Derive Distributions for Risky + Safe Asset (Saving Only) Interpolated-Percentage (Wrapper)
back to Fan's Dynamic Assets Repository Table of Content.
Contents
function [result_map] = ff_ipwkz_ds_wrapper(varargin)
FF_IPWKZ_DS_WRAPPER finds the stationary asset distributions
This is a warpper function.
Default
- it_subset = 5 is basic invoke quick test
- it_subset = 6 is invoke full test
- it_subset = 7 is profiling invoke
- it_subset = 8 is matlab publish
- it_subset = 9 is invoke operational (only final stats) and coh graph
it_param_set = 8; [param_map, support_map] = ffs_ipwkz_set_default_param(it_param_set); % parameters can be set inside ffs_ipwkz_set_default_param or updated here % param_map('it_w_perc_n') = 50; % param_map('it_ak_perc_n') = param_map('it_w_perc_n'); % param_map('it_z_n') = 15; % param_map('fl_coh_interp_grid_gap') = 0.025; % param_map('it_c_interp_grid_gap') = 0.001; % param_map('fl_w_interp_grid_gap') = 0.25; % param_map('it_w_perc_n') = 100; % param_map('it_ak_perc_n') = param_map('it_w_perc_n'); % param_map('it_z_n') = 11; % param_map('fl_coh_interp_grid_gap') = 0.1; % param_map('it_c_interp_grid_gap') = 10^-4; % param_map('fl_w_interp_grid_gap') = 0.1; % param_map('st_analytical_stationary_type') = 'loop'; % param_map('st_analytical_stationary_type') = 'vector'; param_map('st_analytical_stationary_type') = 'eigenvector'; % get armt and func map [armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map); % 1 for override default_params = {param_map support_map armt_map func_map};
Parse Parameters 1
% if varargin only has param_map and support_map, params_len = length(varargin); [default_params{1:params_len}] = varargin{:}; param_map = [param_map; default_params{1}]; support_map = [support_map; default_params{2}]; if params_len >= 1 && params_len <= 2 % If override param_map, re-generate armt and func if they are not % provided [armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map); else % Override all armt_map = [armt_map; default_params{3}]; func_map = [func_map; default_params{4}]; end % if profile, profile DP + Dist here support_map('bl_profile_dist') = false; % append function name st_func_name = 'ff_ipwkz_ds_wrapper'; support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')]; support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')]; support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
Parse Parameters
% param_map params_group = values(param_map, {'st_analytical_stationary_type'}); [st_analytical_stationary_type] = params_group{:}; % support_map params_group = values(support_map, ... {'st_profile_path', 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix','bl_time'}); [st_profile_path, st_profile_prefix, st_profile_name_main, st_profile_suffix, bl_time] = params_group{:};
Start Profiler and Timer
Start Profile
if (it_param_set == 7) close all; profile off; profile on; end % Start Timer if (bl_time) tic; end
Solve DP
bl_input_override = true; result_map = ff_ipwkz_vf_vecsv(param_map, support_map, armt_map, func_map);
Elapsed time is 2.864515 seconds. ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: SUPPORT_MAP ---------------------------------------- Map with properties: Count: 43 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 29 ; key = st_img_name_main ; val = ff_ipwkz_vf_vecsvff_ipwkz_ds_wrapper_default pos = 30 ; key = st_img_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkz//solve/img/ pos = 31 ; key = st_img_prefix ; val = pos = 32 ; key = st_img_suffix ; val = _p8.png pos = 33 ; key = st_mat_name_main ; val = ff_ipwkz_vf_vecsvff_ipwkz_ds_wrapper_default pos = 34 ; key = st_mat_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkz//solve/mat/ pos = 35 ; key = st_mat_prefix ; val = pos = 36 ; key = st_mat_suffix ; val = _p8 pos = 37 ; key = st_mat_test_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkz//test/ff_ipwkz_ds_vecsv/mat/ pos = 38 ; key = st_matimg_path_root ; val = C:/Users/fan/CodeDynaAsset//m_ipwkz/ pos = 39 ; key = st_profile_name_main ; val = ff_ipwkz_vf_vecsvff_ipwkz_ds_wrapper_default pos = 40 ; key = st_profile_path ; val = C:/Users/fan/CodeDynaAsset//m_ipwkz//solve/profile/ pos = 41 ; key = st_profile_prefix ; val = pos = 42 ; key = st_profile_suffix ; val = _p8 pos = 43 ; key = st_title_prefix ; val = ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value __ ___ _____ bl_display 1 1 0 bl_display_defparam 2 2 1 bl_display_dist 3 3 0 bl_display_evf 4 4 0 bl_display_final 5 5 0 bl_display_final_dist 6 6 1 bl_display_final_dist_detail 7 7 1 bl_display_funcgrids 8 8 0 bl_graph 9 9 1 bl_graph_coh_t_coh 10 10 1 bl_graph_evf 11 11 0 bl_graph_funcgrids 12 12 0 bl_graph_funcgrids_detail 13 13 0 bl_graph_onebyones 14 14 1 bl_graph_pol_lvl 15 15 0 bl_graph_pol_pct 16 16 0 bl_graph_val 17 17 0 bl_img_save 18 18 0 bl_mat 19 19 0 bl_post 20 20 1 bl_profile 21 21 0 bl_profile_dist 22 22 0 bl_time 23 23 1 it_display_every 24 24 20 it_display_final_colmax 25 25 12 it_display_final_rowmax 26 26 100 it_display_summmat_colmax 27 27 7 it_display_summmat_rowmax 28 28 7 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: ARMT_MAP ---------------------------------------- Map with properties: Count: 18 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Matrix in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx rowN colN mean std min max __ ___ _____ __________ ________ ________ __________ _______ ar_a_meshk 1 1 568 1 28.86 16.45 0.44365 57.277 ar_ak_perc 2 2 1 50 0.5 0.2969 0.001 0.999 ar_interp_c_grid 3 3 1 5.7257e+05 28.649 16.529 0.02 57.277 ar_interp_coh_grid 4 4 1 568 28.86 16.45 0.44365 57.277 ar_k_mesha 5 5 568 1 0 0 0 0 ar_stationary 6 6 1 15 0.066667 0.060897 0.0027089 0.16757 ar_w_level 7 7 1 500 25 14.477 0 50 ar_w_perc 8 8 1 50 0.5 0.2969 0.001 0.999 ar_z 9 9 1 15 1.1347 0.69878 0.34741 2.567 mt_coh_wkb 10 11 568 15 28.86 16.436 0.44365 57.277 mt_interp_coh_grid_mesh_w_perc 11 12 50 568 28.86 16.436 0.44365 57.277 mt_interp_coh_grid_mesh_z 12 13 568 15 28.86 16.436 0.44365 57.277 mt_k 13 14 50 500 12.5 11.152 0 49.95 mt_w_by_interp_coh_interp_grid 14 15 50 568 14.43 12.76 0.00044365 57.22 mt_z_mesh_coh_interp_grid 15 16 568 15 1.1347 0.67512 0.34741 2.567 mt_z_mesh_coh_wkb 16 17 25000 15 1.1347 0.67508 0.34741 2.567 mt_z_trans 17 18 15 15 0.066667 0.095337 0 0.27902 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value _ ___ _____ it_ameshk_n 1 10 568 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: PARAM_MAP ---------------------------------------- Map with properties: Count: 32 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 31 ; key = st_analytical_stationary_type ; val = eigenvector pos = 32 ; key = st_model ; val = ipwkz ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value __ ___ _______ fl_Amean 1 1 1 fl_alpha 2 2 0.36 fl_b_bd 3 3 0 fl_beta 4 4 0.94 fl_c_min 5 5 0.02 fl_coh_interp_grid_gap 6 6 0.1 fl_crra 7 7 1.5 fl_delta 8 8 0.08 fl_k_max 9 9 50 fl_k_min 10 10 0 fl_nan_replace 11 11 -9999 fl_r_borr 12 12 0.095 fl_r_save 13 13 0.025 fl_tol_dist 14 14 1e-05 fl_tol_pol 15 15 1e-05 fl_tol_val 16 16 1e-05 fl_w 17 17 0.44365 fl_w_interp_grid_gap 18 18 0.1 fl_w_max 19 19 50 fl_w_min 20 20 0 fl_z_mu 21 21 0 fl_z_rho 22 22 0.8 fl_z_sig 23 23 0.2 it_ak_perc_n 24 24 50 it_c_interp_grid_gap 25 25 0.0001 it_maxiter_dist 26 26 1000 it_maxiter_val 27 27 250 it_tol_pol_nochange 28 28 25 it_w_perc_n 29 29 50 it_z_n 30 30 15 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: FUNC_MAP ---------------------------------------- Map with properties: Count: 7 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 1 ; key = f_coh ; val = @(z,b,k)(f_prod(z,k)+k*(1-fl_delta)+fl_w+b.*(1+fl_r_save).*(b>0)+b.*(1+fl_r_borr).*(b<=0)) pos = 2 ; key = f_cons ; val = @(coh,bprime,kprime)(coh-kprime-bprime) pos = 3 ; key = f_inc ; val = @(z,b,k)(f_prod(z,k)-(fl_delta)*k+fl_w+b.*(fl_r_save).*(b>0)+b.*(fl_r_borr).*(b<=0)) pos = 4 ; key = f_prod ; val = @(z,k)((fl_Amean.*(z)).*(k.^(fl_alpha))) pos = 5 ; key = f_util_crra ; val = @(c)(((c).^(1-fl_crra)-1)./(1-fl_crra)) pos = 6 ; key = f_util_log ; val = @(c)log(c) pos = 7 ; key = f_util_standin ; val = @(z,b,k)f_util_log(f_coh(z,b,k).*(f_coh(z,b,k)>0)+fl_c_min.*(f_coh(z,b,k)<=0)) ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx xFunction _ ___ _________ f_coh 1 1 1 f_cons 2 2 2 f_inc 3 3 3 f_prod 4 4 4 f_util_crra 5 5 5 f_util_log 6 6 6 f_util_standin 7 7 7 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: RESULT_MAP ---------------------------------------- Map with properties: Count: 12 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 2 ; key = ar_st_pol_names ; val = cl_mt_val cl_mt_coh cl_mt_pol_a cl_mt_pol_k cl_mt_pol_c ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Matrix in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx rowN colN mean std min max __ ___ ____ ____ _______ _______ __________ ______ ar_pol_diff_norm 1 1 104 1 33.694 171.03 0 1633.1 ar_val_diff_norm 2 3 104 1 11.341 23.836 0.06118 142.93 cl_mt_coh 3 4 568 15 28.86 16.436 0.44365 57.277 cl_mt_cons 4 5 568 15 3.6763 1.3777 0.34381 7.0568 cl_mt_pol_a 5 6 568 15 17.983 14.578 9.9839e-05 48.221 cl_mt_pol_c 6 7 568 15 3.6763 1.3777 0.34381 7.0568 cl_mt_pol_k 7 8 568 15 7.201 5.5098 0.099739 22 cl_mt_val 8 9 568 15 12.365 3.0296 -0.27805 16.631 mt_pol_idx 9 10 568 15 14217 8202.7 12 28394 mt_pol_perc_change 10 11 104 15 0.10707 0.26316 0 1 mt_val 11 12 568 15 12.365 3.0296 -0.27805 16.631
Derive Distribution
if (strcmp(st_analytical_stationary_type, 'loop')) result_map = ff_iwkz_ds(param_map, support_map, armt_map, func_map, result_map, bl_input_override); elseif (strcmp(st_analytical_stationary_type, 'vector')) result_map = ff_iwkz_ds_vec(param_map, support_map, armt_map, func_map, result_map, bl_input_override); elseif (strcmp(st_analytical_stationary_type, 'eigenvector')) result_map = ff_iwkz_ds_vecsv(param_map, support_map, armt_map, func_map, result_map, bl_input_override); end
Elapsed time is 0.753266 seconds. ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_val xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 8.0426 fl_choice_sd 1.6443 fl_choice_coefofvar 0.2044 fl_choice_prob_zero 0 fl_choice_prob_below_zero -2.4300e-35 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max 1.1951e-13 tb_disc_cumu cl_mt_valDiscreteVal cl_mt_valDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ ___________ ___________ -0.27805 -2.8451e-35 -2.8451e-33 9.8361e-37 -0.0021088 4.1514e-36 -2.43e-33 9.8252e-37 0.13838 -2.4629e-35 -4.8929e-33 5.5873e-37 0.3078 -5.7701e-36 -5.47e-33 3.3791e-37 0.41572 -4.5726e-35 -1.0043e-32 -2.0257e-36 0.50582 -2.7871e-35 -1.283e-32 -3.7786e-36 0.63974 -3.1248e-35 -1.5954e-32 -6.2642e-36 0.72707 8.6939e-35 -7.2606e-33 1.5953e-36 0.78563 3.5779e-35 -3.6827e-33 5.0903e-36 0.80629 5.5826e-35 1.8999e-33 1.0687e-35 cl_mt_valDiscreteVal cl_mt_valDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ ___ __________ 16.59 2.2764e-12 100 1 16.597 1.1792e-12 100 1 16.603 1.4093e-12 100 1 16.609 1.3156e-12 100 1 16.615 9.2607e-13 100 1 16.621 1.0242e-12 100 1 16.627 1.5116e-12 100 1 16.63 1.3064e-12 100 1 16.631 3.3987e-13 100 1 16.631 1.1951e-13 100 1 tb_prob_drv percentiles cl_mt_valDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ____________________________________ ________________________________ 0.1 3.4058 0.00040872 1 4.3477 0.0050803 5 5.3952 0.030805 10 5.9468 0.0655 15 6.333 0.10324 20 6.6491 0.1456 25 6.8981 0.18743 35 7.3731 0.2768 50 8.0262 0.41885 65 8.6476 0.57465 75 9.1538 0.68462 80 9.4297 0.74244 85 9.7656 0.80236 90 10.183 0.8636 95 10.804 0.92867 99 11.978 0.98455 99.9 13.142 0.99833 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_coh xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 6.7186 fl_choice_sd 3.0963 fl_choice_coefofvar 0.4609 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max 1.1951e-13 tb_disc_cumu cl_mt_cohDiscreteVal cl_mt_cohDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ ___________ ___________ 0.44365 -7.1781e-35 -7.1781e-33 -4.7399e-36 0.54388 -8.6427e-35 -1.5821e-32 -1.1736e-35 0.64412 5.0001e-35 -1.0821e-32 -6.9428e-36 0.74435 -9.6798e-35 -2.0501e-32 -1.7667e-35 0.84459 -1.4341e-35 -2.1935e-32 -1.947e-35 0.94483 5.3854e-35 -1.6549e-32 -1.1896e-35 1.0451 4.966e-35 -1.1583e-32 -4.172e-36 1.1453 6.1743e-35 -5.409e-33 6.3532e-36 1.2455 -1.5731e-34 -2.114e-32 -2.2809e-35 1.3458 8.7448e-35 -1.2395e-32 -5.2928e-36 cl_mt_cohDiscreteVal cl_mt_cohDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ ___ __________ 56.375 2.3085e-12 100 1 56.475 1.1792e-12 100 1 56.576 1.4093e-12 100 1 56.676 1.3156e-12 100 1 56.776 9.2607e-13 100 1 56.876 1.0242e-12 100 1 56.976 1.5116e-12 100 1 57.077 1.3064e-12 100 1 57.177 3.3987e-13 100 1 57.277 1.1951e-13 100 1 tb_prob_drv percentiles cl_mt_cohDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ____________________________________ ________________________________ 0.1 2.0474 0.00052279 1 2.5486 0.0047587 5 3.15 0.022821 10 3.6512 0.05226 15 3.9519 0.07821 20 4.2526 0.10742 25 4.5533 0.14354 35 5.1547 0.22139 50 6.0568 0.34534 65 7.0592 0.48143 75 8.0615 0.59583 80 8.7632 0.66335 85 9.5651 0.72973 90 10.668 0.7998 95 12.672 0.88537 99 17.484 0.97064 99.9 23.899 0.99606 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_pol_a xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 0.2993 fl_choice_sd 1.0380 fl_choice_coefofvar 3.4678 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max -6.2489e-36 tb_disc_cumu cl_mt_pol_aDiscreteVal cl_mt_pol_aDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___________ ___________ 9.9839e-05 -7.1781e-35 -7.1781e-33 -2.3943e-38 0.0001224 -2.4629e-35 -9.6411e-33 -3.4015e-38 0.00013347 1.3304e-34 3.6625e-33 2.531e-38 0.00014455 -1.9483e-34 -1.5821e-32 -6.8783e-38 0.00019743 5.0001e-35 -1.0821e-32 -3.5802e-38 0.00022815 -1.9976e-34 -3.0797e-32 -1.8807e-37 0.00024331 1.0296e-34 -2.0501e-32 -1.0437e-37 0.00029328 1.1602e-35 -1.934e-32 -9.3003e-38 0.00031048 -2.5943e-35 -2.1935e-32 -1.1991e-37 0.00032809 -1.6742e-35 -2.3609e-32 -1.3827e-37 cl_mt_pol_aDiscreteVal cl_mt_pol_aDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___ __________ 47.864 2.8836e-35 100 1 47.872 -1.4526e-35 100 1 47.893 -5.8057e-36 100 1 47.951 1.8457e-35 100 1 47.958 4.1841e-35 100 1 48.041 1.4533e-35 100 1 48.046 1.2746e-35 100 1 48.131 -2.5947e-35 100 1 48.134 4.6966e-36 100 1 48.221 -6.2489e-36 100 1 tb_prob_drv percentiles cl_mt_pol_aDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ______________________________________ ________________________________ 0.1 0.0011697 6.5804e-06 1 0.0015079 5.7852e-05 5 0.001992 0.00032067 10 0.0023724 0.00064509 15 0.002645 0.0011016 20 0.0028625 0.0015405 25 0.0030882 0.0020341 35 0.0035747 0.0031743 50 0.0043953 0.0051769 65 0.005551 0.0076662 75 0.0069908 0.0096881 80 0.0085792 0.010959 85 0.14864 0.015859 90 0.81026 0.093966 95 2.0486 0.3191 99 5.3028 0.74941 99.9 10.266 0.95851 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_pol_k xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 4.5898 fl_choice_sd 2.1972 fl_choice_coefofvar 0.4787 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max 1.3508e-12 tb_disc_cumu cl_mt_pol_kDiscreteVal cl_mt_pol_kDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___________ ___________ 0.099739 -7.1781e-35 -7.1781e-33 -1.5598e-36 0.12227 -2.4629e-35 -9.6411e-33 -2.216e-36 0.13334 1.3304e-34 3.6625e-33 1.6489e-36 0.14441 -1.9483e-34 -1.5821e-32 -4.481e-36 0.19723 5.0001e-35 -1.0821e-32 -2.3324e-36 0.22792 -1.9976e-34 -3.0797e-32 -1.2252e-35 0.24307 1.0296e-34 -2.0501e-32 -6.7995e-36 0.29299 1.1602e-35 -1.934e-32 -6.0589e-36 0.31017 -2.5943e-35 -2.1935e-32 -7.8121e-36 0.32776 -1.6742e-35 -2.3609e-32 -9.0077e-36 cl_mt_pol_kDiscreteVal cl_mt_pol_kDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___ __________ 21.946 2.6048e-12 100 1 21.95 1.3092e-10 100 1 21.954 9.32e-10 100 1 21.955 5.3547e-11 100 1 21.961 1.1016e-12 100 1 21.962 2.8574e-09 100 1 21.987 2.3723e-12 100 1 21.996 7.3459e-11 100 1 21.999 4.9218e-11 100 1 22 1.3508e-12 100 1 tb_prob_drv percentiles cl_mt_pol_kDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ______________________________________ ________________________________ 0.1 1.1685 0.00042869 1 1.5064 0.0037689 5 1.9872 0.018472 10 2.3156 0.042544 15 2.577 0.070033 20 2.7923 0.099827 25 3.0619 0.13589 35 3.4663 0.20368 50 4.1764 0.33114 65 4.8912 0.47165 75 5.6061 0.58719 80 6.1527 0.65054 85 6.5748 0.71892 90 7.5046 0.79656 95 8.9571 0.88405 99 12.06 0.9698 99.9 16.044 0.9961 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_pol_c xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 1.8294 fl_choice_sd 0.4890 fl_choice_coefofvar 0.2673 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max 1.1951e-13 tb_disc_cumu cl_mt_pol_cDiscreteVal cl_mt_pol_cDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___________ ___________ 0.34381 -7.1781e-35 -7.1781e-33 -1.349e-35 0.39933 -1.9483e-34 -2.6661e-32 -5.6019e-35 0.41041 1.3304e-34 -1.3358e-32 -2.6174e-35 0.42149 -2.4629e-35 -1.5821e-32 -3.1848e-35 0.44669 5.0001e-35 -1.0821e-32 -1.964e-35 0.50104 1.0296e-34 -5.2478e-34 8.5589e-36 0.5162 -1.9976e-34 -2.0501e-32 -4.7806e-35 0.53411 -2.5943e-35 -2.3095e-32 -5.538e-35 0.55131 1.1602e-35 -2.1935e-32 -5.1884e-35 0.55901 1.6074e-34 -5.8604e-33 -2.7664e-36 cl_mt_pol_cDiscreteVal cl_mt_pol_cDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___ __________ 7.0074 8.3762e-35 100 1 7.0074 -3.565e-35 100 1 7.0074 1.0242e-12 100 1 7.0074 4.3284e-35 100 1 7.0197 1.5116e-12 100 1 7.0321 1.3064e-12 100 1 7.0444 6.4516e-36 100 1 7.0444 3.3987e-13 100 1 7.0444 3.5031e-35 100 1 7.0568 1.1951e-13 100 1 tb_prob_drv percentiles cl_mt_pol_cDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ______________________________________ ________________________________ 0.1 0.87776 0.00082625 1 0.99978 0.0054285 5 1.158 0.031384 10 1.2679 0.066956 15 1.3388 0.098372 20 1.4071 0.13618 25 1.475 0.17566 35 1.5867 0.26397 50 1.7618 0.4001 65 1.9538 0.54751 75 2.1159 0.66468 80 2.2202 0.71815 85 2.329 0.77991 90 2.4949 0.84888 95 2.7409 0.91696 99 3.2408 0.9811 99.9 3.8193 0.99788 OriginalVariableNames cl_mt_val cl_mt_coh cl_mt_pol_a cl_mt_pol_k cl_mt_pol_c _____________________ ___________ ___________ ___________ ___________ ___________ 'mean' 8.0426 6.7186 0.29931 4.5898 1.8294 'sd' 1.6443 3.0963 1.038 2.1972 0.48898 'coefofvar' 0.20445 0.46085 3.4678 0.47871 0.26729 'min' -0.27805 0.44365 9.9839e-05 0.099739 0.34381 'max' 16.631 57.277 48.221 22 7.0568 'pYis0' 0 0 0 0 0 'pYls0' -2.43e-35 0 0 0 0 'pYgr0' 1 1 1 1 1 'pYisMINY' -2.8451e-35 -7.1781e-35 -7.1781e-35 -7.1781e-35 -7.1781e-35 'pYisMAXY' 1.1951e-13 1.1951e-13 -6.2489e-36 1.3508e-12 1.1951e-13 'p0_1' 3.4058 2.0474 0.0011697 1.1685 0.87776 'p1' 4.3477 2.5486 0.0015079 1.5064 0.99978 'p5' 5.3952 3.15 0.001992 1.9872 1.158 'p10' 5.9468 3.6512 0.0023724 2.3156 1.2679 'p15' 6.333 3.9519 0.002645 2.577 1.3388 'p20' 6.6491 4.2526 0.0028625 2.7923 1.4071 'p25' 6.8981 4.5533 0.0030882 3.0619 1.475 'p35' 7.3731 5.1547 0.0035747 3.4663 1.5867 'p50' 8.0262 6.0568 0.0043953 4.1764 1.7618 'p65' 8.6476 7.0592 0.005551 4.8912 1.9538 'p75' 9.1538 8.0615 0.0069908 5.6061 2.1159 'p80' 9.4297 8.7632 0.0085792 6.1527 2.2202 'p85' 9.7656 9.5651 0.14864 6.5748 2.329 'p90' 10.183 10.668 0.81026 7.5046 2.4949 'p95' 10.804 12.672 2.0486 8.9571 2.7409 'p99' 11.978 17.484 5.3028 12.06 3.2408 'p99_9' 13.142 23.899 10.266 16.044 3.8193 'fl_cov_cl_mt_val' 2.7037 4.581 0.50309 3.3008 0.77709 'fl_cor_cl_mt_val' 1 0.89979 0.29477 0.91363 0.96649 'fl_cov_cl_mt_coh' 4.581 9.5869 1.7685 6.3527 1.4657 'fl_cor_cl_mt_coh' 0.89979 1 0.55028 0.93379 0.96808 'fl_cov_cl_mt_pol_a' 0.50309 1.7685 1.0773 0.49475 0.19638 'fl_cor_cl_mt_pol_a' 0.29477 0.55028 1 0.21694 0.38693 'fl_cov_cl_mt_pol_k' 3.3008 6.3527 0.49475 4.8278 1.0302 'fl_cor_cl_mt_pol_k' 0.91363 0.93379 0.21694 1 0.95887 'fl_cov_cl_mt_pol_c' 0.77709 1.4657 0.19638 1.0302 0.2391 'fl_cor_cl_mt_pol_c' 0.96649 0.96808 0.38693 0.95887 1 'fracByP0_1' 0.00040872 0.00052279 6.5804e-06 0.00042869 0.00082625 'fracByP1' 0.0050803 0.0047587 5.7852e-05 0.0037689 0.0054285 'fracByP5' 0.030805 0.022821 0.00032067 0.018472 0.031384 'fracByP10' 0.0655 0.05226 0.00064509 0.042544 0.066956 'fracByP15' 0.10324 0.07821 0.0011016 0.070033 0.098372 'fracByP20' 0.1456 0.10742 0.0015405 0.099827 0.13618 'fracByP25' 0.18743 0.14354 0.0020341 0.13589 0.17566 'fracByP35' 0.2768 0.22139 0.0031743 0.20368 0.26397 'fracByP50' 0.41885 0.34534 0.0051769 0.33114 0.4001 'fracByP65' 0.57465 0.48143 0.0076662 0.47165 0.54751 'fracByP75' 0.68462 0.59583 0.0096881 0.58719 0.66468 'fracByP80' 0.74244 0.66335 0.010959 0.65054 0.71815 'fracByP85' 0.80236 0.72973 0.015859 0.71892 0.77991 'fracByP90' 0.8636 0.7998 0.093966 0.79656 0.84888 'fracByP95' 0.92867 0.88537 0.3191 0.88405 0.91696 'fracByP99' 0.98455 0.97064 0.74941 0.9698 0.9811 'fracByP99_9' 0.99833 0.99606 0.95851 0.9961 0.99788
End Profiler and Timer
End Timer
if (bl_time) toc; end % End Profile if (it_param_set == 7) profile off profile viewer st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix]; profsave(profile('info'), strcat(st_profile_path, st_file_name)); end % % End Profiling % if (it_param_set == 7) % profile off % profile viewer % % % append function name % st_func_name = 'ff_ipwkz_ds_wrapper'; % support_map('st_profile_path') = [support_map('st_matimg_path_root') '/solve/profile/']; % support_map('st_profile_name_main') = [st_func_name st_profile_name_main]; % % % support_map % params_group = values(support_map, {'st_profile_path', ... % 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix'}); % [st_profile_path, st_profile_prefix, st_profile_name_main, st_profile_suffix] = params_group{:}; % % % Save % st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix]; % profsave(profile('info'), strcat(st_profile_path, st_file_name)); % end
Elapsed time is 1.403541 seconds.
end
ans = Map with properties: Count: 15 KeyType: char ValueType: any