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Abstract

A planner has Atkinson-CES preference aggregation over individual outcomes and
allocates Ŵ units of discrete or bounded-continuous resources among N candidate recipients.
Conditional on observables, outcomes without allocations and the marginal effects of
allocations are heterogeneous across individuals. Despite combinatorial explosion with
rising N, the optimal allocation function has closed-form solutions when marginal effects are
non-increasing. Solutions are characterized by resource-invariant optimal allocation queues
that sequence the order in which individuals begin and stop to receive allocations. The
welfare distances between optimal and alternative allocations are measured in percentage
resource losses as resource equivalent variations.
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1 Introduction
How should a government or an aid agency allocate limited resources among heterogeneous

candidate recipients? These resources might include job training opportunities for disadvantaged

workers, stimulus checks for households in a recession, or nutritional aids for young children

who are at risk of undernourishment. In this paper, I provide closed-form solutions and

implementation algorithms for optimal allocation problems where a planner with Atkinson-CES

preferences allocates discrete or bounded-continuous units of a homogeneous resource among

heterogeneous candidate recipients. The optimal solutions are determined by resource-invariant

optimal allocation queues, which characterize the sequence in which individuals optimally begin

and stop to receive allocations.

While solutions to optimal allocation problems are readily available when interior optima

can be found via first-order conditions, in many empirical and policy-relevant settings, the

optimal allocation problem can be computationally intractable. In particular, when resources

come in discrete units, the size of the planning choice set combinatorially explodes as the

number of candidate recipients increases.1 Additionally, when continuous allocations are

constrained by individual lower and upper bounds, the number of possibly binding cases that

need to be considered in the constrained maximization problem increases exponentially as the

number of candidate recipients increases.2 Due to these computational difficulties, the allocative

implications of the rich heterogeneities uncovered by structural and reduced-form empirical

analysis are often not fully exploited. Researchers might only be able to consider several

alternative counterfactuals rather than all constrained allocation alternatives.

I solve the problem of optimally allocating a discrete or bounded-continuous homogeneous

resource among candidate recipients by first dividing the problem into an estimation-prediction

space and an allocation space. The estimation-prediction space contains the model, data, and

estimates from structural or reduced-form analysis. The allocation space only contains individual-

1. If N candidate recipient can each receive 0 or 1 unit of allocations from Ŵ total units, there are N choose Ŵ
number of possible combinations. If N = 100 and Ŵ = 50, there are 1.0089e+29 combinations. At the other
extreme, if each candidate can receive 0 to Ŵ units of allocations, the size of the choice set becomes multinomial,
and there are 1.3419e+40 combinations of possible allocation alternatives to consider for N = 100 and Ŵ = 50.

2. With possibly binding individual lower and upper bounds of allocation, the standard constrained maximization
problem would potentially need to consider all possible binding cases where subsets of allocations are bounded
below or above. Given N individual candidate recipients, the number of possible binding cases is equal to 3N − 2N .
When N = 100, there are 5.1538e+47 potential cases to consider.
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specific information relevant for the allocation problem. Specifically, in the allocation space, the

Atkinson-CES planner prioritizes allocations by jointly considering individual-specific needs and

effectiveness. Individuals who would have the lowest levels of outcomes of interest in the absence

of allocations are the most in need. Allocation increments are more effective for individuals for

whom the marginal effects of incremental allocations are greater. The relative positions that a

candidate recipient takes up along the optimal allocation queue are determined, in closed-form, by

the planner’s inequality aversion, bias, individual-specific needs, individual-specific effectiveness

of incremental allocations, and individual-specific allocation bounds. When the marginal effects

of allocations are non-increasing, the optimal allocation queue is invariant to aggregate resources.

The optimal allocation results can be deployed in several ways. Equipped with prior estimates

and predictions, as well as observables on candidate recipients, a policymaker can use the

allocation functions to determine who should receive allocations first, and how much to distribute

to each. The allocation queues are functions of the policymaker’s preferences as well as the

constraints that the policymaker faces. An econometrician observing the allocations of the

policymaker can use the optimal allocation rules to uncover planner preferences that are the most

consistent with the observed choices. Given several proposed distributional schemes, a program

evaluator can use the planner values along the optimal allocation queue as a scale to measure the

welfare distances between policy alternatives under consideration.

Literature Review From Dixit and Stiglitz (1977) to Cunha and Heckman (2007), the

assumption of CES aggregation for optimal allocation problems pervades broad areas of

economics. Given what is optimal, the degree of misallocation under CES assumptions can also

be evaluated (Hsieh and Klenow 2009). Results from the canonical problem, however, rely on

interior solutions. I show in this paper conditions under which the CES allocation problem can

be solved in closed-form when interior solutions are not possible due to discreteness in choices,

or possibly binding individual lower and upper bounds on allocations. The results broaden the

choice domains over which optimal allocation and misallocation problems are tractable.

A growing number of recent works in mechanism design have studied the optimal discrete

choice allocation problem (Ben-Porath, Dekel, and Lipman 2014; Mylovanov and Zapechelnyuk

2017). These papers focus on allocation mechanisms that consider the trade-offs between

utilitarian effectiveness and the costs of eliciting private information through costly state
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verification (Townsend 1979). In this paper, I allow for inequality aversion and focus on the

trade-offs between needs without allocations and the effectiveness of allocations. I abstract from

the information elicitation problem and solve for what is optimal conditional on the information

that is currently available to the planner.

The paper relates to the empirical Rawlsian optimal targeting as well as the largely Utilitarian

optimal statistical treatment literatures. There is a long line of work in development economics

that studies targeting aids to the poor (Besley and Kanbur 1990; Coady, Grosh, and Hoddinott

2004; Grosh et al. 2008). Recent works have focused on using participatory wealth ranking,

self-selection, and other tools beyond proxy-means tests to better identify those in need (Alatas

et al. 2016; Karlan and Thuysbaert 2019). In contrast, starting with Manski (2004) and Dehejia

(2005), the optimal statistical treatment literature has generally focused on allocation rules that

prioritize candidate recipients with higher expected gains from treatments. Recent papers have

considered binary optimal treatment rules given budget constraints, policy space constraints, and

non-Utilitarian preferences (Bhattacharya and Dupas 2012; Kitagawa and Tetenov 2018, 2019).

In this paper, I take existing estimates and predictions as given and solve for what is optimal

for Rawlsian to Utilitarian planners given observed heterogeneities among a set of candidate

recipients.

This paper also relates to a growing literature that tackles problems with combinatorially

exploding choice sets (Arkolakis and Eckert 2017; Alva 2018). Empirical works have relied on

algorithmic approximations of true solutions (Jia 2008; Antràs, Fort, and Tintelnot 2017; Hu

and Shi 2019). In this paper, despite states-spaces that grow exponentially and choice-sets that

grow factorially with the number of candidate recipients, Atkinson-CES preference aggregation

and non-increasing marginal effects lead to non-backward bending resource expansion paths

which can be characterized in closed-form by an optimal allocation queue. The solution falls

broadly under the class of greedy algorithms: the optimal allocation queue establishes global

optimality from step-wise local comparisons (Schrijver 2003).

2 The Optimal Allocation Problem
Planner preferences should allow for both inequality aversion as well as biases. A poverty

alleviation campaignmight focus on helping the poorest, efforts to reduce pollutionmight focus on
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lowering average emissions, and an education program might weight both average and minimum

achievements. An NGO might be biased towards improving school enrollments for girls, and

a development bank might be biased towards regional firms. To allow for these variations in

planner preferences, given N candidate recipients of allocations indexed by i, I assume that the

planner aggregates over individual-specific expected outcomes Hi with Atkinson preferences

(CES aggregation) (Atkinson 1970).3 The planner affects changes in Hi with individual-specific

allocations Vi.4 I consider the problem of maximizing the planner’s objective function

U
(
{Hi}N

i=1

)
=

(
N

∑
i=1

βi (H (Vi ; xi, Θ))λ

) 1
λ

,

where βi > 0 ,
N

∑
i=1

βi = 1, and −∞ < λ ≤ 1 ,

(1)

on the choice set

C ≡
{

V = (V1, · · · , VN) : 0 ≤ Vi ∈ Ωi, and,
N

∑
i=1

Vi ≤ Ŵ ∈ R+
}

. (2)

Allocation Vi is constrained by aggregate resources Ŵ, as well as an individual-specific constraint

set Ωi. In empirical settings, xi and Θ can be vectors of observables and prior estimates. xi and

Θ might also be state-space elements and calibrated parameters from a simulated model. xi

and Θ jointly determine needs, Hi (Vi = 0), and effectiveness, which is Hi (Vi)− Hi (Vi − 1)

when allocations are discrete.

Under Atkinson-CES preference aggregation, the planner’s objective can be cast as a measure

of inequality. The Atkinson inequality measure is:
(

1−U (λ) ·
(

∑N
i=1 Hi/N

)−1
)
∈ [0, 1],

where zero indicates perfect equality. When λ = 1, the Utilitarian planner has no aversion

towards inequality and maximizes the average outcome. As λ approaches −∞, the planner

becomes more averse to inequality and exhibits Rawlsian preferences. In between, the planner

cares about inequality aswell as efficiency. An important restriction is thatVi enters Hi but not Hj.

3. Atkinson-CES and equivalent preference aggregations have long been used to study allocations given inequality
aversion (or equivalently, risk aversion). Other authors have studied the allocation of inputs among children by a
household head (Behrman, Pollak, and Taubman 1982), districts by a city–planner (Behrman and Craig 1987) or
households by a village–headman (Basurto, Dupas, and Robinson 2019). Recently, Boar and Midrigan (2020) also
use Atkinson-CES aggregation to allow for inequality aversion in the analysis of optimal taxation policies.

4. Hi could be the probability of not being stunted, average school test scores, and expected utility. Vi could be
food aid, additional teachers, and welfare checks. Hi, adjustable via Vi, can be inputs for CES production function U.
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This means the framework here does not account for spillover effects between candidate recipients.

Given solutions to the optimal allocation problem, the expenditure minimization dual problem

provides the welfare costs, in resource units, of misallocation:

Definition 1 Given alternative allocations
{

Vo
i
}N

i=1 and optimal allocation
{

V∗i (·)
}N

i=1,

∆REV ≡ 1−
min

{
Ŵ : U

({
Hi

(
V∗i
(

Ŵ
)) }N

i=1

)
≥ U

({
Hi
(
Vo

i
) }N

i=1

)}
∑N

i=1 Vo
i

is the resource equivalent variation (REV) change.

Holding planner value constant, ∆REV measures the percentage of resources that can be saved by

allocating optimally. Optimal targeting could be costly administratively and difficult politically

(Coady, Grosh, and Hoddinott 2004). ∆REV provides a common scale in resource units to

measure the welfare distances among alternative allocations. Alternative allocation rules might

be random, uniform, optimally chosen based on limited or augmented candidate recipient

observables xi, or optimally chosen based on tightened or relaxed allocation constraints Ωi.

2.1 Deficiencies of the CES Allocation Problem

When Hi is proportional to Vi and αi > 0, the planner solves the workhorse CES problem:

max
{Vi}N

i=1

(
N

∑
i=1

βi (Hi)
λ

) 1
λ

s.t. ∀ i, Hi = αiVi and 0 ≤ Vi , and ΣN
i=1Vi = Ŵ

(3)

Analytical solutions are immediate from First Order Conditions. Allowing for αi 6= αj

nests individual-specific CES functions with constant returns. If Hi can be reallocated with

homogeneous marginal effects (Hi = αVi ∈ R+) and βi =
1
N , it would be optimal to equalize

Vi for all λ ∈ (−∞, 1] (Atkinson 1970).

The CES problem makes three key allocative assumptions related to aspects of the Inada

conditions. First, under CES, Hi (Vi = 0) = 0. However, most allocation schemes provide

supplemental resources to enhance outcomes, which means Hi (Vi = 0) > 0. Second, under

CES, the objective function is continuously differentiable in Vi. Empirically, resources often

have to be provisioned in discrete units. Third, except for the aggregate resource constraint, the
5



CES problem does not impose possibly binding individual constraints on Vi. In practice, there

are often both minimum requirements as well as upper limits on allocations.5 When these CES

assumptions are violated, the objective function would no longer be homothetic in allocations,

and the elasticity of substitution for allocations would not be constant.

In the following sections, preservingAtkinson-CES preference aggregation, I provide solutions

to the discrete and bounded-continuous allocation problems.

3 Discrete Allocation Space

3.1 The Discrete Allocation Problem

A food program needs to determine how many bags of rice to provide to each household

in need. A maternal health program needs to determine the number of pre-natal check-up

slots to provide to each mother. A job training program needs to assign finite training spots to

heterogeneous unemployed individuals. The discrete constraint set models these choice as

CD ≡
{

D = (D1, · · · , DN) : Di ∈
{

D
¯ i, D

¯ i + 1, · · · , D̄i

}
, D
¯ i ∈N0,

N

∑
i=1

Di ≤ Ŵ

}
. (4)

CD allows for individual-specific upper and lower bounds on allocations Di. A special case

is the binary choice set, where D
¯ i = D

¯
= 0 and D̄i = D̄ = 1. More generally, the discrete

constraint set can be used to approximate continuous choice sets. In standard discrete choice

problems, the optimal choice is found by comparing utility at all possible choices (Train 2009).

The size of CD, however, grows factorially with N and D̄i. Evaluating utility at all combinatorial

possibilities quickly becomes computationally infeasible.6

For individual i, l indexes each increment of discrete allocations. Let αil denote the

5. For example, suppose Hi equals one minus the probability of undernourishment and Vi is food aid. Without
food aid, the chance of undernourishment would not be one. Food aid might arrive in the form of bags of rice or
bottles of nutritional supplements, and the amount of food that an individual can consume is finite.

6. A number of recent works have studied combinatorial optimization in economic settings (Jia 2008; Arkolakis
and Eckert 2017). In general, exact solutions are not possible. Here, at the lower-end, where D̄i = 1, the number
of allocation possibilities is binomial, N!/

((
N − Ŵ

)
!Ŵ!

)
. At the upper-end, where D̄i = Ŵ, the choice set

is multinomial,
(

Ŵ + N − 1
)

!/
(
(N − 1)!Ŵ!

)
. In the language of shuffle algebra, the size of the choice set is

equal to all combinations of the first Ŵ cards among all interwoven shuffles of N card decks with D̄i cards per deck.
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effectiveness of allocations and Ai denote needs:

HD
i = Ai +

D̄i

∑
l=1

(
αil · 1

{
l ≤ Di

})
. (5)

To gain tractability, I impose three restrictions on αil and Ai:

Assumption 1 Marginal effects αil for the lth increment of Di on Hi are: (1) positive, αil > 0;

(2) non-increasing, αil ≤ αi,l−1; and (3) can lead to positive outcomes, Ai + ∑D̄i−1
l=1 αil > 0.

Assumption 1 imposes no functional form or parametric assumptions on the underlying

reduced form or structural model. The first restriction is innocuous. If additional increments

have zero effects, D̄i can be lowered. The second restriction accommodates both constant returns

as well as arbitrary step functions of decreasing returns.7 The third restriction allows for Ai > 0.

Additionally, Ai < 0 is also possible if the cumulative effects of allocations lead to positive

outcomes (Geary 1950).8 Given these, without loss of generality, the minimum allocation can

be subsumed under Ai and D
¯ i set to zero.

Ai and αil are functions of (xi, Θ). The parameters could capture the reduced-form ef-

fects of stimulus checks on consumption. For notational simplicity, I assume that the check

is of a fixed amount and the allocation problem is binary. Hi can be the expected average

consumption: Hi (xi, Di) = θ0 + θ1xi + θ2Di − θ3Di1 {xi ≥ q}. Then, Ai = θ0 + θ1xi

is the expected consumption as a function of age xi without allocations. αi = θ2 is

the expected consumption increase from the stimulus check for individuals younger than

age q, and αi = θ2 − θ3 > 0 is the potentially smaller consumption effects of stimulus

on older individuals who have higher levels of savings. When the distribution of uncer-

tainty is available, the Hi for a planner with individual-specific inequality aversion can also

be: Hi (xi, Di) =
(∫

(θ0 + θ1xi + θ2Di − θ3Di1 {xi ≥ q}+ ε)σi f (ε)dε
) 1

σi . In this case,

Ai (xi) =
(∫

(θ0 + θ1xi + ε)σi f (ε)dε
) 1

σi , and αi (xi) = Hi (xi, Di = 1)− Ai (xi).

Ai and αil could also incorporate predictions from structural models. One might have

H (S∗ (Di, xi, Θ) , xi, Θ). Consumption Hi is a function of the savings policy function S∗,

which is endogenous to the provision of stimulus check Di. Nygaard, Sørensen, and Wang (2020)

7. In some settings, there might be threshold levels of allocations where returns shift from increasing to non-
increasing. Assumption 1 remains valid if the planner sets minimum allocation level D

¯ i at these thresholds.
8. In restriction 3, the summation ends at D̄i − 1 so that not allocating up to the maximum remains a valid choice.
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solve an optimal stimulus check allocation problem in the context of a dynamic life-cycle model

using the algorithms provided in this paper. The authors compute αil over 244 stimulus check

increments (at $100 per increment) for a variety of household types.

Ai and αil transform the problem from the estimation-prediction space to the dimension-

reduced allocation space. I define the solution to the discrete optimal allocation problem as:

Definition 2 Given N individuals, the solutions to the discrete optimal allocation problem

are allocation functions D∗j

(
Ŵ, λ, {βi}N

i=1 , {Ai}N
i=1 ,

{
{αil}D̄i

l=1

}N

i=1
, {D

¯ i, D̄i}
N
i=1

)
: N×

(−∞, 1]× (0, 1)N ×RN ×R
(∑N

i=1 D̄i)
+ ×N

(N·2)
0 →

{
D
¯ j, D

¯ j + 1, · · · , D̄j

}
such that D∗ =

(D∗1 , · · · , D∗N) maximizes,

max
D∈CD

 N

∑
i=1

βi

(
Ai +

D̄i

∑
l=1

(
αil · 1

{
l ≤ Di

}))λ


1
λ

, (6)

on the constraint set CD
(

Ŵ, {D
¯ i, D̄i}

N
i=1

)
.

3.2 Discrete Allocation Solutions

The solution concept here is to solve for an optimal allocation queue that is invariant to

resources. Given N individuals, the queue is ranked from 1 to ∑N
i=1 D̄i, where 1 indicates the

top-ranked individual who would receive the first unit of allocation. Suppose an individual has

two potential units of allocations ranked at the 1st and the 4th spot of the queue; if Ŵ = 4, the

individual receives both units of allocation. Under Assumption 1, as aggregate resources increase,

the planner will only allocate more to individuals—the discrete resource (income) expansion path

does not bend backward. The optimal allocation queue characterizes the resource expansion path.

Theorem 1 Suppose that Assumption 1 holds and assume without loss of generality D
¯ i = 0 for

all i. The Atkinson-CES planner’s discrete allocation solutions, D∗1 , · · · , D∗N, are:

D∗i
(

Ŵ
)
=

D̄i

∑
l=1

1
{

QD
il ≤ Ŵ

}
(7)
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where QD
il is the position of the lth allocation increment for individual i on the allocation queue,

QD
il =

N

∑
ĩ=1

D̄ĩ

∑
l̃=1

1


β ĩ
βi

·


(

Aĩ +
l̃

∑
l′=1

αĩl′

)λ

−
(

Aĩ +
l̃−1
∑

l′=1
αĩl′

)λ

(
Ai +

l
∑

l′=1
αil′

)λ

−
(

Ai +
l−1
∑

l′=1
αil′

)λ

 ≥ 1


. (8)

Additionally, given alternative allocations Do
i and Ŵo = ∑N

i=1 Do
i , ∆REV is:

Ŵo ·
(
1− ∆REV) = min

Ŵ :
∑N

i=1 βi ·
(

Ai + ∑D̄i
l=1

(
αil · 1

{
QD

il ≤ Ŵ
}))λ

∑N
i=1 βi ·

(
Ai + ∑

Do
i

l=1 αil

)λ
≥ 1

 (9)

The proof for Theorem 1 is provided in the Appendix.

There are four key aspects to Theorem 1. First, the ranking of allocation increments

along the optimal allocation queue, QD
il , is based on a comparison of the level of individual

outcomes with and without the next increment of allocation, scaled by inequality aversion λ,

and weighted by individual bias βi. Specifically, for the lth allocation increment for individual

i, only βi

((
Ai +

l
∑

l′=1
αil′

)λ

−
(

Ai +
l−1
∑

l′=1
αil′

)λ
)

needs to be evaluated. In the boundary

case where λ = 1 and βi =
1
N , Equation (8) simplifies to a descending sort over αil. As

inequality aversion shifts away from λ = 1, the importance of Ai increases. In the case of binary

allocations, at λ = −∞, the allocation queue simplifies to an ascending sort over Ai, where

individuals with the lowest needs receive allocations first.

Second, the optimal allocation queue is invariant to resources—Ŵ does not appear in Equation

(8). Aggregate resources only act as cut-off points in Equation (7). The optimal allocation queue

provides the solution to the optimal allocation problem from when Ŵ = 0 to Ŵ = ∑N
i D̄i.

The ranking for the same individual, however, can change when a program expands to consider

additional candidate recipients, when additional observables become available, or when a

program changes its service mandates.

Third, the ∆REV welfare comparison statistics is also a function of the optimal allocation queue.

Thewelfare value of any alternative allocations can be readilymapped to a position along the queue.

∆REV is then directly measurable as the distance between positions along the optimal queue.
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Fourth, Theorem 1 accommodates ties and group-aggregation. When the number of candidate

recipients of the same type increases, the relative rankings across types are preserved. When

policy constraints limit the covariates that could be used to condition allocations (Kitagawa and

Tetenov 2018), Ai and αil can be redefined with group-specific aggregation functions.9

Given inputs αil and Ai, the computational implementation of Theorem 1 in the companion

code package solves for optimal allocation queues along with welfare along the queues given

a vector of inequality aversion λ. Since the computational burden increases linearly with N,

problems with combinatorially exploding choice sets can be readily solved even when N is large.

The main computational burden of implementing Theorem 1 potentially falls on evaluating

αil (xi, Θ) based on model predictions for many units of allocation increments.

4 Bounded-Continuous Allocation Space

4.1 The Bounded-Continuous Allocation Problem

A poverty alleviation program might provide continuous transfers to households. An early-

childhood program might provide protein supplements in grams to children-at-risk. Income

security needs, dietary energy requirements, or pre-existing allocations might lead to lower

bounds on allocations. Physical limits on intakes, policy constraints, or limits on prediction

extrapolations can lead to upper bounds on allocations. The bounded-continuous choice set is:

CC ≡
{

C = (C1, · · · , CN) : 0 ≤ C
¯ i ≤ Ci ≤ C̄i, and,

N

∑
i=1

Ci ≤ Ŵ

}
. (10)

Given CC, solutions to the planner’s problem need to satisfy Karush-Kuhn-Tucker conditions.

With complementary slackness, standard solution methods require a comparison of values across

all binding possibilities.10 The number of possible binding cases grows exponentially with

N and quickly becomes computationally intractable. Allocation for each individual might be

9. Suppose an Atkinson-CES planner observes education, age, and associated model predictions, but can only
allocate based on education. Then, Ai can be a CES aggregate of group-member outcomes when allocations
are zero given the conditional distribution of age on education. αil is similarly aggregated with group members
receiving the same incremental levels of allocations. Relative positions along the optimal queue are determined by
education groups. Individuals are tied within group. In the context of an optimal stimulus check problem, Nygaard,
Sørensen, and Wang (2020) provide examples for including and excluding age as a policy conditioning variable.
10. Bounded-continuous problems appear, for example, in models with possibly binding financial constraints.

Tackling dynamics, solutions methods are generally algorithmic (Guerrieri and Iacoviello 2015).
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separately bounded below, bounded above, or unbounded. The maximum potential number of

cases to consider is 3N − 2N , which is the total number of edges and faces of an Nth dimensional

hypercube.

Relaxing the CES proportionality assumption, I allow expected outcomes to be linear in Ci,

HD
i = Ai + αi · Ci . (11)

For closed-form tractability, Equation (11) assumes that Ci has constant-returns. Overall, I

impose three restrictions on αi (effectiveness) and Ai (needs):

Assumption 2 Marginal effects αi of Ci on expected outcome Hi are: (1) positive, αi > 0; (2)

constant over Ci increments; and (3) can lead to positive expected outcomes, Ai + αi · C̄i > 0.

Assumption 2 allows for Ai 6= 0, which permits subsuming minimum allocations under Ai. I

henceforth assume for notational clarity that C
¯ i = 0 for all i. In the case of linear regressions, Ai

could be the dot product of covariate estimates and covariate observables, and αi could capture

treatment effects along observable dimensions of heterogeneity. In structural settings, Ci can

be transfers to individuals who solve individual-specific constant-returns utility maximization

problems over individual inputs. In such contexts, αi is a function of individual-specific prices,

elasticities, and productivities, and Ai captures individual characteristics that determine initial

conditions.11

The solution to the constant-returns bounded-continuous allocation problem is defined as:

Definition 3 The solutions to the constant-returns bounded-continuous optimal allocation

problem are allocation functions C∗j
(

Ŵ, λ, {βi}N
i=1 , {Ai}N

i=1 , {αi}N
i=1 ,

{
C
¯ i, C̄i

}N
i=1

)
: R+ ×

(−∞, 1]× (0, 1)N ×RN ×RN
+ ×R

(N·2)
+ →

[
C
¯ j, C̄j

]
such that C∗ = (C∗1 , · · · , C∗N) maxi-

mizes,

max
C∈CC

(
N

∑
i=1

βi (Ai + αi · Ci)
λ

) 1
λ

, (12)

on the constraint set CC
(

Ŵ,
{

C
¯ i, C̄i

}N
i=1

)
.

11. With one individual-specific input, αi is the ratio of marginal effects and price. Generally, constant-returns
models with a separable term for initial conditions could be accommodated. This includes, for example, the
canonical early and late childhood investment model of Cunha and Heckman (2007).
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It should be noted that while Theorem 1 can approximate the solutions to bounded-continuous

problems, solving the problem in Equation (12) offers two advantages when the marginal effects

of incremental allocations are approximately linear. First, the solutions of Equation (12) is a

function of {αi}N
i=1. This avoids the need to evaluate increment-specific effects of allocations.

Second, the bounded-continuous problem accommodates heterogeneous prices through αi.12

4.2 Bounded-Continuous Allocation Solutions

Following the solutions to the discrete problem, to derive optimal policy functions, I first

order candidate recipients along four allocation sequences:

start-queue QC =
{

Q
¯

C
1 , · · · , Q

¯
C
N

}
, stop-queue QC

=
{

Q̄C
1 , · · · , Q̄C

N

}
,

start-knots KC =
{

K
¯

C
1 , · · · , K

¯
C
N

}
, and stop-knots KC

=
{

K̄C
1 , · · · , K̄C

N

}
.

(13)

Queues QC and QC index the order in which individuals begin or stop to receive additional

allocations. Knots KC and KC mark the aggregate resource levels where individuals join and

leave the queues. Intuitively, marginal optimality conditions apply—successively along the

queue—relative to the first allocation recipient i = I, for whom Q
¯

C
i=I

= 1 and K
¯

C
i=I = 0.

Values for elements of the four sequences are derived fromFirst Order Conditions. For all i, j ∈

(1, · · · , N), when individual allocation bounds do not bind, relative optimality requires that:

Crela
i
(
Cj
)
=

( βiαi

β jαj

) 1
1−λ Aj

αi
− Ai

αi


︸ ︷︷ ︸

φ
y
i,j

+

(βi

β j

) 1
1−λ
(

αi

αj

) λ
1−λ


︸ ︷︷ ︸

φs
i,j

·Cj ,
(14)

with relative y-intercept φ
y
i,j, slope φs

i,j, and x-intercept φx
i,j = −φ

y
i,j/φs

i,j.

To arrive at the four sequences, first, Q
¯

C
i is ordered by the sign of φ

y
i,j.13 Second, K

¯
C
i is

the sum of all truncated relative optimal choices
{

min
(

C̄j, max
(

0, Crela
j (CI)

)) }N

j=1
with

respect to the first recipient at CI = φx
i,I. Third, Q̄C

i is determined by upper-bound-intercepts—

12. Heterogeneous prices might arise when a food aid agency distributes money to localities where prices for the
same nutritional inputs differ. Due to indivisibility, the presence of heterogeneous prices can lead to backward
bending resource expansion paths for discrete problems. See Appendix A.2 for details.
13. If allocation Cj = φx

i,j, relative optimality requires that Ci = 0. If allocation Cj exceeds φx
i,j, relative optimality

requires that Ci > 0. Hence, with respect to j, if φx
i,j > 0—which means φ

y
i,j < 0—then i should be ranked after j

on the optimal start-queue.

12



the order in which Ci reaches its upper bound C̄i. Fourth, K̄C
i is the sum of bounded allocations

at these upper-bound-intercepts.

Theorem 2 Suppose that Assumption 2 holds and assume without loss of generality C
¯ i = 0 for

all i. The Atkinson-CES planner’s constant-returns bounded-continuous allocation solutions,

C∗1 , · · · , C∗N, are:

C∗i
(

Ŵ
)
= min

{
C̄i , max

{
0 , φy

i,I + φs
i,I · CI

(
Ŵ
) }}

, (15)

CI

(
Ŵ
)
=

Ŵ −∑N
j=1

(
φy

j,I · 1
{

K
¯

C
j < Ŵ ≤ K̄C

j

}
+ C̄j · 1

{
K̄C

j < Ŵ
})

∑N
j=1

(
φs

j,I · 1
{

K
¯

C
j < Ŵ ≤ K̄C

j

}) . (16)

Start-queue Q
¯

C
i , stop-queue Q̄C

i , start-knots K
¯

C
i and stop-knots K̄C

i values for individual i are:

1. I = arg mini∈{1,...,N}

{
Q
¯

C
i

}
, Q
¯

C
i = ∑N

j=1 1

{(
Aj

Ai

)
·
(

αj · β j

αi · βi

) 1
λ−1

≤ 1

}

2. K
¯

C
i = ∑N

j=1

(
min

{
C̄j ,

(
φy

j,I + φs
j,I ·
−φy

i,I

φs
i,I

)}
· 1
{

Q
¯

C
j ≤ Q

¯
C
i

})

3. Q̄C
i = ∑N

j=1 1

{(
C̄i − φy

i,I

φs
i,I

)
·
(

φs
j,I

C̄j − φy
j,I

)
≥ 1

}

4. K̄C
i = ∑N

j=1

(
C̄j · 1

{
Q̄C

j ≤ Q̄C
i

}
+ max

{
0 ,

(
φy

j,I + φs
j,I ·

C̄i − φy
i,I

φs
i,I

)}
· 1
{

Q̄C
j > Q̄C

i

})
.

Additionally, given alternative allocations Co
i and Ŵo = ∑N

i=1 Co
i , ∆REV is:

Ŵo (1−∆REV)=min

Ŵ :
∑N

i=1 βi

(
Ai + αi · C∗i

(
Ŵ
))λ

∑N
i=1 βi

(
Ai + αi · Co

i
)λ

≥ 1

 . (17)

The proof for Theorem 2 is illustrated in the Appendix.

A core result of Theorem 2 is that, like Theorem 1, the allocation queues are invariant to

aggregate resources Ŵ. In particular, Q
¯

C
i , Q̄C

i , K
¯

C
i , and K̄C

i are not functions of Ŵ. This means

that the optimal allocation problem can be solved at once to provide solutions along all resource

levels from Ŵ = 0 to Ŵ = ∑N
i=1 C̄i.

Theorem 2 also shows that candidate recipients along allocation queues are sorted by simple

functions of Ai, αi, βi, and C̄i. In particular, rankings along the start queue is determined by
13



relative values of Ai/ (αiβi)
1

1−λ , where λ determines the relative importance of Ai and αi. At

the extremes, the start queue of the Utilitarian planner is a descending sort over αiβi, and the

start queue of the Rawlsian planner is an ascending sort of Ai. In the absence of upper bounds on

allocations and assuming βi =
1
N , the Utilitarian planner allocates all resources to the individual

with the highest αi. In contrast, in the absence of upper bounds, the Rawlsian planner equalizes

the outcome of interest as much as possible by successively adding higher Ai individuals to the

allocation queue.14

The solution to the bounded-continuous problem includes many corners. The closed-form

solution presented in Theorem 2 is possible despite the lack of interior solutions because after

identifying the first recipient of allocations along the optimal start queue, the allocation problem

for N candidate recipients is restated in Equation (16) as an allocation problem for the first

recipient along the allocation queue. Given the constant-returns assumption, Equation (16) is

simply a linear spline. Optimal allocations for all other candidate allocation recipients are then

directly obtainable through First Order Conditions given bounds, as shown in Equation (15).

The algorithmic implementation of Theorem 2 is provided in the companion programs. First,

the four allocation sequences—QC, QC, KC and KC—are computed. Second, given resource

availability, the allocation for the first recipient along the start queue is found. Third, allocations

for all other recipients are computed. The computational burden rises linearly with N and

involves evaluating N · 2 knots of a linear spline. In comparison to the discrete allocation

problem, the computational burden in the estimation-prediction step is lower since only one

marginal effect per candidate recipient needs to be computed.

5 Examples

5.1 Discrete Allocation Example N = 2

I solve an illustrative discrete allocation problem based on Equation (6) when N = 2. Figure

1 presents the results and shows expected outcomes for individuals i = 1, 2 along the axes.

Parameters for both individuals conform to Assumption 1.15 Visually, the feasible expected

14. When C̄i = ∞ for all i, the Rawlsian planner pours water down a two-dimensional stairwell: the level of each
step is Ai, the width of each step is αi, flat water level reaches higher steps as Ŵ increases, and Ŵ equals total water
area.
15. Ai is positive, αil is positive and strictly decreasing, D

¯ i is equal to zero, and I let D̄i=1 = 6 and D̄i=2 = 5.

14



outcome set forms a rectilinear grid with diminishing distances towards the top-right.16

I let A1 > A2 and α1,l > α2,l for all l, and solve for optimal allocations at possible Ŵ

values under unbiased planners (βi = 0). With greater needs and lower effectiveness, individual

i = 2 receives more allocations from the equality-centric planner (λ = −100). In contrast,

individual i = 1 receives more from the efficiency-focused planner (λ = 0.99). Allocations for

the approximately Cobb-Douglas planner (λ = −0.01) lies between the two boundary planners.

Given non-increasing and positive αil and Atkison-CES preferences, the discrete resource

expansion paths do not bend backward. Theorem 1 traces out the positions that individual

allocations take along each resource expansion path. As N increases, Theorem 1 provides a

tractable way to jointly consider equity and efficiency given heterogeneous needs and effectiveness.

Theorem 1 can also be used in mapping observed choices to preferences. Suppose observed

allocations are Do
1 = Do

2 = 3. In Figure 1, D∗1 = D∗2 = 3 for both λ = −100 and λ = −0.01,

but not for λ = 0.99. Conditional on βi=1 ∈ (0, 1), one could solve for the range of λ that

rationalizes
{

Do
i
}2

i=1. As N increases, conditional on λ, joint bounds on {βi}N
i=1 could be

constructed that rationalize
{

Do
i
}N

i=1. Theorem 1, by providing preference-specific analytical

allocative solutions, allows calibration and estimation procedures to search through large

parameter spaces at low costs.

5.2 Bounded-Continuous Example N = 2

I consider in this section the bounded-continuous allocation problem in Equation (12) when

N = 2. Figure 2 illustrates the results. I assume that αi > 0 and Ai > 0 for i = 1, 2.

The maximum feasible expected outcome rectangle has left bottom vertex (A1, A2), and top

right vertex (A1 + α1C̄1, A2 + α2C̄2). Following the discrete N = 2 example, I assume that

A1 > A2 and α1 > α2. As in the discrete problem, the resource expansion paths do not bend

backward in Figure 2.

Figure 2 visualizes the thresholds where individuals are introduced or dropped from receiving

additional allocations. For example, for λ = −0.01, individual i = 1 starts receiving first and

ends receiving last:
(

Q
¯

C
1 = 1, Q̄C

1 = 2, Q
¯

C
2 = 2, Q̄C

2 = 1
)
. Given these, following Equation

16. Expected outcomes form a grid because Di only impacts Hi, such that the effect of additional Di=1 on Hi=1
is not dependent on the value for Di=2. Given that αil > 0, each point on the expected outcome grid corresponds to
a point on the choice grid. And since αil > αi,l+1, the rectangular areas between expected outcome vertices are
decreasing towards the top-right of Figure 1, forming a rectilinear grid.
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(16) from Theorem 2, we have:

C1

(
Ŵ
)
= Ŵ · 1

{
Ŵ ≤ φx

2,1

}
+

(
Ŵ − φx

2,1

1 + φs
2,1

+ φx
2,1

)
· 1

{
φx

2,1 < Ŵ ≤
(

C̄2 +
C̄2 − φ

y
2,1

φs
2,1

)}

+
(

Ŵ − C̄2

)
· 1

{(
C̄2 +

C̄2 − φ
y
2,1

φs
2,1

)
< Ŵ ≤ (C̄1 + C̄2)

}
.

(18)

The optimal allocation spline has three linear segments with four associated knots:

K
¯

C
1 = 0 , K

¯
C
2 = φx

2,1 ,

K̄C
1 = C̄1 + C̄2 , K̄C

2 =

(
C̄2 +

C̄2 − φ
y
2,1

φs
2,1

)
.

(19)

Along the middle segment, i = 1 receives 1
1+φs

2,1
fraction of each unit of additional resources.

Theorem 2 provides a closed-form accounting of all N · 2 entry and exit points along each

resource expansion path. Visually, as N increases, Figure 2 gains exponentially more possibly

binding edges and faces. However, the linear spline from Equation (16) remains one dimensional

for all N. The introduction of an additional candidate recipient only increases the total number

of knots by two.

Theorem 2 also facilitates welfare comparisons. Aggregate welfare at alternative allocations

Co
1 and Co

2 must be no better than welfare at C∗1
(

Ŵ = Co
1 + Co

2

)
and C∗2

(
Ŵ = Co

1 + Co
2

)
. The

expenditure minimization problem from Equation (17) traces backward along each resource

expansion path in Figure 2 until the value given resources falls below the utility at alternative

allocations. Closed-form solutions allow for immediate welfare evaluations along all paths and

the relative welfare comparisons of optimal and alternative allocations.

5.3 Empirical Examples

The allocation algorithms could be applied in various structural and reduced-form empirical

settings. Nygaard, Sørensen, and Wang (2020) use the allocation algorithms to determine the

optimal allocation of stimulus checks among United States households that differ in income,

marital status, and the number of children. For these heterogeneous households, the authors use

a calibrated dynamic life-cycle consumption-saving model to predict the level of consumption

16



in the absence of allocations as well as the marginal effects of incremental stimulus checks on

consumption. Given varying constraints on the minimum and maximum allocation bounds

for different types of households, the ∆REV gaps between constrained optimal allocations and

the actual allocations from the United States Coronavirus Aid, Relief, and Economic Security

(CARES) Act of March 2020 are computed.

In this section, I provide a reduced-form implementation example of the allocation algorithms.

To illustrate ideas, I take the concept of the optimal allocation queue to the National Supported

Work Demonstration (NSW) dataset from LaLonde (1986). The dataset includes 297 adult males

who were treated in a job training program and 425 adult males who were in the control group.

LaLonde (1986) reports a significant gain of $886 in 1979 wage for the treatment group.

I estimate the effects of job training (binary) on employment probability using a logistic

regression model. Ai is the expected probability of employment (in 1978) without job training,

and αi is the marginal effects of training on employment probability. I control for age (Gi),

years of education (Ei), race (Black BLKi and Hispanic HISi), and baseline employment status

(EMP75i).17 I allow for an interaction term between the training treatment variable Bi and an

indicator of whether an individual is below 24 years of age. Ai and αi are individual-specific:

let Ωemp78 (xi) = exp
(

θ0 + θ1Gi + θ2G2
i + θ3Ei + θ4BLKi + θ5HISi + θ6EMP75i

)
,

then Ai (xi) =
Ωemp78 (xi)

1 + Ωemp78 (xi)
,

and αi (xi) =
Ωemp78 (xi) · exp (θ7Bi + θ8Bi1 {Gi > 23})

1 + Ωemp78 (xi) · exp (θ7Bi + θ8Bi1 {Gi > 23}) − Ai (xi) .

(20)

The allocation solutions accommodate structural or non-structural, parametric or non-parametric

estimation and simulation results. Equation (20) provides an illustrative mapping. In this

example, I am assuming that planner preferences aggregate over expected individual outcomes.

As discussed earlier, the planner could also aggregate over possible realizations of individual

outcomes with individual-specific uncertainty aggregations.

I plot the joint distribution of Ai (x-axis) and αi (y-axis) in Figure 3.18 The Utilitarian planner

17. Age ranges from 17 to 55 (median 23). Education ranges from 3 to 16 years (median 10). Hispanics account
for 10 percent of the sample. Blacks account for 80 percent of the sample. EMP75i is equal to zero for those that
reported zero wages in 1975 and one otherwise.
18. In practice, a program-manager might combine experimental estimates with scale-up observables xi to
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focuses on αi and allocates in descending order of the y-axis. The Rawlsian planner focuses on

Ai and allocates in ascending order of the x-axis. Here, the Atkinson-CES planner’s problem

considers αi and Ai jointly. Conditional on Ai, αi is higher for younger individuals. Overall,

Ai and αi are negatively correlated. This contrasts with the earlier N = 2 examples where the

individual with lower Ai also has lower αi. Despite the overall negative correlation, the possibility

for trading off between needs and effectiveness arises due to the age interaction coefficient θ8.

From Figure 3, one could see that the individual with the highest value of αi does not have the

lowest value of Ai. Under the Utilitarian planner, the top-ranked individual on the allocation

queue is a 23-year-old African American with nine years of education. Under the Rawlsian

planner, the top-ranked individual is a 31-year-old African American with nine years of education.

Aplanner allocates training spots given the heterogeneous Ai and αi. There are 722!
(722−297)!·297! ≈

7.4 · 10210 possible ways of allocating 297 training spots among the 722 candidate recipients.

Given Atkinson-CES preferences and Assumption 1,19 I apply Theorem 1 to solve for optimal

allocations as λ shifts from the Utilitarian to the Rawlsian boundary points. In Figure 4, I focus

on eight individuals who are ranked at the 1st, 101st, 201st, 301st, 401st, 501st, 601st, and 701st

positions along the optimal allocation queue under λ = 0.99. Three of these individuals have

decreasing rankings (higher rank values) as λ moves towards −100. The ranking lines have

different λ points where rankings shift away from the Utilitarian starting points.

I now consider the welfare differences between alternative allocation rules. The first alternative

is to provide 297 training spots randomly using the observed NSW treatment assignments. The

second alternative is to provide training spots to the 289 individuals with zero wages for 1975

and the 8 individuals with the lowest positive wages for 1975. Given expenditure minimization,

if ∆REV = 0.2, the optimal allocation policy needs 20 percent fewer training spots to match the

welfare under an alternative allocation rule. The results are shown in Figure 5. In this example,

∆REV compared to the random allocation is equal to up to 0.25 for λ ∈ (0, 1). As λ approaches

the Rawlsian boundary, unless the individual who is the most in need (lowest Ai) receives

a training spot, ∆REV would approach 1. The ∆REV losses from baseline wage conditioning

(dashed blue line) are smaller, although still substantial compared to the optimal.

determine Ai and αi among candidate recipients. Here, I use the observables from the experimental sample to
illustrate ideas.
19. For binary problems, the non-increasing effects restriction of Assumption 1 does not apply.
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Given estimates and available observables, the optimal allocation queue provides a scale to

measure the relative welfare gains of alternative allocations. Depending on the expected outcomes

of interest, each observable dimension impacts needs and effectiveness differently. The results

here allow a program manager to run horse-races between alternative allocation policies given

different planner preferences, allocation restrictions, and estimation-prediction assumptions.

6 Conclusion
Governments and aid agencies are often confronted with the challenge of allocating limited

resources among a large pool of candidate recipients. When resources are discrete or when

individual allocations face possibly binding constraints, the optimal allocation problem can

become computationally intractable as the number of candidate recipients increases. Given

the computational challenges, rather than finding the allocation results that maximize certain

planning objectives, researchers might only be able to compare the effects of several policy

alternatives or counterfactuals.

In this paper, I provide closed-form solutions and implementation algorithms for Atkinson-

CES planning problems with discrete and bounded-continuous choice-sets. The solutions

are characterized by optimal allocation queues, which are determined by planner preferences,

individual allocation constraints, and heterogeneous outcomes across individuals with and

without incremental allocations. Given non-increasing marginal returns of allocations, optimal

allocation queues are invariant to resources.

The results could be applicable in a variety of policy-relevant settings with heterogeneous

candidate recipients of allocations. Consider the problem that the World Food Program (WFP)

might face in distributing nutritional supplements to reduce stunting among children. Given some

observables at birth, the probability that children become stunted in the absence of nutritional

aid could be heterogeneous. Prior research might also indicate that the marginal effects of

nutritional aid on stunting probabilities are heterogeneous conditional on observables. Given

these heterogeneities, the optimal allocation results in this paper could help WFP program

managers determine which children should be prioritized to receive nutritional supplements to

minimize stunting.

More broadly, the results of this paper can be useful in cost and benefit analysis of empirical
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allocation strategies. Policymakers potentially face a variety of allocation alternatives, including

allocating universally and uniformly, allocating randomly, or allocating by sorting over a limited

number of observables. The welfare gains—measured using the results of this paper in resource

units as resource equivalent variations—from allocating optimally conditional on observables

might be large or small depending on the distribution of observables, variations in policy

constraints, and planner preferences. Beyond the optimal allocation problem, the closed-form

solutions for discrete and bounded-continuous CES problems might also be useful in other

contexts where CES functions are applied.
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Figure 1: Discrete Choice Resource Expansion Paths with N = 2
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Figure 2: Bounded Continuous Resource Expansion Paths with N = 2
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Figure 3: Logit–Employment Regression: Joint Distribution of αi and Ai
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Figure 4: Logit–Employment Regression: Optimal Binary Allocation Queues
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Figure 5: Logit–Employment: Resource Equivalent Variation ∆REV
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A Proofs
A.1 Discrete Allocation Proof
A.1.1 Binary Allocation

Theorem 1 applies to the binary allocation problem with D
¯ i = D

¯
= 0 and D̄i = D̄ = 1.

The choice set for a planner’s binary allocation problem can be written as:

CB ≡
{

B = (B1, · · · , BN) : Bi ∈ {0, 1} , and,
N

∑
i=1

Bi ≤ Ŵ

}
. (21)

Following Theorem 1, the optimal binary allocation function and allocation queue are:

B∗i
(

Ŵ
)
= 1

{
QB

i ≤ Ŵ
}

and QB
i =

N

∑
j=1

1

β j

βi
·

(Aj + αj
)λ − Aλ

j

(Ai + αi)
λ − Aλ

i

 ≥ 1

 .
(22)

Theorem 1 allows for ties: under binary allocations, if there are only two candidate recipients
and they have identical Ai and αi, both would have a queue rank of 2. For notational clarity, I
will ignore the possibility of ties in the following proof.

I continue now to offer a proof for Theorem 1 when allocations are binary. In the following
proof, the problem of allocating Ŵ across N individuals where Ŵ < N is reformulated as a
problem of allocating 1 unit of allocation across individuals iteratively. The proof shows that the
optimal allocation queue is based on a greedy-local comparison for the next available unit of
allocation resource. The proof shows the simple result that with CES preference aggregation,
the relative preference for allocating one unit of resource between two candidate recipients, who
have yet to receive the binary allocation, is invariant to whether others have received allocations.

Proof of Theorem 1 (Binary Case): Given a vector of existing binary allocations B̂W =(
B̂W

1 , · · · , B̂W
N

)
, where B̂W

i ∈ {0, 1} and ∑N
i=1 B̂W

i = W, consider the problem of maximizing

the Atkinson-CES planner’s objective function on the constraint set C B̂

C B̂
(

B̂W
)
≡
{

B = (B1, · · · , BN) : Bi ∈ {0, 1} , Bi + B̂W
i ≤ 1, and,

N

∑
i=1

Bi ≤ 1

}
, (23)

where the planner allocates one unit of resource given existing allocations B̂W. While the choice
set CB contains N choose Ŵ combinations of elements, C B̂ only has at most N elements.

Given C B̂, the planner would optimally allocate the one unit of resource to individual i,
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someone who has not previously received the binary allocation (i.e. B̂W
i = 0), if and only if,

(
βi (Ai + αi)

λ + ∑N
ĩ=1

β ĩ

(
Aĩ + αĩB̂

W
ĩ

)λ
− βi Aλ

i

) 1
λ

≥
(

β j
(

Aj + αj
)λ

+ ∑N
ĩ=1

β ĩ

(
Aĩ + αĩB̂

W
ĩ

)λ
− β j Aλ

j

) 1
λ
∀j where B̂W

j = 0 . (24)

with λ ∈ (−∞, 1], the condition in Equation (24) simplifies to(
βi (Ai + αi)

λ − βi Aλ
i

)
≥
(

β j
(

Aj + αj
)λ − β j Aλ

j

)
if 0 < λ ≤ 1

and
(

βi (Ai + αi)
λ − βi Aλ

i

)
≤
(

β j
(

Aj + αj
)λ − β j Aλ

j

)
if λ ≤ 0 .

(25)

Given Assumption 1, Ai + αi > Ai > 0.20 Both sides of the inequalities above are positive
when 0 < λ ≤ 1 and non-positive when λ ≤ 0. Hence, for i where B̂W

i = 0,

B̂∗i
(

B̂W
)
= 1 iff

βi

β j

 (Ai + αi)
λ − Aλ

i(
Aj + αj

)λ − Aλ
j

 ≥ 1 ∀j with B̂W
j = 0. (26)

With B̂W
i = B̂W

j = 0, unless λ = 1, the marginal welfare gains from allocating to i and j are
different in iterations W and W − 1. However, the planner’s relative preferences between i and j
in Equation (26) is not a function of B̂W: given that preferences are homothetic over expected
outcomes, relative preferences over individuals who have yet to receive allocations are invariant
to prior allocations. Given this, Equation (26) can be rewritten as:

B∗i
(

B̂W
)
= 1 iff

N

∑
j=1

1

β j

βi

(Aj + αj
)λ − Aλ

j

(Ai + αi)
λ − Aλ

i

 ≥ 1

 = W + 1 . (27)

Given B̂W=0, B∗i
(

B̂W=0
)
allocates the first unit of resource. B̂W=1

i = B̂W=0
i +B∗i

(
B̂W=0

)
,

and B∗i
(

B̂W=1
)
allocates the second unit. Given resource Ŵ, B∗i

(
B̂W=Ŵ−1

)
allocates the

final unit. Hence, each element of the optimal allocation queue is

QB
i = min

{
W : W ∈ {1, ..., N} , and, B̂W

i = 1
}

, (28)

which is equal to the Ŵ required for i to optimally receive the binary allocation. Equation (28)
is equivalent to the summation in Equation (22). �

A.1.2 Discrete Allocation
Without restrictions on αil, the discrete targeting queue might shift with Ŵ. Suppose N = 2,

D̄ = 2, and (α1,1 = 1, α1,2 = 0, α2,1 = 0, α2,2 = ∞). If Ŵ = 1, a Utilitarian planner allocates

20. The third restriction of Assumption 1 means Ai > 0 under the binary allocation problem.
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to i = 1. If Ŵ = 2, the Utilitarian allocates to i = 2 only. The resource expansion path would
bend backward, which prevents the derivation of a closed-form and resource-invariant optimal
allocation queue. I now offer a proof of Theorem 1 given the non-increasing effects assumption
of Theorem 1. For the binary allocation problem, the non-increasing effects restriction was
irrelevant because there is only one possible allocation increment. Similar to the binary proof,
for notational clarity, I ignore ties.

Following on the binary proof, the discrete allocation proof shows that the optimal allocation
queue of Theorem 1 is based on sequential local comparisons over the next unit of resource
available. Essentially, under Atkinson-CES preference aggregation and non-increasing marginal
gains for incremental allocations, a sequential greedy-local solution is not only globally optimal
but also invariant to aggregate resources.

Proof of Theorem 1: Under Assumption 1, α weakly decreases, αi,l−1 ≥ αi,l ∀ l, i. Given
this, optimality is satisfied by iteratively considering the Atkinson planner’s problem for the next
available unit of resource.

I first describe the iterative procedure, which is similar to the procedure in the binary proof. Let
D̂W =

(
D̂W

1 , · · · , D̂W
N

)
: D̂W

i ∈ {0, 1, · · · , D̄i} and ∑N
i=1 D̂W

i = W. Consider the problem of

maximizing the planner’s objective function on the constraint set C D̂

C D̂
(

D̂W
)
≡
{

D = (D1, ··, DN) : Di ∈ {0, 1} , Di + D̂W
i ≤ D̄i, and,

N

∑
i=1

Di ≤ 1

}
. (29)

where the planner allocates one unit of resource given existing allocations D̂W.
Given C D̂, i with D̂W

i < D̄i optimally receives allocation, if and only if, ∀j where D̂W
j < D̄j,

βi

(
Ai +

D̂W
i +1

∑
l=1

αil

)λ

+ ∑N
ĩ=1

β ĩ

Aĩ +
D̂W

ĩ
∑

l=1
αĩl

λ

− βi

(
Ai +

D̂W
i

∑
l=1

αil

)λ


1
λ

≥

β j

Aj +
D̂W

j +1

∑
l=1

αjl

λ

+ ∑N
ĩ=1

β ĩ

Aĩ +
D̂W

ĩ
∑

l=1
αĩl

λ

− β j

Aj +
D̂W

j

∑
l=1

αjl

λ


1
λ

. (30)
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Following the Proof for the binary case and given Equation (30), for i, if D̂W
i < D̄i ,

D∗i
(

D̂W
)
= 1 iff

N

∑
j=1

D̄j

∑
l̃=1

1


β j

βi



(
Aj +

l̃
∑

l=1
αjl

)λ

−
(

Aj +
l̃−1
∑

l=1
αjl

)λ

(
Ai +

D̂W
i +1

∑
l=1

αil

)λ

−
(

Ai +
D̂W

i
∑

l=1
αil

)λ

 ≥ 1


= W + 1 .

(31)

At the Wth iteration, Equation (31) shows that even though the same unallocated increment had
different marginal effects on welfare as W rose, the relative preferences over the next unit of
unallocated increments are invariant as allocations are provisioned.

D̂W+1
i = D̂W

i + D∗i
(

D̂W
)
. Each element of the optimal allocation queue is

QD
il = min

{
W : W ∈

{
1, ...,

N

∑
i=1

D̄i

}
, and, D̂W

i = l

}
. (32)

which is equal to the Ŵ level of aggregate resources needed to optimally allocate to the lth

increment of individual i. Equation (32) is equivalent to the summation in Equation (8).
The iterative optimal solution QD

il is only optimal if the resource expansion path does not bend
backward. Thismeans that if it is optimal to allocate consecutively to i, it is also optimal to allocate
to i over C D̂ iteratively. Without loss of generality, suppose W = 0, the requirement is, ∀j,

if

(
(Ai + αi,1 + αi,2)

λ − (Ai + αi,1)
λ(

Aj + αj,1
)λ −

(
Aj
)λ

)
≥

β j

βi
, then

(
(Ai + αi,1)

λ − (Ai)
λ(

Aj + αj,1
)λ −

(
Aj
)λ

)
≥

β j

βi
. (33)

Assumption αi,l−1 ≥ αi,l satisfies Equation (33). For the inequalities in Equation (33),
comparisons are based on differences in the numerators. Let g(A ; α) = (A + α)λ − (A)λ.
Given αi1 ≥ αi2, if 0 < λ < 1, then 0 < g(Ai + αi1 ; αi2) ≤ g(Ai + αi1 ; αi1) < g(Ai ; αi1).
This satisfies in the condition in Equation (33). If λ < 0, both the numerator and the denominator
are negative. We have, given αi1 ≥ αi2, 0 > g(Ai + αi1 ; αi2) ≥ g(Ai + αi1 ; αi1) >

g(Ai ; αi1). This also satisfies the condition in Equation (33). �

A.2 Continuous Allocation Proof
In contrast to the results from Theorem 1 for discrete allocation problems, results from

Theorem 2 allow for individual-specific prices. Due to indivisibility, a discrete resource expansion
path might bend backward when the costs of acquiring individual-specific allocations differ:
allocations with high marginal effects but also high unit costs might displace lower unit costs
allocations as aggregate resources expand. When the resource expansion path is backward-
bending, the optimal allocation queue loses its invariance with respect to aggregate resources.
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A.2.1 Lower Bound
Theorem 2 applies to constant-returns lower-bounded continuous allocation problems where

C̄i = C̄ = ∞. Given that lower-bounds can be subsumed under Ai without loss of generality,
the choice set for lower-bounded continuous allocation problems can be stated as:

CL ≡
{

L = (L1, · · · , LN) : 0 ≤ Li, and,
N

∑
i=1

Pi · Li ≤ Ŵ

}
. (34)

To make the effects of prices more transparent, Equation (34) incorporates individual-specific
input prices Pi.

Lower-bounded start-queue QL and start-knots KL are equivalent to QC and KC from
Theorem 2. The lower-bounded problems do not have end-queues or end-knots. Following
Theorem 2, the optimal constant-returns lower-bounded continuous allocation functions are:

L∗i
(

Ŵ
)
= max

{
0, φ

y
i,I + φs

i,I · LI

(
Ŵ
) }

, (35)

and LI

(
Ŵ
)
=

Ŵ −∑N
j=1

(
Pj · φy

j,I

)
· 1
{
K
¯

L
j ≤ Ŵ

}
∑N

j=1

(
Pj · φs

j,I

)
· 1
{
K
¯

L
j ≤ Ŵ

} . (36)

The linear spline in Equation (36) has N knots.
I continue now to offer a proof for Theorem 2 when allocations are lower-bounded.

Proof of Theorem 2 (Lower-Bounded Case): Given Assumption 2, First Order Conditions
from the Atkinson planner’s problem give rise to the unconstrained optimal relative allocation
rule between individuals i and j:

(
Aj + αjLj

)
=

(
β jαjP−1

j

βiαiP−1
i

) 1
1−λ

Ai +

(
β jαjP−1

j

βiαiP−1
i

) 1
1−λ

αiLi

Lj =

(β jαjP−1
j

βiαiP−1
i

) 1
1−λ

Ai

αj
−

Aj

αj

+

(
β jαjP−1

j

βiαiP−1
i

) 1
1−λ

αi

αj
· Li

Lrela
j (Li) =φ

y
j,i + φs

j,i · Li

(37)

Y-intercept φ
y
j,i indicates if optimal relative allocation for j is positive when the allocation for i is

zero. There exists an individual i = I, relative to whom φ
y
j,I ≤ 0 for all j.

Given Equation (37) and ∑N
j=1 Pj · Lj = Ŵ, the unconstrained optimal choice L∗,unci is

L∗,unci =
Ŵ −∑j

(
Pj · φy

j,i

)
∑j

(
Pj · φs

j,i

) . (38)
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L∗,unci would be optimal if the planner could allocate Ŵ as well as reallocate Ai. But the problem
has N positivity constraints. Complementary slackness requires that either relative optimality
(Equation (37)) is satisfied or individual constraints bind. Hence, to arrive at the constrained
optimal choice, in Equation (39), I sum Lrela

j (Li) across all j, but only when Li exceeds the

j-specific relative x-intercepts
−φ

y
j,i

φs
j,i
:

Ŵ = ∑
j

Pj · φy
j,i · 1

{
−φ

y
j,i

φs
j,i
≤ Li

}
+

(
∑

j
Pj · φs

j,i · 1
{
−φ

y
j,i

φs
j,i
≤ Li

})
· Li (39)

The y-intercept of Equation (39) that is aggregated relative to Li=I is zero. Hence, individual
i = I is the first (top) ranked candidate recipient. Positions along the start-queue QL are ordered

by x-intercepts relative to Li=I,
−φ

y
j,I

φs
j,I

. Given its functional form, the ascending order of x-

intercepts, with least element i = I, is determined by Ai/
(

αiβiP−1
i

) 1
1−λ .

With strictly positive marginal effects (Assumption 2), inverting Equation (39) relative to
Li=I generates the linear spline LI

(
Ŵ
)
,

LI

(
Ŵ
)
=

Ŵ −∑N
j=1

(
Pj · φy

j,I

)
· 1
{
K
¯

L
j ≤ Ŵ

}
∑N

j=1

(
Pj · φs

j,I

)
· 1
{
K
¯

L
j ≤ Ŵ

}
 , (40)

where knotsKL of LI

(
Ŵ
)
are found by evaluating Equation (39) at each x-intercept relative to LI:

K
¯

L
j =

N

∑
i=1

(
Pi · φy

i,I + Pi · φs
i,I ·
−φ

y
j,I

φs
j,I

)
· 1
{
Q
¯

L
i ≤ Q¯

L
j

}
(41)

Combining LI

(
Ŵ
)

and the relative optimality conditions, optimal allocations for all

candidate recipients are equal to: L∗i
(

Ŵ
)
= max

{
0, φ

y
i,I + φs

i,I · LI

(
Ŵ
)}

. �

A.2.2 Lower and Upper Bounds
Results for the constant-returns upper- and lower-bounded continuous allocation problem

relies on the same logic as the proof for constant-returns lower-bounded continuous allocation
problems. Given their similarities, I do not provide a separate proof here. Overall, the addition
of upper bounds introduces N additional constraints, which become additional knots in the
constant-returns allocation spline relative to i = I.

The relative optimality Equation (37) remains the same. For the doubly bounded problem,
Equation (39) is changed to sum Crela

j (Ci) across all j when Ci is both above the j-specific

relative x-intercepts
−φ

y
j,i

φs
j,i

and below
C̄j−φ

y
j,i

φs
j,i

. When Ci exceeds a j specific upper threshold, C̄j is
included in the summation.
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Equation (40) also remains similar, but now Ŵ is splined by lower bounds K
¯

C
j and upper

bounds K̄C
j . Additionally, the within-segment aggregate inverted y-intercept includes the

aggregate costs of allocating C̄i to individuals who have reached their maximum allocations in
this splined-segment. These are shown in Equation (15) of Theorem 2.

B Implementation Examples
A variety of examples and implementation tutorials are shown on the paper’s optimal

allocation website. All theorems are programed as functions of the R package PrjOptiAlloc.
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