_continue = false; elseif ((it_iter == it_maxiter_val) || ... (ar_val_diff_norm(it_iter) < fl_tol_val) || ... (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) % Fix to max, run again to save results if needed it_iter_last = it_iter; it_iter = it_maxiter_val; end
end % End Timer if (bl_time) toc; end % End Profile if (bl_profile) profile off profile viewer st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix]; profsave(profile('info'), strcat(st_profile_path, st_file_name)); end
Process Optimal Choices
result_map = containers.Map('KeyType','char', 'ValueType','any'); result_map('mt_val') = mt_val; result_map('mt_pol_idx') = mt_pol_idx; result_map('cl_mt_coh') = {mt_interp_coh_grid_mesh_z, zeros(1)}; result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)}; result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)}; mt_pol_c = f_cons(mt_interp_coh_grid_mesh_z, mt_pol_a, mt_pol_k); mt_pol_c(mt_pol_c <= fl_c_min) = fl_c_min; result_map('cl_mt_pol_c') = {mt_pol_c, zeros(1)}; result_map('cl_mt_val') = {mt_val, zeros(1)}; result_map('ar_st_pol_names') = ["cl_mt_val", "cl_mt_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"]; if (bl_post) bl_input_override = true; result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last); result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last); result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :); armt_map('mt_coh_wkb_ori') = mt_coh_wkb; armt_map('ar_a_meshk_ori') = ar_a_meshk; armt_map('ar_k_mesha_ori') = ar_k_mesha; % graphing based on coh_wkb, but that does not match optimal choice % matrixes for graphs. armt_map('mt_coh_wkb') = mt_interp_coh_grid_mesh_z; armt_map('it_ameshk_n') = length(ar_interp_coh_grid); armt_map('ar_a_meshk') = mt_interp_coh_grid_mesh_z(:,1); armt_map('ar_k_mesha') = zeros(size(mt_interp_coh_grid_mesh_z(:,1)) + 0); result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override); end
valgap = norm(mt_val - mt_val_cur): value function difference across iterations polgap = norm(mt_pol_a - mt_pol_a_cur): policy function difference across iterations z1 = z1 perc change: (sum((mt_pol_a ~= mt_pol_a_cur))+sum((mt_pol_k ~= mt_pol_k_cur)))/(2*it_ameshk_n):percentage of state space points conditional on shock where the policy function is changing across iterations valgap polgap z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22 z23 z24 z25 z26 z27 z28 z29 z30 z31 z32 z33 z34 z35 z36 z37 z38 z39 z40 z41 z42 z43 z44 z45 z46 z47 z48 z49 z50 z51 z52 z53 z54 z55 __________ _______ _________ _________ _________ _________ __________ _________ __________ __________ __________ _________ _________ _________ _________ _________ _________ _________ __________ _________ __________ __________ __________ _________ _________ _________ _________ _________ _________ _________ __________ _________ __________ _________ _________ _________ _________ _________ _________ _________ _________ __________ __________ __________ _________ _________ _________ _________ _________ _________ _________ _________ __________ _________ _________ _________ _________ iter=1 344.08 4118.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 iter=2 287.85 4777.2 0.97474 0.96762 0.9579 0.94624 0.93005 0.90997 0.88407 0.85039 0.80699 0.75389 0.6943 0.98446 0.97863 0.97021 0.96049 0.94948 0.93005 0.90997 0.88277 0.84909 0.80699 0.75648 0.99288 0.98769 0.98187 0.97215 0.96179 0.94689 0.93199 0.90674 0.87889 0.84456 0.80311 1 0.99611 0.98964 0.98251 0.97345 0.95984 0.9456 0.92876 0.90155 0.87176 0.83808 1 1 1 0.99158 0.98316 0.9728 0.96049 0.94365 0.92228 0.89313 0.86334 iter=3 246.29 1652.3 0.9443 0.91321 0.92746 0.94948 0.92487 0.93588 0.91321 0.88472 0.85233 0.80699 0.75907 0.95402 0.92552 0.9307 0.96438 0.93718 0.95272 0.93718 0.91386 0.88536 0.85039 0.81282 0.93523 0.93329 0.9456 0.95207 0.93653 0.94624 0.94754 0.93135 0.90933 0.88148 0.84715 0.95596 0.91451 0.95337 0.96373 0.94365 0.96114 0.93588 0.94365 0.92876 0.9035 0.8737 0.95142 0.92552 0.94495 0.97345 0.94041 0.96762 0.95142 0.9456 0.93782 0.9171 0.89054 iter=4 204.18 809.6 0.97863 0.97021 0.96308 0.96373 0.94171 0.94301 0.92487 0.90609 0.87306 0.83549 0.79016 0.98316 0.98057 0.96956 0.96179 0.94171 0.95725 0.94106 0.92228 0.89702 0.87047 0.8342 0.97927 0.97992 0.98122 0.96567 0.94689 0.96114 0.95272 0.93912 0.91969 0.89961 0.86334 0.97345 0.97798 0.97733 0.97992 0.95013 0.96114 0.95466 0.95013 0.9307 0.91321 0.88666 0.9715 0.97085 0.97539 0.97733 0.97733 0.96373 0.95402 0.96632 0.93977 0.92617 0.91192 iter=5 172.52 500.65 0.9715 0.9728 0.96632 0.96308 0.95142 0.93977 0.92811 0.91062 0.88666 0.8478 0.80764 0.96632 0.96891 0.97085 0.96697 0.96567 0.95402 0.93977 0.92746 0.91451 0.88666 0.84715 0.96244 0.96503 0.96762 0.96956 0.96632 0.96373 0.95142 0.93847 0.92422 0.90091 0.875 0.95855 0.96114 0.96373 0.96762 0.96891 0.96244 0.95725 0.94754 0.93459 0.9171 0.89573 0.95466 0.95725 0.95984 0.96244 0.96697 0.96697 0.96308 0.95661 0.94365 0.9294 0.90997 iter=6 148.24 351.57 0.9579 0.95984 0.95984 0.9579 0.95013 0.95337 0.92746 0.90738 0.88472 0.85168 0.81671 0.95466 0.95466 0.95725 0.95855 0.9592 0.95078 0.93912 0.92487 0.90674 0.88342 0.85039 0.94948 0.94948 0.95337 0.9579 0.9592 0.95725 0.94948 0.94041 0.92422 0.90415 0.87759 0.9443 0.9456 0.94948 0.95337 0.95855 0.95984 0.94754 0.96244 0.93394 0.92098 0.89637 0.94041 0.94171 0.9456 0.94948 0.95466 0.9592 0.95661 0.94883 0.94236 0.92876 0.91127 iter=7 128.41 264.61 0.94041 0.9443 0.95078 0.95596 0.94689 0.93977 0.92681 0.90868 0.88148 0.84845 0.80829 0.94301 0.94819 0.95078 0.95207 0.95272 0.94754 0.93718 0.92228 0.90738 0.88018 0.84521 0.93523 0.94041 0.95596 0.95078 0.95272 0.95142 0.94624 0.93588 0.92293 0.89443 0.87047 0.93264 0.93653 0.94689 0.95078 0.95013 0.95078 0.95337 0.94041 0.93005 0.90997 0.88407 0.92876 0.93394 0.9443 0.9456 0.94689 0.94819 0.95207 0.94624 0.94495 0.92228 0.89313 iter=8 112.2 188.11 0.86205 0.88018 0.6535 0.46826 0.54987 0.84909 0.73964 0.90738 0.88148 0.58096 0.68264 0.86269 0.87824 0.65285 0.45725 0.55117 0.85622 0.8601 0.92358 0.90415 0.66192 0.71503 0.8601 0.88083 0.64184 0.4456 0.53238 0.85039 0.90803 0.91321 0.91839 0.68523 0.65674 0.85233 0.87953 0.65415 0.44948 0.52137 0.84326 0.92034 0.80181 0.93199 0.71762 0.65933 0.84326 0.86917 0.64896 0.43199 0.50907 0.83031 0.90091 0.88148 0.92876 0.71891 0.67358 iter=9 98.474 168.54 0.29663 0.28886 0.52137 0.72539 0.80959 0.76878 0.85816 0.9035 0.23899 0.53627 0.7908 0.28562 0.26749 0.51166 0.71373 0.80894 0.81023 0.78821 0.92422 0.38277 0.45402 0.82319 0.29534 0.25518 0.49482 0.71308 0.79404 0.82772 0.78303 0.90026 0.4294 0.40091 0.85233 0.29793 0.26295 0.47927 0.6943 0.79534 0.84521 0.80052 0.8601 0.43782 0.33679 0.81541 0.30181 0.26166 0.47021 0.67422 0.79663 0.83938 0.82578 0.81088 0.44106 0.47345 0.79793 iter=10 86.685 166.83 0.70984 0.74806 0.77137 0.76295 0.31865 0.30764 0.32189 0.093912 0.75842 0.75842 0.36334 0.69948 0.74288 0.78368 0.77461 0.3193 0.26554 0.30376 0.21244 0.60557 0.85233 0.43459 0.68394 0.72798 0.77591 0.79145 0.33744 0.24611 0.28562 0.31218 0.5706 0.90091 0.50453 0.67358 0.72668 0.76554 0.78692 0.3465 0.24417 0.26684 0.31995 0.6263 0.89961 0.5149 0.66321 0.71373 0.75518 0.78627 0.34845 0.24223 0.24288 0.29793 0.67293 0.71956 0.55505 iter=11 76.617 121.43 0.17034 0.15026 0.18264 0.21503 0.6522 0.70078 0.69106 0.55959 0.19236 0.1522 0.56606 0.17358 0.15997 0.16969 0.19883 0.66256 0.72085 0.71049 0.46826 0.34262 0.060881 0.49352 0.17098 0.16192 0.15738 0.17876 0.6522 0.73899 0.72474 0.40155 0.34132 0.049223 0.4715 0.17228 0.15155 0.15674 0.16839 0.63795 0.75972 0.73769 0.40479 0.32578 0.099093 0.44689 0.17098 0.16062 0.16386 0.14961 0.62306 0.74158 0.75453 0.42228 0.29339 0.33679 0.37824 iter=12 67.798 92.62 0.33225 0.26878 0.20855 0.18264 0.17034 0.20725 0.1956 0.39313 0.74158 0.39961 0.13342 0.33614 0.26619 0.22345 0.17811 0.17681 0.18977 0.22992 0.43912 0.61788 0.56412 0.11852 0.32772 0.2785 0.22345 0.18588 0.1807 0.1671 0.23446 0.47668 0.62565 0.59456 0.10298 0.30959 0.26295 0.2215 0.18718 0.17681 0.15479 0.21503 0.50389 0.66127 0.54663 0.19236 0.29793 0.26684 0.21114 0.18523 0.17293 0.1535 0.19754 0.52915 0.68718 0.32772 0.27396 iter=13 60.178 134.35 0.48381 0.58225 0.65803 0.68782 0.24611 0.15803 0.16321 0.25 0.062176 0.5013 0.43653 0.47345 0.56541 0.66451 0.69171 0.26166 0.17163 0.13342 0.26101 0.082254 0.36982 0.51231 0.46114 0.56606 0.64313 0.69624 0.2636 0.18459 0.14443 0.2215 0.14637 0.3478 0.57578 0.45337 0.54663 0.62694 0.70142 0.25324 0.19106 0.14637 0.18588 0.21503 0.36464 0.54793 0.45855 0.54922 0.62241 0.6943 0.26749 0.1943 0.15415 0.16062 0.26036 0.40544 0.46826 iter=14 53.548 101.26 0.099093 0.10427 0.13277 0.15285 0.61269 0.66904 0.36982 0.095855 0.24547 0.051166 0.37889 0.10751 0.11075 0.11723 0.13212 0.62111 0.69301 0.3763 0.11658 0.25972 0.049223 0.33938 0.09456 0.10104 0.11205 0.13342 0.60751 0.69754 0.38212 0.1101 0.24158 0.034974 0.28109 0.091969 0.086788 0.098446 0.11075 0.60816 0.70596 0.38472 0.13212 0.15933 0.13018 0.22474 0.085492 0.088083 0.093912 0.10751 0.60104 0.6956 0.40285 0.14896 0.125 0.27137 0.24158 iter=15 47.694 76.414 0.1114 0.11528 0.12824 0.11658 0.14378 0.15285 0.42552 0.46567 0.20142 0.045984 0.065415 0.11205 0.1114 0.1263 0.13731 0.13472 0.17163 0.43847 0.4851 0.21373 0.18782 0.068653 0.10622 0.10622 0.11658 0.11075 0.125 0.1658 0.45466 0.50324 0.2364 0.27655 0.033031 0.099741 0.10751 0.10363 0.10751 0.1237 0.14702 0.47215 0.51554 0.22021 0.22798 0.023964 0.10104 0.099741 0.10751 0.098446 0.11723 0.12306 0.48705 0.52332 0.22927 0.098446 0.062824 iter=16 42.516 64.915 0.13407 0.13083 0.12694 0.13536 0.12953 0.12889 0.13342 0.23899 0.3057 0.39508 0.053109 0.13472 0.11593 0.11982 0.13018 0.1237 0.11334 0.16451 0.27915 0.31865 0.28562 0.04728 0.12565 0.11917 0.11075 0.12565 0.11982 0.098446 0.15803 0.2921 0.33225 0.24028 0.11917 0.13083 0.12047 0.099741 0.1237 0.11917 0.10557 0.14054 0.31153 0.35298 0.24741 0.25259 0.11399 0.1114 0.095855 0.1114 0.10751 0.092617 0.11075 0.3193 0.36852 0.26425 0.28044 iter=17 37.942 61.427 0.20596 0.17228 0.15997 0.13472 0.11334 0.10687 0.13083 0.11528 0.22474 0.22927 0.23575 0.19106 0.1658 0.13601 0.12889 0.12047 0.10816 0.11075 0.14832 0.22863 0.23964 0.33225 0.16969 0.15609 0.14508 0.125 0.11723 0.089378 0.10751 0.15738 0.26813 0.24482 0.34521 0.17876 0.15803 0.13601 0.11788 0.10881 0.097798 0.097798 0.13601 0.28692 0.25777 0.23769 0.16451 0.1386 0.12435 0.12047 0.10687 0.095207 0.088083 0.12111 0.3044 0.26295 0.24741 iter=18 33.927 89.005 0.46762 0.54534 0.26813 0.14184 0.125 0.11205 0.084845 0.14702 0.029145 0.20531 0.26036 0.44819 0.53562 0.25648 0.1399 0.12565 0.092617 0.085492 0.11334 0.09456 0.24223 0.22604 0.43782 0.52461 0.26295 0.13083 0.11723 0.09456 0.093264 0.095855 0.14119 0.23769 0.16775 0.43523 0.51425 0.24741 0.12241 0.10751 0.098446 0.086788 0.095207 0.15544 0.25518 0.1956 0.4456 0.51813 0.23316 0.10881 0.098446 0.095207 0.074482 0.082254 0.1386 0.27267 0.18977 iter=19 30.405 87.771 0.052461 0.05829 0.44106 0.59197 0.19495 0.10492 0.071891 0.078368 0.090674 0.10816 0.15155 0.045984 0.060881 0.41839 0.59003 0.18523 0.11334 0.090674 0.079663 0.1522 0.040803 0.14313 0.042746 0.046632 0.41516 0.57513 0.19689 0.10039 0.088083 0.080959 0.1237 0.06671 0.15803 0.045337 0.045337 0.40026 0.57383 0.1794 0.10751 0.073187 0.071891 0.09456 0.099741 0.15479 0.040155 0.045337 0.40544 0.56865 0.17746 0.09715 0.082902 0.079016 0.074482 0.15803 0.1671 iter=20 27.279 70.362 0.054404 0.05829 0.071244 0.082902 0.54145 0.27202 0.080311 0.062824 0.11399 0.022668 0.13407 0.051813 0.051813 0.064767 0.073187 0.53756 0.2772 0.085492 0.058938 0.070596 0.032383 0.21049 0.042746 0.051166 0.055699 0.064767 0.52202 0.27332 0.064767 0.06671 0.06671 0.084197 0.18653 0.042746 0.044041 0.042746 0.046632 0.51684 0.25389 0.089378 0.04987 0.068005 0.15544 0.18459 0.046632 0.041451 0.051813 0.042746 0.51813 0.25324 0.075777 0.045984 0.05829 0.10687 0.19301 iter=21 24.491 61.913 0.050518 0.047927 0.050518 0.060881 0.084197 0.4307 0.24806 0.053109 0.047927 0.01943 0.13277 0.046632 0.044041 0.047927 0.060881 0.079016 0.42422 0.2228 0.065415 0.055052 0.080311 0.028497 0.040155 0.036269 0.047927 0.052461 0.073187 0.41062 0.23705 0.062824 0.058938 0.13666 0.023964 0.031088 0.040155 0.032383 0.053109 0.050518 0.41645 0.23122 0.065415 0.05829 0.078368 0.035622 0.049223 0.036269 0.034974 0.033679 0.042746 0.42228 0.23381 0.055052 0.048575 0.060233 0.055052 iter=22 22.009 54.913 0.049223 0.042746 0.04728 0.051813 0.069301 0.11723 0.21632 0.19883 0.049223 0.038212 0.012953 0.054404 0.047927 0.045337 0.040155 0.056347 0.096503 0.23769 0.18523 0.049223 0.088731 0.022668 0.040155 0.044041 0.037565 0.036917 0.035622 0.10492 0.24417 0.19689 0.054404 0.056995 0.025259 0.03886 0.037565 0.034974 0.036269 0.047927 0.083549 0.23057 0.18653 0.049223 0.046632 0.042746 0.050518 0.029793 0.023316 0.029793 0.035622 0.07772 0.22409 0.18653 0.055699 0.054404 0.13342 iter=23 19.802 55.224 0.033679 0.046632 0.042746 0.036917 0.051166 0.070596 0.28886 0.17098 0.1386 0.10168 0.014896 0.034974 0.038212 0.032383 0.033031 0.048575 0.07513 0.29728 0.17034 0.15609 0.049223 0.028497 0.034974 0.033679 0.032383 0.041451 0.03886 0.045337 0.30376 0.16839 0.14378 0.049223 0.022668 0.020725 0.033679 0.025907 0.028497 0.027202 0.053109 0.29469 0.16062 0.13342 0.056347 0.12565 0.031088 0.032383 0.031088 0.033679 0.031088 0.032383 0.30181 0.18523 0.14184 0.03044 0.068653 iter=24 17.843 36.639 0.042098 0.041451 0.040155 0.045337 0.045984 0.055699 0.073187 0.125 0.125 0.08614 0.021373 0.025907 0.037565 0.01943 0.037565 0.040155 0.040155 0.062824 0.13472 0.12824 0.091969 0.021373 0.032383 0.027202 0.025907 0.034974 0.023316 0.036917 0.047927 0.11464 0.11658 0.10751 0.091969 0.036269 0.029793 0.023316 0.037565 0.043394 0.038212 0.055699 0.14313 0.13666 0.099741 0.051813 0.033679 0.036269 0.025907 0.031088 0.034974 0.028497 0.036269 0.14508 0.12694 0.099093 0.044041 iter=25 16.101 50.031 0.028497 0.035622 0.037565 0.042746 0.042746 0.049223 0.052461 0.13536 0.090026 0.11658 0.022021 0.023964 0.033679 0.032383 0.02785 0.022668 0.025907 0.039508 0.10751 0.10881 0.10298 0.016839 0.024611 0.025907 0.029145 0.020725 0.032383 0.028497 0.055052 0.13277 0.10363 0.096503 0.059585 0.01943 0.023316 0.029793 0.022668 0.024611 0.022021 0.028497 0.12953 0.099093 0.11334 0.04728 0.018135 0.027202 0.024611 0.023316 0.016839 0.015544 0.029793 0.11982 0.093912 0.10298 0.047927 iter=26 14.547 46.991 0.023316 0.025907 0.023316 0.027202 0.021373 0.029145 0.055699 0.11852 0.090674 0.08614 0.076425 0.023316 0.033679 0.020725 0.021373 0.022021 0.01943 0.040803 0.1114 0.091321 0.082902 0.14961 0.01943 0.023316 0.020725 0.027202 0.024611 0.027202 0.027202 0.13925 0.090674 0.09715 0.096503 0.018135 0.025907 0.020725 0.014249 0.01943 0.018135 0.02785 0.12111 0.084845 0.085492 0.10363 0.016839 0.022021 0.020725 0.018135 0.01943 0.022021 0.022021 0.11788 0.080311 0.090674 0.10104 iter=27 13.154 39.594 0.023316 0.025907 0.016192 0.028497 0.035622 0.026554 0.033679 0.096503 0.076425 0.070596 0.087435 0.023316 0.01943 0.015544 0.020725 0.022021 0.032383 0.026554 0.11852 0.093264 0.091969 0.076425 0.018135 0.014249 0.014249 0.016839 0.012953 0.0090674 0.035622 0.1114 0.081606 0.070596 0.10427 0.027202 0.01943 0.014249 0.015544 0.028497 0.018135 0.01101 0.10946 0.079663 0.073834 0.080311 0.020725 0.011658 0.015544 0.016839 0.023316 0.013601 0.023316 0.098446 0.088731 0.070596 0.079016 iter=28 11.895 39.726 0.018135 0.024611 0.020725 0.014896 0.017487 0.027202 0.044689 0.018135 0.067358 0.049223 0.074482 0.015544 0.022021 0.024611 0.01943 0.024611 0.016839 0.023964 0.047927 0.062176 0.05829 0.079016 0.016839 0.021373 0.023316 0.016839 0.022668 0.01943 0.023316 0.021373 0.056995 0.07513 0.067358 0.015544 0.011658 0.020725 0.01943 0.01943 0.024611 0.018135 0.010363 0.062176 0.072539 0.081606 0.016839 0.012953 0.015544 0.012953 0.014249 0.016839 0.017487 0.020078 0.090026 0.071244 0.067358 iter=29 10.753 41.5 0.015544 0.020725 0.020725 0.018135 0.018782 0.011658 0.024611 0.052461 0.058938 0.058938 0.060233 0.016839 0.010363 0.010363 0.014249 0.007772 0.016839 0.018782 0.036917 0.055699 0.064119 0.058938 0.014249 0.016839 0.011658 0.011658 0.010363 0.015544 0.020725 0.025907 0.060881 0.065415 0.058938 0.023316 0.010363 0.0090674 0.010363 0.010363 0.011658 0.015544 0.021373 0.058938 0.054404 0.067358 0.01943 0.012953 0.015544 0.015544 0.012953 0.012953 0.01101 0.01101 0.062824 0.051813 0.062176 iter=30 9.7123 31.86 0.025907 0.016839 0.016192 0.014249 0.014249 0.020078 0.015544 0.035622 0.04987 0.04728 0.036917 0.023316 0.018135 0.012306 0.014249 0.007772 0.0090674 0.023316 0.01943 0.048575 0.056995 0.044689 0.015544 0.014249 0.015544 0.011658 0.012953 0.012953 0.012953 0.018135 0.042746 0.053109 0.047927 0.014249 0.014249 0.0090674 0.012953 0.0090674 0.005829 0.01101 0.017487 0.071244 0.04987 0.042098 0.015544 0.012953 0.0064767 0.0051813 0.007772 0.010363 0.015544 0.018135 0.058938 0.043394 0.05829 iter=31 8.7634 37.186 0.015544 0.0090674 0.0090674 0.011658 0.007772 0.014249 0.016839 0.03044 0.048575 0.032383 0.053109 0.014249 0.007772 0.0064767 0.012953 0.016839 0.007772 0.021373 0.016839 0.063472 0.035622 0.034326 0.015544 0.011658 0.0090674 0.011658 0.0090674 0.0090674 0.007772 0.013601 0.053109 0.031736 0.050518 0.012953 0.007772 0.010363 0.007772 0.010363 0.007772 0.012306 0.013601 0.061528 0.03044 0.039508 0.012953 0.010363 0.0090674 0.011658 0.0064767 0.007772 0.013601 0.018782 0.050518 0.042746 0.03886 iter=32 7.8977 22.935 0.018135 0.007772 0.014249 0.007772 0.0084197 0.014249 0.0084197 0.020725 0.059585 0.034326 0.038212 0.016839 0.0090674 0.011658 0.011658 0.010363 0.0090674 0.0064767 0.012306 0.06671 0.036269 0.036269 0.022021 0.0090674 0.010363 0.012953 0.011658 0.012306 0.013601 0.01101 0.075777 0.050518 0.032383 0.015544 0.0064767 0.0051813 0.012953 0.0084197 0.0090674 0.009715 0.010363 0.071891 0.064119 0.040155 0.016839 0.010363 0.003886 0.010363 0.0064767 0.0051813 0.0064767 0.0045337 0.064767 0.042098 0.035622 iter=33 7.1083 22.076 0.01943 0.018135 0.007772 0.011658 0.0012953 0.009715 0.007772 0.014249 0.062176 0.02785 0.036269 0.011658 0.011658 0.003886 0.0051813 0.0064767 0.0071244 0.0064767 0.013601 0.039508 0.034326 0.029145 0.010363 0.011658 0.003886 0.003886 0.011658 0.0084197 0.005829 0.014896 0.048575 0.037565 0.036269 0.011658 0.012953 0.0025907 0.0051813 0.0064767 0.009715 0.0084197 0.013601 0.031088 0.031736 0.031736 0.010363 0.010363 0.0025907 0.007772 0.003886 0.003886 0.0025907 0.005829 0.031088 0.033679 0.033031 iter=34 6.3891 13.135 0.0064767 0.003886 0.010363 0.0025907 0.007772 0.012953 0.003886 0.007772 0.016839 0.025907 0.031088 0.0064767 0.010363 0.003886 0.0051813 0.0025907 0.014896 0.003886 0.0051813 0.0032383 0.023964 0.027202 0.010363 0.007772 0.007772 0.0012953 0.0025907 0.005829 0.003886 0.0090674 0.018782 0.031088 0.033679 0.0090674 0.003886 0.0051813 0.007772 0.005829 0.0090674 0.0012953 0.0051813 0.014249 0.022021 0.026554 0.0090674 0.003886 0.003886 0.003886 0.0051813 0.0071244 0.0012953 0.007772 0.007772 0.026554 0.031088 iter=35 5.7344 40.213 0.007772 0.0051813 0.0064767 0.007772 0.0064767 0.007772 0.0064767 0.0071244 0.007772 0.02785 0.020078 0.0090674 0.003886 0.0064767 0.010363 0.0064767 0.0064767 0.007772 0.0045337 0.0084197 0.021373 0.026554 0.007772 0.003886 0.007772 0.0051813 0.0090674 0.003886 0.007772 0.0051813 0.013601 0.023964 0.017487 0.007772 0.0064767 0.0064767 0.0051813 0.0090674 0.0032383 0.0064767 0.001943 0.005829 0.040803 0.022668 0.0090674 0.003886 0.007772 0.0051813 0.0051813 0.001943 0.011658 0.009715 0.0051813 0.021373 0.022668 iter=36 5.1398 21.972 0.03886 0.0064767 0.0025907 0.007772 0.0012953 0.009715 0.0051813 0.007772 0.012306 0.027202 0.024611 0.03886 0.0064767 0.007772 0.0051813 0.0051813 0.001943 0.014896 0.014249 0.0032383 0.026554 0.031088 0.040155 0.007772 0.0064767 0.010363 0.0051813 0.0051813 0.0084197 0.005829 0.0084197 0.018135 0.02785 0.03886 0.0064767 0.0025907 0.0051813 0.0012953 0.0012953 0.007772 0.003886 0.0090674 0.021373 0.023964 0.03886 0.0064767 0.003886 0.0064767 0.0064767 0.0045337 0.010363 0.0045337 0.009715 0.020725 0.029793 iter=37 4.6012 34.764 0.054404 0.0064767 0.003886 0.011658 0.003886 0.005829 0.012306 0.01101 0.014249 0.024611 0.022668 0.055699 0.007772 0.0025907 0.0064767 0.003886 0.0071244 0.011658 0.005829 0.029145 0.022668 0.015544 0.054404 0.007772 0.0025907 0.003886 0.0051813 0.003886 0.0064767 0.005829 0.013601 0.025907 0.020078 0.053109 0.003886 0.003886 0.0051813 0.0064767 0.007772 0.0071244 0.003886 0.009715 0.026554 0.025259 0.053109 0.003886 0.0064767 0.0064767 0.0064767 0 0.011658 0.0084197 0.017487 0.024611 0.023316 iter=38 4.114 35.579 0.041451 0.041451 0.003886 0.0051813 0.0032383 0.0025907 0.001943 0.0064767 0.010363 0.01943 0.014896 0.041451 0.036269 0.0025907 0.0025907 0.003886 0.0025907 0.0051813 0.0045337 0.016192 0.018782 0.021373 0.041451 0.037565 0.0025907 0.0090674 0.0051813 0.0051813 0.003886 0.0084197 0.018782 0.025907 0.014896 0.042746 0.036269 0.0064767 0.0012953 0.0012953 0.0025907 0.0051813 0.0051813 0.015544 0.024611 0.016839 0.041451 0.036269 0.0025907 0.0012953 0.0051813 0.0025907 0 0.012306 0.009715 0.022668 0.015544 iter=39 3.6737 30.19 0.055699 0.03886 0.003886 0.003886 0.007772 0.0012953 0.0032383 0.0045337 0.007772 0.016192 0.014249 0.055699 0.041451 0.0025907 0.0025907 0.015544 0.0025907 0.0025907 0.005829 0.009715 0.028497 0.013601 0.05829 0.037565 0.0051813 0.0064767 0.003886 0.0071244 0.0025907 0.0032383 0.0045337 0.029793 0.017487 0.055699 0.03886 0.0012953 0.0064767 0.0025907 0.003886 0.012953 0.0012953 0.007772 0.031088 0.012953 0.056995 0.037565 0.0025907 0.0025907 0.0025907 0.0012953 0.0025907 0.001943 0.0051813 0.02785 0.01101 iter=40 3.277 32.935 0.064767 0.040155 0.027202 0.0064767 0.0025907 0.0012953 0.0012953 0.012306 0.0025907 0.015544 0.012953 0.067358 0.037565 0.023316 0.0051813 0.0064767 0.003886 0.010363 0.0045337 0.010363 0.016839 0.017487 0.064767 0.037565 0.025907 0.003886 0.0025907 0.001943 0.0064767 0.0090674 0.005829 0.034326 0.013601 0.064767 0.037565 0.023316 0.0012953 0.0025907 0.0090674 0.0064767 0.005829 0.0051813 0.035622 0.015544 0.064767 0.037565 0.023316 0.0025907 0.0064767 0.007772 0.003886 0.0051813 0.0090674 0.03044 0.013601 iter=41 2.9195 29.172 0.064767 0.034974 0.027202 0.0064767 0.0025907 0.0064767 0.0084197 0.01101 0.007772 0.012306 0.0084197 0.064767 0.036269 0.028497 0.003886 0.0025907 0.001943 0.0045337 0.0090674 0.007772 0.016192 0.0064767 0.064767 0.034974 0.027202 0 0.0025907 0.0012953 0.015544 0.0012953 0.014249 0.033031 0.0084197 0.063472 0.034974 0.027202 0.0025907 0.0025907 0.0012953 0.0012953 0.003886 0.0051813 0.016839 0.0084197 0.063472 0.034974 0.028497 0.003886 0.0025907 0 0.00064767 0.0045337 0.0045337 0.016839 0.012306 iter=42 2.5978 34.787 0.063472 0.033679 0.033679 0.007772 0.0064767 0.0025907 0 0.001943 0.00064767 0.014249 0.014249 0.062176 0.033679 0.028497 0.0012953 0 0 0.001943 0.0084197 0.007772 0.03886 0.0090674 0.062176 0.033679 0.029793 0.0012953 0 0.007772 0.0084197 0.005829 0.0071244 0.016839 0.014896 0.060881 0.033679 0.029793 0.0012953 0 0.0012953 0.0025907 0.0012953 0.0025907 0.018782 0.014896 0.060881 0.036269 0.032383 0.0012953 0 0.0064767 0.0012953 0.0064767 0.0025907 0.01943 0.016192 iter=43 2.3092 25.426 0.098446 0.032383 0.024611 0.003886 0.0090674 0.0025907 0.0071244 0.0012953 0.00064767 0.018135 0.012306 0.098446 0.032383 0.024611 0.0051813 0.0051813 0.0025907 0.0025907 0.0084197 0.0045337 0.023964 0.022668 0.098446 0.032383 0.024611 0.0051813 0.0064767 0.0012953 0.0025907 0.003886 0.001943 0.01101 0.018782 0.098446 0.032383 0.024611 0.0064767 0.0064767 0.0090674 0.007772 0.0045337 0.001943 0.020078 0.018135 0.098446 0.032383 0.027202 0.003886 0.0051813 0.003886 0.0025907 0.0051813 0.0012953 0.012306 0.018782 iter=44 2.0501 21.266 0.018135 0.024611 0.023316 0.022021 0.0025907 0.0012953 0.010363 0.0084197 0.003886 0.007772 0.0071244 0.018135 0.025907 0.024611 0.023316 0.007772 0.0025907 0.0025907 0.0051813 0.0032383 0.013601 0.009715 0.01943 0.024611 0.024611 0.027202 0.0025907 0.001943 0.001943 0.0032383 0.0071244 0.003886 0.0064767 0.01943 0.024611 0.023316 0.022021 0 0.0012953 0.0084197 0.003886 0.0032383 0.0045337 0.0084197 0.018135 0.024611 0.023316 0.022021 0 0.0012953 0.00064767 0.007772 0.003886 0.003886 0.01101 iter=45 1.8185 23.957 0 0.024611 0.015544 0.020725 0 0.0012953 0.0012953 0.0025907 0.005829 0.0084197 0.010363 0 0.024611 0.015544 0.018135 0.0012953 0 0.0025907 0.00064767 0.0025907 0.010363 0.005829 0 0.027202 0.015544 0.018135 0 0.0025907 0.0025907 0.0025907 0.0051813 0.0012953 0.005829 0 0.024611 0.015544 0.01943 0.0012953 0.0012953 0.0012953 0.0051813 0.0032383 0.0032383 0.018135 0.0012953 0.024611 0.015544 0.018135 0.0012953 0 0 0.003886 0.007772 0.017487 0.007772 iter=46 1.6118 20.869 0 0.016839 0.014249 0.020725 0.0064767 0.0071244 0.0012953 0.00064767 0.0032383 0.0064767 0.003886 0 0.016839 0.016839 0.020725 0.003886 0.003886 0.0025907 0.011658 0.003886 0.0084197 0.0064767 0 0.01943 0.012953 0.018135 0.0012953 0.0025907 0.00064767 0.003886 0.0045337 0 0.0090674 0 0.016839 0.012953 0.018135 0.0012953 0.003886 0.00064767 0.0012953 0.0045337 0.0045337 0.010363 0 0.018135 0.012953 0.018135 0.0012953 0.0025907 0.001943 0.0012953 0.007772 0.0064767 0.010363 iter=47 1.4285 27.504 0.0012953 0.01943 0.015544 0.014249 0.00064767 0.0051813 0.0012953 0.003886 0.00064767 0.001943 0.005829 0 0.018135 0.018135 0.014249 0.0012953 0.00064767 0 0.0045337 0.007772 0.0051813 0.014896 0 0.016839 0.014249 0.016839 0.0025907 0.0025907 0.0012953 0 0.0025907 0.0025907 0.016192 0.0012953 0.018135 0.014249 0.014249 0 0.0064767 0 0.0025907 0.00064767 0.0032383 0.0090674 0 0.016839 0.014249 0.014249 0 0.003886 0 0.0025907 0.001943 0.0051813 0.010363 iter=48 1.2656 11.125 0 0.014249 0.010363 0.012953 0 0 0.0012953 0.0025907 0.00064767 0.005829 0.0051813 0 0.011658 0.010363 0.012953 0.003886 0.00064767 0.0045337 0.0045337 0.0064767 0 0.0064767 0 0.011658 0.010363 0.012953 0 0 0.0045337 0.0025907 0.0051813 0.001943 0.0025907 0 0.011658 0.010363 0.012953 0.0012953 0.0064767 0 0.0012953 0.00064767 0.003886 0.0051813 0 0.011658 0.010363 0.012953 0.0012953 0.0025907 0.001943 0 0 0.0032383 0.0084197 iter=49 1.1218 9.7154 0.0012953 0.010363 0.011658 0.010363 0.010363 0.0032383 0 0 0.00064767 0.0064767 0.0051813 0 0.010363 0.014249 0.010363 0.0090674 0.001943 0 0 0.00064767 0 0.012953 0.0012953 0.010363 0.014249 0.011658 0.0090674 0.0012953 0.003886 0 0.00064767 0.0045337 0.001943 0 0.010363 0.011658 0.010363 0.011658 0.0025907 0.0012953 0.00064767 0.0012953 0.0025907 0.0012953 0 0.010363 0.011658 0.010363 0.0090674 0 0 0 0.0012953 0.009715 0.003886 iter=50 0.99522 10.759 0 0.0090674 0.0064767 0.007772 0.014249 0 0.0012953 0.0051813 0 0.0051813 0.005829 0 0.010363 0.0064767 0.007772 0.014249 0.0012953 0.0025907 0.0032383 0.003886 0.00064767 0.0032383 0.0012953 0.0090674 0.0064767 0.007772 0.014249 0.003886 0.0012953 0.0025907 0 0 0.0025907 0 0.0090674 0.0064767 0.007772 0.014249 0 0.0025907 0.0025907 0 0.0025907 0.0064767 0 0.0090674 0.0064767 0.007772 0.014249 0.003886 0.0012953 0.0025907 0.0012953 0.0025907 0.0090674 iter=102 0.01737 1.282 0 0 0 0 0.0012953 0 0 0 0 0 0 0 0 0 0 0.0012953 0 0 0 0 0 0 0 0 0 0 0.0012953 0 0 0 0 0 0 0 0 0 0 0.0012953 0 0 0 0 0 0 0 0 0 0 0.0012953 0 0 0 0 0 0 iter=103 0.016384 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=104 0.015452 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=105 0.014573 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=106 0.013743 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=107 0.012959 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=108 0.012218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=109 0.011519 0.83135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0012953 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=110 0.010859 0.14129 0 0 0 0 0 0 0.00064767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=111 0.010236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=112 0.0096474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=113 0.0090922 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=114 0.0085681 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=115 0.0080736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=116 0.007607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=117 0.0071668 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=118 0.0067515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=119 0.0063597 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=120 0.0059902 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=121 0.0056418 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=122 0.0053132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=123 0.0050035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=124 0.0047114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=125 0.0044361 0.43188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.003886 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=126 0.0041766 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=127 0.0039321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=128 0.0037016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=129 0.0034845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=130 0.0032799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=131 0.0030871 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=132 0.0029055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=133 0.0027345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=134 0.0025734 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=135 0.0024217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=136 0.0022788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=137 0.0021443 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=138 0.0020176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=139 0.0018983 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=140 0.001786 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=141 0.0016803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=142 0.0015808 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=143 0.0014871 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=144 0.001399 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=145 0.001316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=146 0.0012379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=147 0.0011644 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=148 0.0010952 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=149 0.0010301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=150 0.0009689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 iter=151 0.00091128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tb_val: V(a,z) value at each state space point zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613 _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________ coh1:k=-20,b=0 -9.6806 -9.3191 -8.8814 -8.3789 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh2:k=-19.8997,b=0 -9.6806 -9.3191 -8.8814 -8.3789 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh3:k=-19.7993,b=0 -9.6806 -9.3191 -8.8814 -8.3789 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh4:k=-19.699,b=0 -9.6806 -9.3191 -8.8814 -8.3789 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh5:k=-19.5987,b=0 -9.6806 -9.3191 -8.8814 -8.3789 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh6:k=-19.4983,b=0 -9.6087 -9.3191 -8.8814 -8.3789 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh7:k=-19.398,b=0 -9.3627 -9.0742 -8.7345 -8.3566 -7.8148 -7.193 -7.4002 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh8:k=-19.2977,b=0 -9.1715 -8.883 -8.5433 -8.1654 -7.7534 -7.193 -7.3095 -6.7641 -6.0855 -5.3745 -4.6481 -3.9553 coh9:k=-19.1973,b=0 -9.0174 -8.7289 -8.3892 -8.0113 -7.5993 -7.1553 -7.1553 -6.6821 -6.0855 -5.3745 -4.6481 -3.9553 coh10:k=-19.097,b=0 -8.8897 -8.6012 -8.2615 -7.8836 -7.4716 -7.0277 -7.0277 -6.5545 -6.0557 -5.3745 -4.6481 -3.9553 coh11:k=-18.9967,b=0 -8.7817 -8.4932 -8.1535 -7.7756 -7.3636 -6.9197 -6.9197 -6.4465 -5.9477 -5.3745 -4.6481 -3.9553 coh12:k=-18.8963,b=0 -8.6888 -8.4003 -8.0606 -7.6827 -7.2707 -6.8268 -6.8268 -6.3535 -5.8548 -5.3363 -4.6481 -3.9553 coh13:k=-18.796,b=0 -8.6077 -8.3193 -7.9721 -7.587 -7.1734 -6.7373 -6.7457 -6.2725 -5.7737 -5.2552 -4.6481 -3.9553 coh14:k=-18.6956,b=0 -8.4799 -8.1725 -7.8181 -7.4362 -7.0319 -6.6039 -6.6742 -6.201 -5.7022 -5.1837 -4.6481 -3.9553 coh15:k=-18.5953,b=0 -8.3302 -8.0305 -7.6853 -7.3074 -6.9042 -6.4802 -6.6105 -6.1373 -5.6385 -5.12 -4.5951 -3.9553 coh16:k=-18.495,b=0 -8.2019 -7.9033 -7.5606 -7.1883 -6.7917 -6.3704 -6.5533 -6.0801 -5.5813 -5.0628 -4.5379 -3.9553 coh17:k=-18.3946,b=0 -8.0809 -7.788 -7.4499 -7.08 -6.6861 -6.2697 -6.5015 -6.0283 -5.5295 -5.011 -4.4861 -3.9553 coh18:k=-18.2943,b=0 -7.9721 -7.6811 -7.3452 -6.9811 -6.5912 -6.1779 -6.4544 -5.9812 -5.4824 -4.9639 -4.439 -3.9453 coh19:k=-18.194,b=0 -7.8716 -7.5842 -7.2519 -6.8885 -6.5015 -6.0932 -6.4112 -5.938 -5.4393 -4.9207 -4.3958 -3.9022 coh20:k=-18.0936,b=0 -7.7779 -7.493 -7.164 -6.8053 -6.4207 -6.0128 -6.3715 -5.8983 -5.3996 -4.8811 -4.3561 -3.8625 coh21:k=-17.9933,b=0 -7.692 -7.4098 -7.0823 -6.726 -6.3448 -5.9409 -6.3349 -5.8616 -5.3629 -4.8444 -4.3195 -3.8258 coh22:k=-17.893,b=0 -7.6111 -7.3302 -7.0065 -6.6531 -6.2735 -5.8726 -6.3008 -5.8276 -5.3289 -4.8103 -4.2854 -3.7918 coh23:k=-17.7926,b=0 -7.5371 -7.2583 -6.9351 -6.5833 -6.2078 -5.8081 -6.2692 -5.7959 -5.2972 -4.7787 -4.2537 -3.7601 coh24:k=-17.6923,b=0 -7.4668 -7.1892 -6.8693 -6.5197 -6.1448 -5.7481 -6.2396 -5.7664 -5.2676 -4.7491 -4.2242 -3.7305 coh25:k=-17.592,b=0 -7.4009 -7.1252 -6.8069 -6.4588 -6.0868 -5.6918 -6.2119 -5.7386 -5.2399 -4.7214 -4.1964 -3.7028 coh26:k=-17.4916,b=0 -7.3386 -7.0645 -6.7478 -6.4016 -6.0316 -5.6382 -6.1858 -5.7126 -5.2138 -4.6953 -4.1704 -3.6768 coh27:k=-17.3913,b=0 -7.28 -7.0069 -6.6917 -6.3478 -5.9788 -5.5871 -6.1613 -5.6881 -5.1893 -4.6708 -4.1459 -3.6522 coh28:k=-17.291,b=0 -7.224 -6.9531 -6.6392 -6.296 -5.9291 -5.5395 -6.1381 -5.6649 -5.1662 -4.6477 -4.1227 -3.6291 coh29:k=-17.1906,b=0 -7.1717 -6.9009 -6.5884 -6.248 -5.8824 -5.4936 -6.1162 -5.643 -5.1443 -4.6258 -4.1008 -3.6072 coh30:k=-17.0903,b=0 -7.121 -6.8527 -6.5414 -6.2015 -5.8371 -5.4502 -6.0955 -5.6223 -5.1235 -4.605 -4.0801 -3.5864 coh31:k=-16.99,b=0 -7.0739 -6.8059 -6.4957 -6.1575 -5.7943 -5.4088 -6.0459 -5.5786 -5.095 -4.5853 -4.0604 -3.5667 coh32:k=-16.8896,b=0 -7.0281 -6.7616 -6.4525 -6.1154 -5.7533 -5.3687 -5.9757 -5.5139 -5.0352 -4.5433 -4.0416 -3.548 coh33:k=-16.7893,b=0 -6.985 -6.7193 -6.4111 -6.0749 -5.7137 -5.3303 -5.9091 -5.4528 -4.9774 -4.4912 -4.0033 -3.5301 coh34:k=-16.6889,b=0 -6.9433 -6.6785 -6.3713 -6.0361 -5.6763 -5.2934 -5.8463 -5.3943 -4.9245 -4.4414 -3.9571 -3.5047 coh35:k=-16.5886,b=0 -6.9036 -6.6395 -6.3335 -5.999 -5.64 -5.2576 -5.7875 -5.3395 -4.8731 -4.3943 -3.9135 -3.4629 coh36:k=-16.4883,b=0 -6.8655 -6.602 -6.2966 -5.9628 -5.6047 -5.2227 -5.7309 -5.2876 -4.8254 -4.349 -3.871 -3.4237 coh37:k=-16.3879,b=0 -6.8287 -6.5659 -6.2618 -5.9285 -5.5706 -5.1834 -5.6788 -5.238 -4.779 -4.306 -3.8299 -3.361 coh38:k=-16.2876,b=0 -6.7936 -6.5314 -6.2278 -5.8951 -5.5374 -5.1248 -5.6284 -5.1913 -4.7355 -4.2643 -3.7891 -3.2971 coh39:k=-16.1873,b=0 -6.7595 -6.4977 -6.1945 -5.8626 -5.4902 -5.0667 -5.5811 -5.1461 -4.6932 -4.2247 -3.7465 -3.229 coh40:k=-16.0869,b=0 -6.727 -6.4655 -6.1626 -5.8305 -5.4297 -5.01 -5.5358 -5.1038 -4.6526 -4.1861 -3.6999 -3.1586 coh41:k=-15.9866,b=0 -6.6951 -6.434 -6.1314 -5.7681 -5.3706 -4.9544 -5.4916 -5.0626 -4.6134 -4.1468 -3.6457 -3.0843 coh42:k=-15.8863,b=0 -6.6645 -6.4039 -6.0785 -5.7065 -5.3131 -4.9006 -5.4502 -5.0234 -4.5756 -4.1085 -3.5869 -3.011 coh43:k=-15.7859,b=0 -6.6344 -6.3518 -6.0143 -5.6468 -5.2577 -4.849 -5.41 -4.9855 -4.5393 -4.0671 -3.524 -2.9388 coh44:k=-15.6856,b=0 -6.5704 -6.2855 -5.9522 -5.5889 -5.2039 -4.7988 -5.3717 -4.9485 -4.5035 -4.0167 -3.4624 -2.8663 coh45:k=-15.5853,b=0 -6.5028 -6.2219 -5.8931 -5.5335 -5.1522 -4.75 -5.3346 -4.9124 -4.4662 -3.9635 -3.4022 -2.7948 coh46:k=-15.4849,b=0 -6.4375 -6.1603 -5.8357 -5.48 -5.1022 -4.7027 -5.2989 -4.8774 -4.4237 -3.9097 -3.3411 -2.7241 coh47:k=-15.3846,b=0 -6.3747 -6.101 -5.7801 -5.4281 -5.0536 -4.6563 -5.2644 -4.8433 -4.3737 -3.8547 -3.2809 -2.6504 coh48:k=-15.2843,b=0 -6.315 -6.0445 -5.727 -5.3783 -5.0067 -4.6115 -5.2306 -4.8048 -4.3216 -3.8011 -3.2191 -2.5774 coh49:k=-15.1839,b=0 -6.2572 -5.9897 -5.6754 -5.3299 -4.9611 -4.5677 -5.1969 -4.7561 -4.2697 -3.7468 -3.1559 -2.5052 coh50:k=-15.0836,b=0 -6.2011 -5.9366 -5.6253 -5.2829 -4.9166 -4.5247 -5.1622 -4.7022 -4.2166 -3.6914 -3.0932 -2.4337 coh723:k=52.3415,b=0 15.04 15.104 15.181 15.269 15.368 15.481 15.481 15.611 15.757 15.92 16.099 16.28 coh724:k=52.4418,b=0 15.049 15.114 15.191 15.278 15.377 15.489 15.489 15.619 15.765 15.928 16.106 16.288 coh725:k=52.5421,b=0 15.059 15.123 15.2 15.287 15.386 15.498 15.498 15.627 15.773 15.936 16.114 16.295 coh726:k=52.6425,b=0 15.068 15.132 15.209 15.296 15.394 15.506 15.506 15.636 15.781 15.943 16.121 16.302 coh727:k=52.7428,b=0 15.077 15.142 15.218 15.305 15.403 15.515 15.515 15.644 15.789 15.951 16.129 16.31 coh728:k=52.8431,b=0 15.087 15.151 15.227 15.314 15.412 15.523 15.523 15.652 15.797 15.959 16.137 16.317 coh729:k=52.9435,b=0 15.096 15.16 15.236 15.323 15.421 15.532 15.532 15.661 15.805 15.967 16.144 16.324 coh730:k=53.0438,b=0 15.105 15.169 15.245 15.332 15.429 15.54 15.54 15.669 15.813 15.975 16.152 16.331 coh731:k=53.1441,b=0 15.115 15.179 15.254 15.341 15.438 15.549 15.549 15.677 15.821 15.983 16.159 16.339 coh732:k=53.2445,b=0 15.124 15.188 15.264 15.35 15.447 15.557 15.557 15.685 15.829 15.99 16.167 16.346 coh733:k=53.3448,b=0 15.133 15.197 15.273 15.358 15.456 15.566 15.566 15.694 15.837 15.998 16.174 16.353 coh734:k=53.4451,b=0 15.143 15.206 15.282 15.367 15.464 15.574 15.574 15.702 15.845 16.006 16.182 16.36 coh735:k=53.5455,b=0 15.152 15.215 15.291 15.376 15.473 15.583 15.583 15.71 15.853 16.014 16.189 16.367 coh736:k=53.6458,b=0 15.161 15.224 15.3 15.385 15.482 15.591 15.591 15.718 15.861 16.021 16.197 16.375 coh737:k=53.7462,b=0 15.17 15.233 15.309 15.394 15.49 15.599 15.599 15.726 15.869 16.029 16.204 16.382 coh738:k=53.8465,b=0 15.18 15.243 15.318 15.403 15.499 15.608 15.608 15.735 15.877 16.037 16.211 16.389 coh739:k=53.9468,b=0 15.189 15.252 15.327 15.411 15.507 15.616 15.616 15.743 15.885 16.044 16.219 16.396 coh740:k=54.0472,b=0 15.198 15.261 15.335 15.42 15.516 15.625 15.625 15.751 15.893 16.052 16.226 16.403 coh741:k=54.1475,b=0 15.207 15.27 15.344 15.429 15.525 15.633 15.633 15.759 15.901 16.06 16.234 16.41 coh742:k=54.2478,b=0 15.216 15.279 15.353 15.438 15.533 15.641 15.641 15.767 15.909 16.067 16.241 16.417 coh743:k=54.3482,b=0 15.226 15.288 15.362 15.446 15.542 15.65 15.65 15.775 15.917 16.075 16.248 16.424 coh744:k=54.4485,b=0 15.235 15.297 15.371 15.455 15.55 15.658 15.658 15.783 15.924 16.083 16.256 16.431 coh745:k=54.5488,b=0 15.244 15.306 15.38 15.464 15.559 15.666 15.666 15.791 15.932 16.09 16.263 16.437 coh746:k=54.6492,b=0 15.246 15.308 15.382 15.466 15.564 15.674 15.674 15.799 15.94 16.098 16.27 16.444 coh747:k=54.7495,b=0 15.249 15.312 15.388 15.475 15.572 15.682 15.682 15.807 15.948 16.105 16.277 16.451 coh748:k=54.8498,b=0 15.258 15.321 15.397 15.483 15.58 15.691 15.691 15.815 15.956 16.113 16.285 16.458 coh749:k=54.9502,b=0 15.267 15.33 15.406 15.492 15.589 15.699 15.699 15.823 15.964 16.12 16.292 16.465 coh750:k=55.0505,b=0 15.276 15.339 15.415 15.5 15.597 15.707 15.707 15.831 15.971 16.128 16.299 16.472 coh751:k=55.1508,b=0 15.285 15.348 15.423 15.509 15.606 15.715 15.715 15.839 15.979 16.136 16.307 16.479 coh752:k=55.2512,b=0 15.294 15.357 15.432 15.517 15.614 15.723 15.723 15.847 15.987 16.143 16.314 16.486 coh753:k=55.3515,b=0 15.302 15.366 15.441 15.526 15.622 15.732 15.732 15.855 15.995 16.151 16.321 16.491 coh754:k=55.4518,b=0 15.311 15.374 15.449 15.535 15.631 15.74 15.74 15.863 16.002 16.158 16.328 16.497 coh755:k=55.5522,b=0 15.32 15.383 15.458 15.543 15.639 15.748 15.748 15.871 16.01 16.166 16.335 16.502 coh756:k=55.6525,b=0 15.329 15.392 15.467 15.552 15.647 15.756 15.756 15.879 16.018 16.173 16.341 16.509 coh757:k=55.7529,b=0 15.338 15.401 15.475 15.56 15.656 15.764 15.764 15.887 16.026 16.18 16.348 16.516 coh758:k=55.8532,b=0 15.347 15.409 15.484 15.569 15.664 15.772 15.772 15.895 16.033 16.188 16.356 16.523 coh759:k=55.9535,b=0 15.356 15.418 15.493 15.577 15.672 15.78 15.78 15.903 16.041 16.195 16.363 16.53 coh760:k=56.0539,b=0 15.365 15.427 15.501 15.585 15.681 15.788 15.788 15.911 16.049 16.203 16.37 16.536 coh761:k=56.1542,b=0 15.374 15.436 15.51 15.594 15.689 15.797 15.797 15.919 16.056 16.21 16.377 16.543 coh762:k=56.2545,b=0 15.38 15.442 15.516 15.6 15.695 15.802 15.802 15.924 16.062 16.215 16.382 16.547 coh763:k=56.3549,b=0 15.38 15.442 15.516 15.6 15.695 15.803 15.803 15.925 16.062 16.216 16.382 16.548 coh764:k=56.4552,b=0 15.381 15.443 15.517 15.601 15.696 15.803 15.803 15.925 16.063 16.216 16.383 16.548 coh765:k=56.5555,b=0 15.381 15.443 15.517 15.601 15.696 15.804 15.804 15.926 16.063 16.217 16.383 16.552 coh766:k=56.6559,b=0 15.382 15.444 15.518 15.602 15.697 15.804 15.804 15.926 16.064 16.217 16.386 16.559 coh767:k=56.7562,b=0 15.382 15.444 15.518 15.602 15.697 15.805 15.805 15.927 16.065 16.221 16.393 16.566 coh768:k=56.8565,b=0 15.383 15.445 15.519 15.603 15.699 15.808 15.808 15.933 16.072 16.229 16.4 16.572 coh769:k=56.9569,b=0 15.386 15.45 15.525 15.61 15.707 15.816 15.816 15.94 16.08 16.236 16.407 16.579 coh770:k=57.0572,b=0 15.395 15.458 15.533 15.619 15.715 15.824 15.824 15.948 16.087 16.243 16.414 16.584 coh771:k=57.1575,b=0 15.404 15.467 15.542 15.627 15.723 15.832 15.832 15.956 16.095 16.251 16.42 16.589 coh772:k=57.2579,b=0 15.412 15.475 15.55 15.635 15.731 15.84 15.84 15.963 16.102 16.258 16.427 16.595 tb_pol_a: optimal safe savings choice for each state space point zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613 _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________ coh1:k=-20,b=0 -2.0408 -2.449 -2.8571 -3.6735 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh2:k=-19.8997,b=0 -2.0408 -2.449 -2.8571 -3.6735 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh3:k=-19.7993,b=0 -2.0408 -2.449 -2.8571 -3.6735 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh4:k=-19.699,b=0 -2.0408 -2.449 -2.8571 -3.6735 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh5:k=-19.5987,b=0 -2.0408 -2.449 -2.8571 -3.6735 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh6:k=-19.4983,b=0 -20 -2.449 -2.8571 -3.6735 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh7:k=-19.398,b=0 -20 -20 -20 -20 -4.898 -6.1224 -2.8571 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh8:k=-19.2977,b=0 -20 -20 -20 -20 -20 -6.1224 -20 -3.6735 -4.4898 -5.7143 -7.3469 -9.3878 coh9:k=-19.1973,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -4.4898 -5.7143 -7.3469 -9.3878 coh10:k=-19.097,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -5.7143 -7.3469 -9.3878 coh11:k=-18.9967,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -5.7143 -7.3469 -9.3878 coh12:k=-18.8963,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -7.3469 -9.3878 coh13:k=-18.796,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -7.3469 -9.3878 coh14:k=-18.6956,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -7.3469 -9.3878 coh15:k=-18.5953,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -9.3878 coh16:k=-18.495,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -9.3878 coh17:k=-18.3946,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -9.3878 coh18:k=-18.2943,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh19:k=-18.194,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh20:k=-18.0936,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh21:k=-17.9933,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh22:k=-17.893,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh23:k=-17.7926,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh24:k=-17.6923,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh25:k=-17.592,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh26:k=-17.4916,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh27:k=-17.3913,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh28:k=-17.291,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh29:k=-17.1906,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh30:k=-17.0903,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh31:k=-16.99,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh32:k=-16.8896,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh33:k=-16.7893,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh34:k=-16.6889,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh35:k=-16.5886,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh36:k=-16.4883,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh37:k=-16.3879,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh38:k=-16.2876,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh39:k=-16.1873,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh40:k=-16.0869,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh41:k=-15.9866,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh42:k=-15.8863,b=0 -19.94 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh43:k=-15.7859,b=0 -19.9 -19.334 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh44:k=-15.6856,b=0 -18.848 -19.276 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh45:k=-15.5853,b=0 -18.778 -19.215 -19.921 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh46:k=-15.4849,b=0 -18.706 -19.153 -19.856 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh47:k=-15.3846,b=0 -18.632 -19.089 -19.81 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh48:k=-15.2843,b=0 -18.555 -19.023 -19.762 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh49:k=-15.1839,b=0 -18.477 -18.955 -19.689 -20 -20 -20 -20 -20 -20 -20 -20 -20 coh50:k=-15.0836,b=0 -18.399 -18.885 -19.593 -20 -20 -20 -19.578 -20 -20 -20 -20 -20 coh723:k=52.3415,b=0 46.526 45.14 45.14 43.754 42.369 39.657 39.657 38.301 35.589 32.878 28.81 24.743 coh724:k=52.4418,b=0 46.619 45.231 45.231 43.843 42.455 39.74 39.74 38.382 35.666 32.951 28.878 24.805 coh725:k=52.5421,b=0 46.711 45.321 45.321 43.931 42.542 39.822 39.822 38.463 35.744 33.024 28.946 24.867 coh726:k=52.6425,b=0 46.803 45.412 45.412 44.02 42.628 39.905 39.905 38.544 35.821 33.098 29.013 24.929 coh727:k=52.7428,b=0 46.896 45.502 45.502 44.108 42.715 39.988 39.988 38.624 35.898 33.171 29.081 24.991 coh728:k=52.8431,b=0 46.988 45.592 45.592 44.197 42.801 40.071 40.071 38.705 35.975 33.244 29.149 25.053 coh729:k=52.9435,b=0 47.08 45.683 45.683 44.285 42.888 40.153 40.153 38.786 36.052 33.318 29.216 25.115 coh730:k=53.0438,b=0 47.172 45.773 45.773 44.373 42.974 40.236 40.236 38.867 36.129 33.391 29.284 25.177 coh731:k=53.1441,b=0 47.265 45.863 45.863 44.462 43.061 40.319 40.319 38.948 36.206 33.464 29.352 25.239 coh732:k=53.2445,b=0 47.357 45.954 45.954 44.55 43.147 40.402 40.402 39.029 36.283 33.538 29.419 25.301 coh733:k=53.3448,b=0 47.449 46.044 46.044 44.639 43.234 40.484 40.484 39.11 36.36 33.611 30.382 25.363 coh734:k=53.4451,b=0 47.541 46.134 46.134 44.727 43.32 40.567 40.567 39.19 36.437 33.684 30.931 25.425 coh735:k=53.5455,b=0 47.634 46.225 46.225 44.816 43.407 40.65 40.65 39.271 36.515 33.758 31.001 25.487 coh736:k=53.6458,b=0 47.726 46.315 46.315 44.904 43.493 40.732 40.732 39.352 36.592 33.831 31.071 25.549 coh737:k=53.7462,b=0 47.818 46.405 46.405 44.992 43.58 42.167 42.167 39.433 36.669 33.904 31.14 25.611 coh738:k=53.8465,b=0 47.91 46.496 46.496 45.081 43.666 42.251 42.251 39.514 36.746 33.978 31.21 25.673 coh739:k=53.9468,b=0 48.003 46.586 46.586 45.169 43.753 42.336 42.336 39.595 36.823 34.051 31.279 25.736 coh740:k=54.0472,b=0 48.095 46.676 46.676 45.258 43.839 42.42 42.42 39.676 36.9 34.124 31.349 25.912 coh741:k=54.1475,b=0 48.187 46.767 46.767 45.346 43.926 42.505 42.505 39.757 36.977 34.198 31.418 27.249 coh742:k=54.2478,b=0 48.28 46.857 46.857 45.435 44.012 42.59 42.59 39.837 37.054 34.271 31.488 27.313 coh743:k=54.3482,b=0 48.372 46.947 46.947 45.523 44.099 42.674 42.674 39.918 37.131 34.344 31.558 27.377 coh744:k=54.4485,b=0 48.464 47.038 47.038 45.611 44.185 44.053 44.053 39.999 37.208 34.418 31.627 27.441 coh745:k=54.5488,b=0 48.556 47.128 47.128 45.7 44.272 44.272 44.272 40.08 37.286 34.491 31.697 27.505 coh746:k=54.6492,b=0 48.65 47.222 47.222 44.358 42.959 41.56 41.56 40.161 37.363 34.564 31.766 27.569 coh747:k=54.7495,b=0 47.247 45.846 45.846 44.445 43.044 41.643 41.643 40.242 37.44 34.638 31.836 27.633 coh748:k=54.8498,b=0 47.337 45.934 45.934 44.531 43.128 41.725 41.725 40.323 38.124 34.711 31.905 27.697 coh749:k=54.9502,b=0 47.427 46.022 46.022 44.618 43.213 41.808 41.808 40.403 38.999 34.784 31.975 27.761 coh750:k=55.0505,b=0 47.517 46.111 46.111 44.704 43.297 41.891 41.891 40.484 39.078 34.858 32.045 27.825 coh751:k=55.1508,b=0 47.608 46.199 46.199 44.791 43.382 41.974 41.974 40.565 39.157 34.931 32.114 27.889 coh752:k=55.2512,b=0 47.698 46.287 46.287 44.877 43.467 42.056 42.056 40.646 39.236 35.005 32.184 28.105 coh753:k=55.3515,b=0 47.788 46.376 46.376 44.964 43.551 42.139 42.139 40.727 39.315 35.078 32.253 29.466 coh754:k=55.4518,b=0 47.878 46.464 46.464 45.05 43.636 42.222 42.222 40.808 39.394 35.151 32.323 30.832 coh755:k=55.5522,b=0 47.969 46.553 46.553 45.137 43.721 42.305 42.305 40.889 39.473 36.448 33.616 28.529 coh756:k=55.6525,b=0 48.059 46.641 46.641 45.223 43.805 42.387 42.387 40.969 39.552 36.716 32.769 28.208 coh757:k=55.7529,b=0 48.149 46.729 46.729 45.31 43.89 42.47 42.47 41.05 39.631 36.791 32.532 28.272 coh758:k=55.8532,b=0 48.239 46.818 46.818 45.396 43.974 42.553 42.553 41.131 39.71 36.866 32.601 28.336 coh759:k=55.9535,b=0 48.33 46.906 46.906 45.483 44.059 42.636 42.636 41.212 39.788 36.941 32.671 28.4 coh760:k=56.0539,b=0 48.42 46.995 46.995 45.569 44.144 43.372 43.372 41.293 39.867 37.017 32.74 28.464 coh761:k=56.1542,b=0 48.51 47.083 47.083 45.656 44.228 44.228 44.228 41.374 39.946 37.092 32.81 28.528 coh762:k=56.2545,b=0 48.601 47.173 47.173 45.744 44.315 44.315 44.315 41.458 40.03 37.173 32.887 28.601 coh763:k=56.3549,b=0 48.693 47.265 47.265 45.836 44.408 44.408 44.408 41.55 40.122 37.265 32.979 28.693 coh764:k=56.4552,b=0 48.785 47.357 47.357 45.928 44.5 44.5 44.5 41.643 40.214 37.357 33.071 28.785 coh765:k=56.5555,b=0 48.878 47.449 47.449 46.02 44.592 44.592 44.592 41.735 40.306 37.449 33.163 27.7 coh766:k=56.6559,b=0 48.97 47.541 47.541 46.113 44.684 44.684 44.684 41.827 40.398 37.541 31.977 27.762 coh767:k=56.7562,b=0 49.062 47.633 47.633 46.205 44.776 44.776 44.776 41.919 39.078 34.858 32.045 27.825 coh768:k=56.8565,b=0 49.154 47.725 47.725 46.297 43.38 41.972 41.972 40.563 39.155 34.93 32.113 27.887 coh769:k=56.9569,b=0 47.694 46.284 46.284 44.873 43.463 42.053 42.053 40.642 39.232 35.001 32.181 28.044 coh770:k=57.0572,b=0 47.782 46.37 46.37 44.958 43.546 42.134 42.134 40.721 39.309 35.073 32.249 29.375 coh771:k=57.1575,b=0 47.87 46.456 46.456 45.042 43.628 42.214 42.214 40.801 39.387 35.145 32.317 30.71 coh772:k=57.2579,b=0 47.959 46.543 46.543 45.127 43.711 42.295 42.295 40.88 39.464 36.296 33.464 28.81 tb_pol_k: optimal risky investment choice for each state space point zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613 _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________ coh1:k=-20,b=0 2.0408 2.449 2.8571 3.6735 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh2:k=-19.8997,b=0 2.0408 2.449 2.8571 3.6735 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh3:k=-19.7993,b=0 2.0408 2.449 2.8571 3.6735 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh4:k=-19.699,b=0 2.0408 2.449 2.8571 3.6735 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh5:k=-19.5987,b=0 2.0408 2.449 2.8571 3.6735 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh6:k=-19.4983,b=0 0 2.449 2.8571 3.6735 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh7:k=-19.398,b=0 0 0 0 0 4.898 6.1224 2.8571 3.6735 4.4898 5.7143 7.3469 9.3878 coh8:k=-19.2977,b=0 0 0 0 0 0 6.1224 0 3.6735 4.4898 5.7143 7.3469 9.3878 coh9:k=-19.1973,b=0 0 0 0 0 0 0 0 0 4.4898 5.7143 7.3469 9.3878 coh10:k=-19.097,b=0 0 0 0 0 0 0 0 0 0 5.7143 7.3469 9.3878 coh11:k=-18.9967,b=0 0 0 0 0 0 0 0 0 0 5.7143 7.3469 9.3878 coh12:k=-18.8963,b=0 0 0 0 0 0 0 0 0 0 0 7.3469 9.3878 coh13:k=-18.796,b=0 0 0 0.49144 0.46686 0.41772 0.41772 0 0 0 0 7.3469 9.3878 coh14:k=-18.6956,b=0 0.55901 0.50577 0.50577 0.50577 0.50577 0.45253 0 0 0 0 7.3469 9.3878 coh15:k=-18.5953,b=0 0.60201 0.60201 0.57334 0.51601 0.51601 0.48734 0 0 0 0 0 9.3878 coh16:k=-18.495,b=0 0.64501 0.6143 0.6143 0.58358 0.55287 0.52215 0 0 0 0 0 9.3878 coh17:k=-18.3946,b=0 0.68801 0.68801 0.65525 0.62249 0.58972 0.58972 0 0 0 0 0 9.3878 coh18:k=-18.2943,b=0 0.73101 0.6962 0.6962 0.6962 0.62658 0.62658 0 0 0 0 0 0 coh19:k=-18.194,b=0 0.77401 0.77401 0.73715 0.7003 0.7003 0.66344 0 0 0 0 0 0 coh20:k=-18.0936,b=0 0.81701 0.81701 0.77811 0.77811 0.7003 0.7003 0 0 0 0 0 0 coh21:k=-17.9933,b=0 0.90097 0.86001 0.81906 0.81906 0.77811 0.73715 0 0 0 0 0 0 coh22:k=-17.893,b=0 0.90301 0.90301 0.90301 0.86001 0.81701 0.77401 0 0 0 0 0 0 coh23:k=-17.7926,b=0 0.99106 0.94601 0.90097 0.90097 0.85592 0.81087 0 0 0 0 0 0 coh24:k=-17.6923,b=0 0.98902 0.98902 0.98902 0.94192 0.89482 0.89482 0 0 0 0 0 0 coh25:k=-17.592,b=0 1.0812 1.032 1.032 0.98287 0.93373 0.93373 0 0 0 0 0 0 coh26:k=-17.4916,b=0 1.1262 1.075 1.075 1.0238 0.97263 0.97263 0 0 0 0 0 0 coh27:k=-17.3913,b=0 1.1713 1.118 1.118 1.0648 1.0115 1.0115 0 0 0 0 0 0 coh28:k=-17.291,b=0 1.2163 1.161 1.161 1.1057 1.1057 1.0504 0 0 0 0 0 0 coh29:k=-17.1906,b=0 1.2614 1.204 1.204 1.1467 1.1467 1.0894 0 0 0 0 0 0 coh30:k=-17.0903,b=0 1.3064 1.3064 1.247 1.1876 1.1876 1.1283 0 0 0 0 0 0 coh31:k=-16.99,b=0 1.3514 1.29 1.29 1.2286 1.2286 1.1672 1.7815 1.72 1.5972 0 0 0 coh32:k=-16.8896,b=0 1.3965 1.3965 1.333 1.333 1.2695 1.2061 1.8408 1.7139 1.6504 1.5869 0 0 coh33:k=-16.7893,b=0 1.4415 1.4415 1.376 1.3105 1.3105 1.3105 1.9002 1.7692 1.7036 1.6381 1.5726 0 coh34:k=-16.6889,b=0 1.4866 1.4866 1.419 1.419 1.3514 1.3514 1.892 1.8245 1.7569 1.6893 1.6217 1.5542 coh35:k=-16.5886,b=0 1.5316 1.5316 1.462 1.462 1.3924 1.3924 1.9494 1.8797 1.8101 1.7405 1.6709 1.6013 coh36:k=-16.4883,b=0 1.5767 1.5767 1.505 1.505 1.505 1.505 2.0067 1.935 1.8634 1.7917 1.72 1.6484 coh37:k=-16.3879,b=0 1.6217 1.6217 1.548 1.548 1.548 2.1377 2.064 1.9903 1.9166 1.8429 1.7692 2.2115 coh38:k=-16.2876,b=0 1.6668 1.6668 1.591 1.591 1.591 2.2729 2.1214 2.0456 1.9698 1.8941 1.8941 2.4244 coh39:k=-16.1873,b=0 1.7118 1.7118 1.7118 1.7118 2.4121 2.3343 2.1009 2.1009 2.0231 1.9453 2.1787 2.4899 coh40:k=-16.0869,b=0 1.7569 1.7569 1.7569 1.7569 2.4756 2.4756 2.1562 2.1562 2.0763 2.0763 2.236 2.6353 coh41:k=-15.9866,b=0 1.8019 1.8019 1.8019 2.621 2.621 2.5391 2.2115 2.2115 2.1296 2.1296 2.5391 2.7848 coh42:k=-15.8863,b=0 1.8707 1.847 2.7705 2.6865 2.6865 2.6026 2.2667 2.1828 2.1828 2.1828 2.7705 2.8544 coh43:k=-15.7859,b=0 1.8784 2.258 2.838 2.752 2.752 2.666 2.322 2.322 2.236 2.494 2.838 3.01 coh44:k=-15.6856,b=0 1.8417 2.2694 2.9056 2.8176 2.8176 2.7295 2.3773 2.3773 2.3773 2.8176 2.9056 3.0817 coh45:k=-15.5853,b=0 1.8409 2.2785 2.8937 2.8831 2.8831 2.793 2.4326 2.4326 2.5227 2.8831 2.9732 3.1534 coh46:k=-15.4849,b=0 1.8385 2.286 2.8963 2.9486 2.9486 2.8565 2.4879 2.4879 2.8565 3.0408 3.1329 3.2251 coh47:k=-15.3846,b=0 1.8342 2.2917 2.9184 3.0141 3.0141 2.92 2.5432 2.5432 3.1083 3.1083 3.2025 3.3909 coh48:k=-15.2843,b=0 1.8274 2.2948 2.9377 3.0797 3.0797 2.9834 2.6947 3.0797 3.1759 3.1759 3.3684 3.4646 coh49:k=-15.1839,b=0 1.819 2.2964 2.9325 3.1452 3.1452 3.0469 2.752 3.2435 3.2435 3.3418 3.4401 3.5383 coh50:k=-15.0836,b=0 1.8101 2.2963 2.9045 3.2107 3.2107 3.1104 2.989 3.4114 3.4114 3.4114 3.5117 3.7124 coh723:k=52.3415,b=0 1.386 2.7719 2.7719 4.1579 5.5439 6.7792 6.7792 8.135 10.847 13.558 17.626 21.693 coh724:k=52.4418,b=0 1.3879 2.7758 2.7758 4.1637 5.5516 6.7886 6.7886 8.1463 10.862 13.577 17.65 21.723 coh725:k=52.5421,b=0 1.3898 2.7796 2.7796 4.1694 5.5592 6.798 6.798 8.1576 10.877 13.596 17.675 21.754 coh726:k=52.6425,b=0 1.3917 2.7835 2.7835 4.1752 5.5669 6.8074 6.8074 8.1689 10.892 13.615 17.699 21.784 coh727:k=52.7428,b=0 1.3937 2.7873 2.7873 4.181 5.5746 6.8168 6.8168 8.1802 10.907 13.634 17.724 21.814 coh728:k=52.8431,b=0 1.3956 2.7912 2.7912 4.1867 5.5823 6.8262 6.8262 8.1914 10.922 13.652 17.748 21.844 coh729:k=52.9435,b=0 1.3975 2.795 2.795 4.1925 5.59 6.8356 6.8356 8.2027 10.937 13.671 17.773 21.874 coh730:k=53.0438,b=0 1.3994 2.7988 2.7988 4.1983 5.5977 6.845 6.845 8.214 10.952 13.69 17.797 21.904 coh731:k=53.1441,b=0 1.4013 2.8027 2.8027 4.204 5.6054 6.8544 6.8544 8.2253 10.967 13.709 17.821 21.934 coh732:k=53.2445,b=0 1.4033 2.8065 2.8065 4.2098 5.6131 6.8638 6.8638 8.2366 10.982 13.728 17.846 21.964 coh733:k=53.3448,b=0 1.4052 2.8104 2.8104 4.2156 5.6208 6.8732 6.8732 8.2479 10.997 13.746 16.976 21.994 coh734:k=53.4451,b=0 1.4071 2.8142 2.8142 4.2213 5.6284 6.8826 6.8826 8.2591 11.012 13.765 16.518 22.024 coh735:k=53.5455,b=0 1.409 2.8181 2.8181 4.2271 5.6361 6.892 6.892 8.2704 11.027 13.784 16.541 22.054 coh736:k=53.6458,b=0 1.411 2.8219 2.8219 4.2329 5.6438 6.9014 6.9014 8.2817 11.042 13.803 16.563 22.085 coh737:k=53.7462,b=0 1.4129 2.8258 2.8258 4.2386 5.6515 7.0644 7.0644 8.293 11.057 13.822 16.586 22.115 coh738:k=53.8465,b=0 1.4148 2.8296 2.8296 4.2444 5.6592 7.074 7.074 8.3043 11.072 13.84 16.609 22.145 coh739:k=53.9468,b=0 1.4167 2.8334 2.8334 4.2502 5.6669 7.0836 7.0836 8.3156 11.087 13.859 16.631 22.175 coh740:k=54.0472,b=0 1.4186 2.8373 2.8373 4.2559 5.6746 7.0932 7.0932 8.3268 11.102 13.878 16.654 22.091 coh741:k=54.1475,b=0 1.4206 2.8411 2.8411 4.2617 5.6823 7.1028 7.1028 8.3381 11.117 13.897 16.676 20.845 coh742:k=54.2478,b=0 1.4225 2.845 2.845 4.2675 5.69 7.1125 7.1125 8.3494 11.133 13.916 16.699 20.874 coh743:k=54.3482,b=0 1.4244 2.8488 2.8488 4.2732 5.6977 7.1221 7.1221 8.3607 11.148 13.934 16.721 20.902 coh744:k=54.4485,b=0 1.4263 2.8527 2.8527 4.279 5.7053 5.8373 5.8373 8.372 11.163 13.953 16.744 20.93 coh745:k=54.5488,b=0 1.4283 2.8565 2.8565 4.2848 5.713 5.713 5.713 8.3833 11.178 13.972 16.767 20.958 coh746:k=54.6492,b=0 1.4286 2.8571 2.8571 4.1973 5.5964 6.9954 6.9954 8.3945 11.193 13.991 16.789 20.986 coh747:k=54.7495,b=0 1.401 2.8019 2.8019 4.2029 5.6039 7.0048 7.0048 8.4058 11.208 14.01 16.812 21.015 coh748:k=54.8498,b=0 1.4028 2.8057 2.8057 4.2085 5.6114 7.0142 7.0142 8.4171 10.616 14.028 16.834 21.043 coh749:k=54.9502,b=0 1.4047 2.8095 2.8095 4.2142 5.6189 7.0237 7.0237 8.4284 9.8331 14.047 16.857 21.071 coh750:k=55.0505,b=0 1.4066 2.8132 2.8132 4.2198 5.6264 7.0331 7.0331 8.4397 9.8463 14.066 16.879 21.099 coh751:k=55.1508,b=0 1.4085 2.817 2.817 4.2255 5.634 7.0425 7.0425 8.4509 9.8594 14.085 16.902 21.127 coh752:k=55.2512,b=0 1.4104 2.8207 2.8207 4.2311 5.6415 7.0519 7.0519 8.4622 9.8726 14.104 16.924 21.003 coh753:k=55.3515,b=0 1.4123 2.8245 2.8245 4.2368 5.649 7.0613 7.0613 8.4735 9.8858 14.123 16.947 19.734 coh754:k=55.4518,b=0 1.4141 2.8283 2.8283 4.2424 5.6565 7.0707 7.0707 8.4848 9.8989 14.141 16.97 18.461 coh755:k=55.5522,b=0 1.416 2.832 2.832 4.248 5.6641 7.0801 7.0801 8.4961 9.9121 12.936 15.768 20.856 coh756:k=55.6525,b=0 1.4179 2.8358 2.8358 4.2537 5.6716 7.0895 7.0895 8.5074 9.9253 12.761 16.707 21.268 coh757:k=55.7529,b=0 1.4198 2.8395 2.8395 4.2593 5.6791 7.0989 7.0989 8.5186 9.9384 12.778 17.037 21.297 coh758:k=55.8532,b=0 1.4217 2.8433 2.8433 4.265 5.6866 7.1083 7.1083 8.5299 9.9516 12.795 17.06 21.325 coh759:k=55.9535,b=0 1.4235 2.8471 2.8471 4.2706 5.6941 7.1177 7.1177 8.5412 9.9647 12.812 17.082 21.353 coh760:k=56.0539,b=0 1.4254 2.8508 2.8508 4.2762 5.7017 6.4735 6.4735 8.5525 9.9779 12.829 17.105 21.381 coh761:k=56.1542,b=0 1.4273 2.8546 2.8546 4.2819 5.7092 5.7092 5.7092 8.5638 9.9911 12.846 17.128 21.409 coh762:k=56.2545,b=0 1.4286 2.8571 2.8571 4.2857 5.7143 5.7143 5.7143 8.5714 10 12.857 17.143 21.429 coh763:k=56.3549,b=0 1.4286 2.8571 2.8571 4.2857 5.7143 5.7143 5.7143 8.5714 10 12.857 17.143 21.429 coh764:k=56.4552,b=0 1.4286 2.8571 2.8571 4.2857 5.7143 5.7143 5.7143 8.5714 10 12.857 17.143 21.429 coh765:k=56.5555,b=0 1.4286 2.8571 2.8571 4.2857 5.7143 5.7143 5.7143 8.5714 10 12.857 17.143 21.044 coh766:k=56.6559,b=0 1.4286 2.8571 2.8571 4.2857 5.7143 5.7143 5.7143 8.5714 10 12.857 16.857 21.072 coh767:k=56.7562,b=0 1.4286 2.8571 2.8571 4.2857 5.7143 5.7143 5.7143 8.5714 9.8463 14.066 16.879 21.099 coh768:k=56.8565,b=0 1.4286 2.8571 2.8571 4.2857 5.6338 7.0422 7.0422 8.4507 9.8591 14.084 16.901 21.127 coh769:k=56.9569,b=0 1.4103 2.8206 2.8206 4.2309 5.6412 7.0514 7.0514 8.4617 9.872 14.103 16.923 21.06 coh770:k=57.0572,b=0 1.4121 2.8243 2.8243 4.2364 5.6485 7.0606 7.0606 8.4728 9.8849 14.121 16.946 19.819 coh771:k=57.1575,b=0 1.414 2.8279 2.8279 4.2419 5.6559 7.0698 7.0698 8.4838 9.8978 14.14 16.968 18.574 coh772:k=57.2579,b=0 1.4158 2.8316 2.8316 4.2474 5.6632 7.079 7.079 8.4948 9.9106 13.079 15.91 20.564 tb_pol_w: risky + safe investment choices (first stage choice, choose within risky vs safe) zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613 _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________ coh1:k=-20,b=0 0 0 0 0 0 0 0 0 0 0 0 0 coh2:k=-19.8997,b=0 0 0 0 0 0 0 0 0 0 0 0 0 coh3:k=-19.7993,b=0 0 0 0 0 0 0 0 0 0 0 0 0 coh4:k=-19.699,b=0 0 0 0 0 0 0 0 0 0 0 0 0 coh5:k=-19.5987,b=0 0 0 0 0 0 0 0 0 0 0 0 0 coh6:k=-19.4983,b=0 -20 0 0 0 0 0 0 0 0 0 0 0 coh7:k=-19.398,b=0 -20 -20 -20 -20 0 0 0 0 0 0 0 0 coh8:k=-19.2977,b=0 -20 -20 -20 -20 -20 0 -20 0 0 0 0 0 coh9:k=-19.1973,b=0 -20 -20 -20 -20 -20 -20 -20 -20 0 0 0 0 coh10:k=-19.097,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 0 0 0 coh11:k=-18.9967,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 0 0 0 coh12:k=-18.8963,b=0 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 0 0 coh13:k=-18.796,b=0 -20 -20 -19.509 -19.533 -19.582 -19.582 -20 -20 -20 -20 0 0 coh14:k=-18.6956,b=0 -19.441 -19.494 -19.494 -19.494 -19.494 -19.547 -20 -20 -20 -20 0 0 coh15:k=-18.5953,b=0 -19.398 -19.398 -19.427 -19.484 -19.484 -19.513 -20 -20 -20 -20 -20 0 coh16:k=-18.495,b=0 -19.355 -19.386 -19.386 -19.416 -19.447 -19.478 -20 -20 -20 -20 -20 0 coh17:k=-18.3946,b=0 -19.312 -19.312 -19.345 -19.378 -19.41 -19.41 -20 -20 -20 -20 -20 0 coh18:k=-18.2943,b=0 -19.269 -19.304 -19.304 -19.304 -19.373 -19.373 -20 -20 -20 -20 -20 -20 coh19:k=-18.194,b=0 -19.226 -19.226 -19.263 -19.3 -19.3 -19.337 -20 -20 -20 -20 -20 -20 coh20:k=-18.0936,b=0 -19.183 -19.183 -19.222 -19.222 -19.3 -19.3 -20 -20 -20 -20 -20 -20 coh21:k=-17.9933,b=0 -19.099 -19.14 -19.181 -19.181 -19.222 -19.263 -20 -20 -20 -20 -20 -20 coh22:k=-17.893,b=0 -19.097 -19.097 -19.097 -19.14 -19.183 -19.226 -20 -20 -20 -20 -20 -20 coh23:k=-17.7926,b=0 -19.009 -19.054 -19.099 -19.099 -19.144 -19.189 -20 -20 -20 -20 -20 -20 coh24:k=-17.6923,b=0 -19.011 -19.011 -19.011 -19.058 -19.105 -19.105 -20 -20 -20 -20 -20 -20 coh25:k=-17.592,b=0 -18.919 -18.968 -18.968 -19.017 -19.066 -19.066 -20 -20 -20 -20 -20 -20 coh26:k=-17.4916,b=0 -18.874 -18.925 -18.925 -18.976 -19.027 -19.027 -20 -20 -20 -20 -20 -20 coh27:k=-17.3913,b=0 -18.829 -18.882 -18.882 -18.935 -18.988 -18.988 -20 -20 -20 -20 -20 -20 coh28:k=-17.291,b=0 -18.784 -18.839 -18.839 -18.894 -18.894 -18.95 -20 -20 -20 -20 -20 -20 coh29:k=-17.1906,b=0 -18.739 -18.796 -18.796 -18.853 -18.853 -18.911 -20 -20 -20 -20 -20 -20 coh30:k=-17.0903,b=0 -18.694 -18.694 -18.753 -18.812 -18.812 -18.872 -20 -20 -20 -20 -20 -20 coh31:k=-16.99,b=0 -18.649 -18.71 -18.71 -18.771 -18.771 -18.833 -18.219 -18.28 -18.403 -20 -20 -20 coh32:k=-16.8896,b=0 -18.604 -18.604 -18.667 -18.667 -18.73 -18.794 -18.159 -18.286 -18.35 -18.413 -20 -20 coh33:k=-16.7893,b=0 -18.558 -18.558 -18.624 -18.69 -18.69 -18.69 -18.1 -18.231 -18.296 -18.362 -18.427 -20 coh34:k=-16.6889,b=0 -18.513 -18.513 -18.581 -18.581 -18.649 -18.649 -18.108 -18.176 -18.243 -18.311 -18.378 -18.446 coh35:k=-16.5886,b=0 -18.468 -18.468 -18.538 -18.538 -18.608 -18.608 -18.051 -18.12 -18.19 -18.259 -18.329 -18.399 coh36:k=-16.4883,b=0 -18.423 -18.423 -18.495 -18.495 -18.495 -18.495 -17.993 -18.065 -18.137 -18.208 -18.28 -18.352 coh37:k=-16.3879,b=0 -18.378 -18.378 -18.452 -18.452 -18.452 -17.862 -17.936 -18.01 -18.083 -18.157 -18.231 -17.789 coh38:k=-16.2876,b=0 -18.333 -18.333 -18.409 -18.409 -18.409 -17.727 -17.879 -17.954 -18.03 -18.106 -18.106 -17.576 coh39:k=-16.1873,b=0 -18.288 -18.288 -18.288 -18.288 -17.588 -17.666 -17.899 -17.899 -17.977 -18.055 -17.821 -17.51 coh40:k=-16.0869,b=0 -18.243 -18.243 -18.243 -18.243 -17.524 -17.524 -17.844 -17.844 -17.924 -17.924 -17.764 -17.365 coh41:k=-15.9866,b=0 -18.198 -18.198 -18.198 -17.379 -17.379 -17.461 -17.789 -17.789 -17.87 -17.87 -17.461 -17.215 coh42:k=-15.8863,b=0 -18.069 -18.153 -17.23 -17.313 -17.313 -17.397 -17.733 -17.817 -17.817 -17.817 -17.23 -17.146 coh43:k=-15.7859,b=0 -18.022 -17.076 -17.162 -17.248 -17.248 -17.334 -17.678 -17.678 -17.764 -17.506 -17.162 -16.99 coh44:k=-15.6856,b=0 -17.006 -17.006 -17.094 -17.182 -17.182 -17.27 -17.623 -17.623 -17.623 -17.182 -17.094 -16.918 coh45:k=-15.5853,b=0 -16.937 -16.937 -17.027 -17.117 -17.117 -17.207 -17.567 -17.567 -17.477 -17.117 -17.027 -16.847 coh46:k=-15.4849,b=0 -16.867 -16.867 -16.959 -17.051 -17.051 -17.144 -17.512 -17.512 -17.144 -16.959 -16.867 -16.775 coh47:k=-15.3846,b=0 -16.797 -16.797 -16.892 -16.986 -16.986 -17.08 -17.457 -17.457 -16.892 -16.892 -16.797 -16.609 coh48:k=-15.2843,b=0 -16.728 -16.728 -16.824 -16.92 -16.92 -17.017 -17.305 -16.92 -16.824 -16.824 -16.632 -16.535 coh49:k=-15.1839,b=0 -16.658 -16.658 -16.757 -16.855 -16.855 -16.953 -17.248 -16.757 -16.757 -16.658 -16.56 -16.462 coh50:k=-15.0836,b=0 -16.589 -16.589 -16.689 -16.789 -16.789 -16.89 -16.589 -16.589 -16.589 -16.589 -16.488 -16.288 coh723:k=52.3415,b=0 47.912 47.912 47.912 47.912 47.912 46.436 46.436 46.436 46.436 46.436 46.436 46.436 coh724:k=52.4418,b=0 48.007 48.007 48.007 48.007 48.007 46.528 46.528 46.528 46.528 46.528 46.528 46.528 coh725:k=52.5421,b=0 48.101 48.101 48.101 48.101 48.101 46.62 46.62 46.62 46.62 46.62 46.62 46.62 coh726:k=52.6425,b=0 48.195 48.195 48.195 48.195 48.195 46.712 46.712 46.712 46.712 46.712 46.712 46.712 coh727:k=52.7428,b=0 48.289 48.289 48.289 48.289 48.289 46.805 46.805 46.805 46.805 46.805 46.805 46.805 coh728:k=52.8431,b=0 48.383 48.383 48.383 48.383 48.383 46.897 46.897 46.897 46.897 46.897 46.897 46.897 coh729:k=52.9435,b=0 48.478 48.478 48.478 48.478 48.478 46.989 46.989 46.989 46.989 46.989 46.989 46.989 coh730:k=53.0438,b=0 48.572 48.572 48.572 48.572 48.572 47.081 47.081 47.081 47.081 47.081 47.081 47.081 coh731:k=53.1441,b=0 48.666 48.666 48.666 48.666 48.666 47.173 47.173 47.173 47.173 47.173 47.173 47.173 coh732:k=53.2445,b=0 48.76 48.76 48.76 48.76 48.76 47.265 47.265 47.265 47.265 47.265 47.265 47.265 coh733:k=53.3448,b=0 48.854 48.854 48.854 48.854 48.854 47.357 47.357 47.357 47.357 47.357 47.357 47.357 coh734:k=53.4451,b=0 48.949 48.949 48.949 48.949 48.949 47.45 47.45 47.45 47.45 47.45 47.45 47.45 coh735:k=53.5455,b=0 49.043 49.043 49.043 49.043 49.043 47.542 47.542 47.542 47.542 47.542 47.542 47.542 coh736:k=53.6458,b=0 49.137 49.137 49.137 49.137 49.137 47.634 47.634 47.634 47.634 47.634 47.634 47.634 coh737:k=53.7462,b=0 49.231 49.231 49.231 49.231 49.231 49.231 49.231 47.726 47.726 47.726 47.726 47.726 coh738:k=53.8465,b=0 49.325 49.325 49.325 49.325 49.325 49.325 49.325 47.818 47.818 47.818 47.818 47.818 coh739:k=53.9468,b=0 49.419 49.419 49.419 49.419 49.419 49.419 49.419 47.91 47.91 47.91 47.91 47.91 coh740:k=54.0472,b=0 49.514 49.514 49.514 49.514 49.514 49.514 49.514 48.002 48.002 48.002 48.002 48.002 coh741:k=54.1475,b=0 49.608 49.608 49.608 49.608 49.608 49.608 49.608 48.095 48.095 48.095 48.095 48.095 coh742:k=54.2478,b=0 49.702 49.702 49.702 49.702 49.702 49.702 49.702 48.187 48.187 48.187 48.187 48.187 coh743:k=54.3482,b=0 49.796 49.796 49.796 49.796 49.796 49.796 49.796 48.279 48.279 48.279 48.279 48.279 coh744:k=54.4485,b=0 49.89 49.89 49.89 49.89 49.89 49.89 49.89 48.371 48.371 48.371 48.371 48.371 coh745:k=54.5488,b=0 49.985 49.985 49.985 49.985 49.985 49.985 49.985 48.463 48.463 48.463 48.463 48.463 coh746:k=54.6492,b=0 50.079 50.079 50.079 48.555 48.555 48.555 48.555 48.555 48.555 48.555 48.555 48.555 coh747:k=54.7495,b=0 48.648 48.648 48.648 48.648 48.648 48.648 48.648 48.648 48.648 48.648 48.648 48.648 coh748:k=54.8498,b=0 48.74 48.74 48.74 48.74 48.74 48.74 48.74 48.74 48.74 48.74 48.74 48.74 coh749:k=54.9502,b=0 48.832 48.832 48.832 48.832 48.832 48.832 48.832 48.832 48.832 48.832 48.832 48.832 coh750:k=55.0505,b=0 48.924 48.924 48.924 48.924 48.924 48.924 48.924 48.924 48.924 48.924 48.924 48.924 coh751:k=55.1508,b=0 49.016 49.016 49.016 49.016 49.016 49.016 49.016 49.016 49.016 49.016 49.016 49.016 coh752:k=55.2512,b=0 49.108 49.108 49.108 49.108 49.108 49.108 49.108 49.108 49.108 49.108 49.108 49.108 coh753:k=55.3515,b=0 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2 coh754:k=55.4518,b=0 49.293 49.293 49.293 49.293 49.293 49.293 49.293 49.293 49.293 49.293 49.293 49.293 coh755:k=55.5522,b=0 49.385 49.385 49.385 49.385 49.385 49.385 49.385 49.385 49.385 49.385 49.385 49.385 coh756:k=55.6525,b=0 49.477 49.477 49.477 49.477 49.477 49.477 49.477 49.477 49.477 49.477 49.477 49.477 coh757:k=55.7529,b=0 49.569 49.569 49.569 49.569 49.569 49.569 49.569 49.569 49.569 49.569 49.569 49.569 coh758:k=55.8532,b=0 49.661 49.661 49.661 49.661 49.661 49.661 49.661 49.661 49.661 49.661 49.661 49.661 coh759:k=55.9535,b=0 49.753 49.753 49.753 49.753 49.753 49.753 49.753 49.753 49.753 49.753 49.753 49.753 coh760:k=56.0539,b=0 49.845 49.845 49.845 49.845 49.845 49.845 49.845 49.845 49.845 49.845 49.845 49.845 coh761:k=56.1542,b=0 49.938 49.938 49.938 49.938 49.938 49.938 49.938 49.938 49.938 49.938 49.938 49.938 coh762:k=56.2545,b=0 50.03 50.03 50.03 50.03 50.03 50.03 50.03 50.03 50.03 50.03 50.03 50.03 coh763:k=56.3549,b=0 50.122 50.122 50.122 50.122 50.122 50.122 50.122 50.122 50.122 50.122 50.122 50.122 coh764:k=56.4552,b=0 50.214 50.214 50.214 50.214 50.214 50.214 50.214 50.214 50.214 50.214 50.214 50.214 coh765:k=56.5555,b=0 50.306 50.306 50.306 50.306 50.306 50.306 50.306 50.306 50.306 50.306 50.306 48.744 coh766:k=56.6559,b=0 50.398 50.398 50.398 50.398 50.398 50.398 50.398 50.398 50.398 50.398 48.834 48.834 coh767:k=56.7562,b=0 50.49 50.49 50.49 50.49 50.49 50.49 50.49 50.49 48.924 48.924 48.924 48.924 coh768:k=56.8565,b=0 50.583 50.583 50.583 50.583 49.014 49.014 49.014 49.014 49.014 49.014 49.014 49.014 coh769:k=56.9569,b=0 49.104 49.104 49.104 49.104 49.104 49.104 49.104 49.104 49.104 49.104 49.104 49.104 coh770:k=57.0572,b=0 49.194 49.194 49.194 49.194 49.194 49.194 49.194 49.194 49.194 49.194 49.194 49.194 coh771:k=57.1575,b=0 49.284 49.284 49.284 49.284 49.284 49.284 49.284 49.284 49.284 49.284 49.284 49.284 coh772:k=57.2579,b=0 49.374 49.374 49.374 49.374 49.374 49.374 49.374 49.374 49.374 49.374 49.374 49.374
Display Various Containers
if (bl_display_defparam)
Display 1 support_map
fft_container_map_display(support_map, it_display_summmat_rowmax, it_display_summmat_colmax);
---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: SUPPORT_MAP ---------------------------------------- Map with properties: Count: 43 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 29 ; key = st_img_name_main ; val = ff_ipwkbzr_vf_vecsv_default pos = 30 ; key = st_img_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkbzr//solve/img/ pos = 31 ; key = st_img_prefix ; val = pos = 32 ; key = st_img_suffix ; val = _p4.png pos = 33 ; key = st_mat_name_main ; val = ff_ipwkbzr_vf_vecsv_default pos = 34 ; key = st_mat_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkbzr//solve/mat/ pos = 35 ; key = st_mat_prefix ; val = pos = 36 ; key = st_mat_suffix ; val = _p4 pos = 37 ; key = st_mat_test_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkbzr//test/ff_ipwkbzr_ds_vecsv/mat/ pos = 38 ; key = st_matimg_path_root ; val = C:/Users/fan/CodeDynaAsset//m_ipwkbzr/ pos = 39 ; key = st_profile_name_main ; val = ff_ipwkbzr_vf_vecsv_default pos = 40 ; key = st_profile_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkbzr//solve/profile/ pos = 41 ; key = st_profile_prefix ; val = pos = 42 ; key = st_profile_suffix ; val = _p4 pos = 43 ; key = st_title_prefix ; val = ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value __ ___ _____ bl_display 1 1 0 bl_display_defparam 2 2 1 bl_display_dist 3 3 0 bl_display_evf 4 4 0 bl_display_final 5 5 1 bl_display_final_dist 6 6 0 bl_display_final_dist_detail 7 7 0 bl_display_funcgrids 8 8 0 bl_graph 9 9 1 bl_graph_coh_t_coh 10 10 1 bl_graph_evf 11 11 0 bl_graph_funcgrids 12 12 0 bl_graph_funcgrids_detail 13 13 0 bl_graph_onebyones 14 14 1 bl_graph_pol_lvl 15 15 1 bl_graph_pol_pct 16 16 1 bl_graph_val 17 17 1 bl_img_save 18 18 0 bl_mat 19 19 0 bl_post 20 20 1 bl_profile 21 21 0 bl_profile_dist 22 22 0 bl_time 23 23 0 it_display_every 24 24 5 it_display_final_colmax 25 25 12 it_display_final_rowmax 26 26 100 it_display_summmat_colmax 27 27 7 it_display_summmat_rowmax 28 28 7
Display 2 armt_map
fft_container_map_display(armt_map, it_display_summmat_rowmax, it_display_summmat_colmax);
---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: ARMT_MAP ---------------------------------------- Map with properties: Count: 34 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Matrix in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx rowN colN mean std min max __ ___ ________ __________ ________ ________ __________ _______ ar_a_meshk 1 1 772 1 18.605 22.341 -20 57.258 ar_a_meshk_ori 2 2 35000 1 -2.5107 15.618 -20 50 ar_ak_perc 3 3 1 50 0.5 0.2975 0 1 ar_aplusk_mesh 4 4 35000 1 14.979 20.23 -20 50 ar_interp_c_grid 5 5 1 7.7238e+05 38.639 22.297 0.02 77.258 ar_interp_coh_grid 6 6 1 772 18.605 22.341 -20 57.258 ar_k_mesha 7 7 772 1 0 0 0 0 ar_k_mesha_ori 8 8 35000 1 17.489 15.618 0 70 ar_w_level 9 9 1 700 14.979 20.244 -20 50 ar_w_perc 10 10 1 50 0.5 0.2975 0 1 ar_z_r_borr 11 11 1 5 0.06 0.02767 0.025 0.095 ar_z_r_borr_mesh_wage_r1w2 12 12 1 55 0.06 0.024977 0.025 0.095 ar_z_r_borr_mesh_wage_w1r2 13 13 1 55 0.06 0.024977 0.025 0.095 ar_z_r_borr_prob 14 14 1 5 0.2 0.34803 0.00012164 0.81093 ar_z_wage 15 15 1 11 1.1422 0.72828 0.34664 2.5613 ar_z_wage_mesh_r_borr_r1w2 16 16 1 55 1.1422 0.70079 0.34664 2.5613 ar_z_wage_mesh_r_borr_w1r2 17 17 1 55 1.1422 0.70079 0.34664 2.5613 ar_z_wage_prob 18 18 1 11 0.090909 0.084822 0.0039324 0.23011 cl_mt_coh_wkb_mesh_z_r_borr 19 19 35000 55 16.785 20.517 -20.056 57.258 mt_coh_wkb 20 21 772 55 18.605 22.327 -20 57.258 mt_coh_wkb_mesh_z_r_borr 21 22 1.75e+05 55 16.507 20.684 -21.456 57.258 mt_coh_wkb_ori 22 23 1.75e+05 11 16.507 20.684 -21.456 57.258 mt_interp_coh_grid_mesh_w_perc 23 24 50 772 18.605 22.327 -20 57.258 mt_interp_coh_grid_mesh_z 24 25 772 55 18.605 22.327 -20 57.258 mt_interp_coh_grid_mesh_z_wage 25 26 772 11 18.605 22.328 -20 57.258 mt_k 26 27 50 700 17.489 15.618 0 70 mt_w_perc_mesh_interp_coh_grid 27 28 50 772 -0.6976 17.237 -20 57.258 mt_z_mesh_coh_wkb 28 29 1.75e+05 55 28 15.875 1 55 mt_z_mesh_coh_wkb_seg 29 30 35000 55 28 15.875 1 55 mt_z_mesh_interp_coh_grid 30 31 772 55 28 15.875 1 55 mt_z_trans 31 32 55 55 0.018182 0.055867 0 0.31053 mt_z_wage_mesh_coh_wkb 32 33 1.75e+05 11 1.1422 0.69439 0.34664 2.5613 mt_z_wage_mesh_interp_coh_grid 33 34 772 11 1.1422 0.69443 0.34664 2.5613 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value _ ___ _____ it_ameshk_n 1 20 772
Display 3 param_map
fft_container_map_display(param_map, it_display_summmat_rowmax, it_display_summmat_colmax);
---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: PARAM_MAP ---------------------------------------- Map with properties: Count: 41 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 37 ; key = st_analytical_stationary_type ; val = eigenvector pos = 38 ; key = st_model ; val = ipwkbzr pos = 39 ; key = st_v_coh_z_interp_method ; val = method_cell pos = 40 ; key = st_z_r_borr_drv_ele_type ; val = unif pos = 41 ; key = st_z_r_borr_drv_prb_type ; val = poiss ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value __ ___ _______ bl_default 1 1 1 fl_Amean 2 2 1 fl_alpha 3 3 0.36 fl_b_bd 4 4 -20 fl_beta 5 5 0.94 fl_c_min 6 6 0.02 fl_coh_interp_grid_gap 7 7 0.1 fl_crra 8 8 1.5 fl_default_wprime 9 9 0 fl_delta 10 10 0.08 fl_k_max 11 11 70 fl_k_min 12 12 0 fl_nan_replace 13 13 -9999 fl_r_save 14 14 0.025 fl_tol_dist 15 15 1e-05 fl_tol_pol 16 16 1e-05 fl_tol_val 17 17 1e-05 fl_w 18 18 0.44365 fl_w_interp_grid_gap 19 19 0.1 fl_w_max 20 20 50 fl_w_min 21 21 -20 fl_z_r_borr_max 22 22 0.095 fl_z_r_borr_min 23 23 0.025 fl_z_r_borr_n 24 24 5 fl_z_r_borr_poiss_mean 25 25 20 fl_z_wage_mu 26 26 0 fl_z_wage_rho 27 27 0.8 fl_z_wage_sig 28 28 0.2 it_ak_perc_n 29 29 50 it_c_interp_grid_gap 30 30 0.0001 it_maxiter_dist 31 31 1000 it_maxiter_val 32 32 250 it_tol_pol_nochange 33 33 25 it_w_perc_n 34 34 50 it_z_n 35 35 55 it_z_wage_n 36 36 11
Display 4 func_map
fft_container_map_display(func_map, it_display_summmat_rowmax, it_display_summmat_colmax);
---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: FUNC_MAP ---------------------------------------- Map with properties: Count: 8 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 1 ; key = f_coh ; val = @(fl_r_borr,z,b,k)(f_prod(z,k)+k*(1-fl_delta)+fl_w+b.*(1+fl_r_save).*(b>0)+b.*(1+fl_r_borr).*(b<=0)) pos = 2 ; key = f_cons ; val = @(coh,bprime,kprime)(coh-kprime-bprime) pos = 3 ; key = f_inc ; val = @(fl_r_borr,z,b,k)(f_prod(z,k)-(fl_delta)*k+fl_w+b.*(fl_r_save).*(b>0)+b.*(fl_r_borr).*(b<=0)) pos = 4 ; key = f_prod ; val = @(z,k)((fl_Amean.*(z)).*(k.^(fl_alpha))) pos = 5 ; key = f_util_crra ; val = @(c)(((c).^(1-fl_crra)-1)./(1-fl_crra)) pos = 6 ; key = f_util_log ; val = @(c)log(c) pos = 7 ; key = f_util_standin ; val = @(fl_r_borr,z,b,k)f_util_log((f_coh(fl_r_borr,z,b,k)-fl_b_bd).*((f_coh(fl_r_borr,z,b,k)-fl_b_bd)>fl_c_min)+fl_c_min.*((f_coh(fl_r_borr,z,b,k)-fl_b_bd)<=fl_c_min)) pos = 8 ; key = f_util_standin_coh ; val = @(coh,fl_r_borr)f_util_log((coh-fl_b_bd).*((coh>0)&(((coh-fl_b_bd)./(1))>fl_c_min))+((coh-fl_b_bd)./(1)).*((coh<=0)&(((coh-fl_b_bd)./(1))>fl_c_min))+(fl_c_min./(1+fl_r_borr)).*((((coh-fl_b_bd)./(1))<=fl_c_min))) ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx xFunction _ ___ _________ f_coh 1 1 1 f_cons 2 2 2 f_inc 3 3 3 f_prod 4 4 4 f_util_crra 5 5 5 f_util_log 6 6 6 f_util_standin 7 7 7 f_util_standin_coh 8 8 8
Display 5 result_map
fft_container_map_display(result_map, it_display_summmat_rowmax, it_display_summmat_colmax);
---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: RESULT_MAP ---------------------------------------- Map with properties: Count: 15 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 2 ; key = ar_st_pol_names ; val = cl_mt_val cl_mt_coh cl_mt_pol_a cl_mt_pol_k cl_mt_pol_c ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Matrix in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx rowN colN mean std min max __ ___ ____ ____ ________ _______ __________ ______ ar_pol_diff_norm 1 1 151 1 99.709 531.21 0 4777.2 ar_val_diff_norm 2 3 151 1 16.897 50.793 0.00091128 344.08 cl_mt_coh 3 4 772 55 18.605 22.327 -20 57.258 cl_mt_cons 4 5 772 55 2.8757 2.9357 -20 7.8835 cl_mt_pol_a 5 6 772 55 8.7882 19.576 -20 49.154 cl_mt_pol_c 6 7 772 55 3.1163 1.5811 0.02 7.8835 cl_mt_pol_k 7 8 772 55 6.9409 5.4654 0 22.186 cl_mt_val 8 9 772 55 8.6496 6.9578 -9.749 16.595 mt_pol_idx 9 10 772 55 19319 11146 1 38595 mt_pol_perc_change 10 11 151 55 0.077753 0.22502 0 1 mt_val 11 12 772 55 8.6496 6.9578 -9.749 16.595 tb_pol_a 12 13 100 12 11.498 29.555 -20 49.154 tb_val 13 14 100 12 4.9279 10.874 -9.6806 16.595 tb_valpol_alliter 14 15 100 57 3.1666 88.068 0 4777.2
end
end
ans = Map with properties: Count: 15 KeyType: char ValueType: any