Marginal Product of Labor
Marginal Product of Additional Workers (Discrete Workers)
Suppose we can not hire fractions of workers, but have to hire 1, 2, 3, etc.. What is the marginal product of each additional worker?
L = [1,2,3,4,5,6,7,8,9,10];
% Cobb Douglas Production Parameters
fx0 = (K^alpha)*(L.^beta);
fx0plush = (K^alpha)*((x0plush).^beta);
outputIncrease = (fx0plush - fx0)./h;
T = table(L', x0plush', fx0plush', outputIncrease');
T.Properties.VariableNames = {'L', 'x0plush', 'fx0plush', 'outputIncrease'};
disp(T);
L x0plush fx0plush outputIncrease
__ _______ ________ ______________
1 2 1.4142 0.41421
2 3 1.7321 0.31784
3 4 2 0.26795
4 5 2.2361 0.23607
5 6 2.4495 0.21342
6 7 2.6458 0.19626
7 8 2.8284 0.18268
8 9 3 0.17157
9 10 3.1623 0.16228
10 11 3.3166 0.15435
scatter(L, outputIncrease,'filled');
ylabel('Marginal Output Increase from each Additional Worker (h=1)')
xlabel('L, previous/existing number of workers')
title('Discrete Labor Unit, Marginal Product of Each Worker')
Using Derivative to approximate Increase in Output from More Workers
We know the MPL formula, so we can evaluate MPL at the vetor of L
L = [1,2,3,4,5,6,7,8,9,10];
% Cobb Douglas Production Parameters
fprimeX0 = (1-alpha)*(K^alpha)*(L.^(-alpha));
T = table(L', outputIncrease', fprimeX0');
T.Properties.VariableNames = {'L', 'outputIncrease','fprimeX0'};
disp(T);
L outputIncrease fprimeX0
__ ______________ ________
1 0.41421 0.5
2 0.31784 0.35355
3 0.26795 0.28868
4 0.23607 0.25
5 0.21342 0.22361
6 0.19626 0.20412
7 0.18268 0.18898
8 0.17157 0.17678
9 0.16228 0.16667
10 0.15435 0.15811
Marginal Product of Additional Workers Different Capital (Discrete Workers)
Suppose we can not hire fractions of workers, but have to hire 1, 2, 3, etc.. What is the marginal product of each additional worker?
[fprimeX0K1, L] = MPKdiscrete(K1);
[fprimeX0K2, L] = MPKdiscrete(K2);
[fprimeX0K3, L] = MPKdiscrete(K3);
scatter(L, fprimeX0K1,'filled');
scatter(L, fprimeX0K2,'filled');
scatter(L, fprimeX0K3,'filled');
ylabel('Marginal Output Increase from each Additional Worker (h=1)')
xlabel('L, previous/existing number of workers')
title('Discrete Labor Unit, Marginal Product of Each Worker')
legend(['k=',num2str(K1)], ['k=',num2str(K1)],...
['k=',num2str(K2)],['k=',num2str(K2)],...
['k=',num2str(K3)],['k=',num2str(K3)]);
function [fprimeX0, L] = MPKdiscrete(K)
L = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
% Cobb Douglas Production Parameters
fx0 = (K^alpha)*(L.^beta);
fx0plush = (K^alpha)*((x0plush).^beta);
fprimeX0 = (fx0plush - fx0)./h;