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Abstract

Recent estimates are that about 150 million children under five years of age are stunted,
with substantial negative consequences for their schooling, cognitive skills, health, and
economic productivity. Therefore, understanding what determines such growth retardation
is significant for designing public policies that aim to address this issue. We build a
model for nutritional choices and health with reference-dependent preferences. Parents care
about the health of their children relative to some reference population. In our empirical
model, we use height as the health outcome that parents target. Reference height is an
equilibrium object determined by earlier cohorts’ parents’ nutritional choices in the same
village. We explore the exogenous variation in reference height produced by a protein-
supplementation experiment in Guatemala to estimate our model’s parameters. We use
our model to decompose the impact of the protein intervention on height into price and
reference-point effects. We find that the changes in reference points account for 65% of the
height difference between two-year-old children in experimental and control villages in the
sixth annual cohort born after the initiation of the intervention.
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1 Introduction

Insufficient height and weight growth still affect many children around the globe. Estimates are that about

150 million (22 percent) of children under five years of age are stunted (FAO 2019).1 Studies suggest that

these children are at risk of not developing their full human capital potential (Behrman et al. 2009; Black

et al. 2017; Hoddinott, Alderman, et al. 2013; Hoddinott, Behrman, et al. 2013; Hoddinott et al. 2008;

Maluccio et al. 2009; Richter et al. 2017; Victora et al. 2008). Our paper contributes to a growing literature

that investigates how interventions in early childhood can contribute to foster human-capital formation

for at-risk children (e.g., Campbell et al. 2014; Carneiro and Heckman 2004; Cunha and Heckman 2007,

2009; Cunha et al. 2010; Gertler et al. 2014; Heckman et al. 2010a, 2010b; Heckman et al. 2013).

In general, anthropometric measures, such as height and weight, are partly determined by genes.2 But

in many cases, variability in anthropometrics due to race or ethnicity is negligible among children who

are raised in favorable environments and born to mothers whose nutritional and health needs are met

(Habicht et al. 1974). In contrast, environmental factors are significant determinants of growth in the first

two years of life (Martorell and Zongrone 2012). In this paper, we study the determinants of one such

environmental factor: protein intake.

Stunting rates are generally higher in locations in which families feed their young children with staple

foods that have low protein density because of their availability or affordability (Dewey 2016). In these

regions, policies that supplement food via lipid-based nutrient supplementation or that increase parental

resources may improve infant outcomes (e.g., see Dewey 2016; Groot et al. 2017). However, stunting

also occurs in locations in which animal-source foods are available and affordable (Penny et al. 2005).

This finding suggests that factors other than family resources or prices of foods rich in protein play an

important role in determining malnutrition in general and stunting in particular. In this paper, we study

nutritional choices by taking into consideration both parental resources as well as locally-determined

parental perceptions of normal growth.

Recent successful policies in the prevention of child stunting include actions to influence parental

perceptions of normal growth. Marini et al. (2017) provide a comprehensive description of how Peru

successfully reduced stunting rates by 50 percent between 2007 and 2016. We emphasize two initiatives

1 Stunted children have height-for-age more than two standard deviations below the median for a well-nourished
population. In 2018, 59 million (30 percent) and 82 million (23 percent) of African and (non-Japanese) Asian
children under five years of age were stunted, respectively (FAO 2019).

2 For individuals of European ancestry, genes explain only 10% of the variability of adult height (Berndt et al. 2013;
Lango Allen et al. 2010).
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that may have contributed to shifting perceptions. First, UNICEF and the World Bank disseminated a

video that communicated height standards that were easy to understand.3

Second, the UNICEF “Good Start” Program was extended to the entire country.4 The government

trained health professionals in local clinics to assess each child’s weight and height monthly and plot the

information on growth charts.5,6 The health professionals used the visual information to inform parents

about their children’s growth status and prescribe corrective actions if growth had not met targets. While

illustrative of the forces studied in our paper, the Peruvian case cannot be used to identify the importance

of shifting parental and societal norms about “normal” growth because the country simultaneously

implemented many different interventions.7

Evidence from Africa confirms the importance of parental perceptions in influencing feeding practices

and reducing stunting rates. Fink et al. (2017) evaluate an intervention in which villages in rural Zambia

were assigned to one of three mutually exclusive groups: (1) a control group; (2) a community-meeting

group; and (3) a growth-chart group. In the community meeting, children’s height and weight were

measured, and parents received information about feeding practices that promoted healthy growth. Parents

in the third group had a full-size growth chart installed in their home to track children’s growth. The chart

had a simple design (red if children were stunted for their ages, green if not)8 and contained information

about how feeding practices could influence children’s healthy growth. The authors show that parents’

reports of protein intake increased in both intervention groups. However, stunting rates were reduced by

22 percentage points (from 94% to 72%) for children of the parents who received the growth charts, but

not for children with parents in the community meetings.

The evidence described above justifies developing a model that incorporates parental perceptions of

“normal” human capital, whether health or skills. We write a model where parental preferences depend on

the parents’ reference for child health similar to Bell (1985), Kahneman and Tversky (1979), Koszegi and

Rabin (2006), and Loomes and Sugden (1986). Our empirically guided parameterization of preferences

3 Video Link. Due to the perceived impact, the World Bank produced similar videos for other countries.
4 See Lechtig et al. (2009) for an evaluation of the UNICEF’s “Good Start” Program.
5 The “Good Start” Program divided growth charts into two regions: red (indicating undernutrition) and green

(indicating normal nutritional status). This simple visual chart contrasts with other growth charts that use
percentile information that many parents do not easily understand (see evidence in Ben-Joseph et al. 2009).

6 UNICEF and various ministries of health have advocated such growth monitoring for decades, but until recently
there has been little systematic evidence of much if any effects of such efforts (e.g., see Ruel and Habicht 1992)

7 See Marini et al. (2017) and World Bank (2016) for a helpful summary of all of the programmatic actions that
may have contributed to the reduction in stunting.

8 See Marini et al. (2017) for the design used in Peru and Fink et al. (2017) for the design used in Zambia.
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introduces an asymmetry in responses in the sense that parents concerned that their child may not reach

the parents’ perceived height milestone by age 24 months will behave differently than parents of otherwise

identical children who have lower perceptions about height milestones. This asymmetry is documented

in the medical literature with respect to children’s health (Almoosawi et al. 2016; Laraway et al. 2010;

Mathieu et al. 2010; May et al. 2007; Moore et al. 2012; Swyden et al. 2015).

In our model, parents take the expected height at age 24 months as the reference point. However,

unlike other models of reference-dependent preferences with an expectation-based referent (e.g., Bell

1985; Koszegi and Rabin 2006; Loomes and Sugden 1986), the expected height is a normal random

variable from the parents’ point of view. We assume that parents of children born in period y observe

the height of the children born in period y−1 and use this information to form their subjective mean

and variance beliefs about the reference height. This assumption is consistent with the results reported

in Hansen et al. (2014) who show that changes in the development of children across cohorts affected

parental perceptions of normal development and their reports about the developmental status of their

children. Also, it aligns with the evidence from research in economics, medicine, and anthropology that

finds that parents observe older siblings, other children in the family, or their friends’ children to infer

what constitutes “normal” height and weight (see, e.g., Huang et al. 2020; Lucas et al. 2007; Reifsnider

et al. 2000; Thompson et al. 2014).9 Because parents do not realize that they observe a selected sample

of children, they may form biased beliefs.

In our framework, biased mean beliefs and uncertainty (i.e., strictly positive variance beliefs) about

reference points cause parents to underinvest in their children’s human capital. For example, the scoping

review by Cuomo et al. (2021) reports that lack of parental knowledge about development milestones is

one of the determinants of tardy diagnoses and treatment of developmental delays. Similarly, Mulcahy

and Savage (2016) show that uncertainty about whether children are following developmental norms

is a significant reason parents wait before they seek early childhood intervention services. However,

if there are critical or sensitive periods of development, such underinvestment even if temporary may

cause permanent damages to children’s human capital formation (Cunha and Heckman 2007; Victora

et al. 2008; Victora et al. 2010). This implication from our model justifies the existence of interventions,

such as those in Peru and Zambia we describe above, that aim to improve parental knowledge about child

development. These interventions reduce biases in mean beliefs, diminish uncertainty about reference

points, and raise the levels of investments.

9 Parents also report comparing children’s clothing to clothing recommended for their children’s ages.
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Households may have reference-dependent preferences, biased mean beliefs, uncertainty, and low

family income. Because of the low incomes, governments may subsidize the nutrient prices. In our

framework, policies that provide nutritional subsidies have three possible effects: (1) the direct impact of

subsidies on treated children; (2) the indirect effect of subsidies via shifting reference points on treated

children; and (3) the indirect impact of shifting reference points on untreated children. The second and

third effects are “spillover” effects that have dynamic implications across cohorts. Thus, research that

estimates the direct and spillover effects is significant for the design of policies.

We use data from The Institute of Central America and Panama (INCAP) nutritional trial to estimate

the model described above for height. There were four participant villages; two were randomly selected

to receive a high-protein supplement, while the other two received a supplement devoid of proteins. In

the data, we observe increasing height and nutritional input gaps between villages that received and did

not receive protein-rich nutritional supplements. We take advantage of the exogenous variation in protein

intake and reference points generated by the experimental design to estimate our model’s structural

parameters.

We use the estimated model to conduct a decomposition exercise to quantify the mechanisms of the

protein-supplementation experiment. We find that reference-point changes account for up to 65% of

the more than one and a half centimeters in height difference between children in the experimental and

the control villages at 24 months of age. We interpret the increasing gaps in height and nutrition with

children’s ages as substantially coming from changes in reference points in treatment villages.

Our work relies on the premise that parents compare their children to children who grow-up in a

similar geographic or socio-economic background. As a result, parents or their children form biased

norms that, in turn, cause parents to invest suboptimally. Our work is closest to the research by Kinsler

and Pavan (2021) who study investments in the human capital of school-age children. Similar to our

analysis, Kinsler and Pavan (2021) find that parents compare their children’s abilities with children

from the same school. Because of school segregation, this comparison translates into low investment

levels from parents (e.g., hiring tutors) for children at the bottom of the skills distribution. An essential

difference between our work and theirs is that we take advantage of a randomized controlled trial that

causes exogenous changes in parental norms. We use this exogenous variation to estimate the sensitivity

of parental investment behavior to norms.

Our work also relates to the literature on parenting in developmental psychology and economics. The

literature in developmental psychology finds that the lower the parents’ socioeconomic status, the lower
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their expectations about their children’s cognitive development (e.g., see Epstein 1979; Hess and Shipman

1965; Mansbach and Greenbaum 1999; Ninio 1980; Ninio and Rinott 1988). The literature in economics

has shown that parental beliefs about the production function of human capital vary across socioeconomic

groups (Boneva and Rauh 2018; Cunha et al. 2013). More recent literature uncovers that beliefs predict

investments in the human capital of children (Attanasio et al. 2019; Cunha et al. 2022). Finally, scalable

parent-directed interventions can influence parental beliefs, which, in turn, impact investments in children

(Cunha et al. 2021). We see our paper as complementary to that literature because our contribution is to

incorporate parental beliefs about reference points (or norms) about child developmental outcomes.

In section 2, we present a model of reference points in a setting of a household deciding inputs for

a child outcome, such as health. In Section 3, we describe the data we use to estimate the model. In

Section 4, we discuss identification and estimation. In Section 5, we show parameter estimates and

present evidence about model fit. Also, we use the estimated model to decompose the impact of the

intervention on height. Section 6 concludes.

2 The Model

In this section, we develop a model in which parents have to choose a single input for one relevant child

outcome. We focus on nutrition as the input and health (height) as the outcome, but the model can be

applied to any human-capital input or human-capital outcome developed during childhood and can be

extended to multiple inputs and multiple outcomes.

In our model, household choices are functions of prices, incomes, and subjective beliefs about the

reference health. Each household solves a static maximization problem after the birth of a child. We

assume that households make a single decision about the total nutritional input (i.e., grams of proteins)

for their newborns (e.g., see Moradi 2010; Puentes et al. 2016).10 However, our framework is general,

and we could use the same model to study cognitive or socio-emotional development. In such cases, the

input would be the frequency or the quality of the interactions (e.g., see Cunha et al. 2010).

Each household forms subjective beliefs about the reference height by looking at their relevant

comparison group. Parents of newborns observe the heights of two-year-old children in their location

to estimate subjective beliefs, which they combine with other state variables to choose their children’s

nutritional level. A policy that increases height for children in a location will lead parents to update

10 The model focuses on the development of height that occurs in the first 24 months of a child’s life. The first 1,000
days after conception is a critical period for nutrition and development (Victora et al. 2008; Victora et al. 2010).
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their subjective beliefs, which, in turn, will impact their nutritional decisions. Therefore, such a policy

can have dynamic effects because individuals’ choices have aggregate implications that determine the

dynamics of subjective beliefs. We describe this idea formally below.

2.1 Budget

Let Y denote the household income over the first 24 months of life after birth. Households allocate

income to household consumption, C, or child nutrition N, whose price is pN
yv:

C+ pN
yv · (1−δ ·1{v = Atole}) ·N = Y (1)

We model the protein supplementation policy as a δ discount on the price of protein in Atole villages,

which were randomly assigned to receiving the high-protein supplementation shake.11 This assumption

implies that if an Atole village child consumes N grams of protein, the fraction δ comes from the feeding

centers’ protein supplements. We argue that this assumption is justifiable because the share of proteins

obtained from the feeding centers for each child is positive for all households, is on average 38 percent

across cohorts, and is not significantly different across cohorts (F-test p-value 0.63).

2.2 Production function

Health (height) at month 24, H24 is determined by:

H24 = exp(A+X ·α + ε) ·Nβ , (2)

where covariate vector X includes the initial conditions, such as length at birth and gender of the child.

The variable ε represents the normally distributed i.i.d. health productivity shock for each child with

mean zero and standard deviation σε , which parents observe at the time of choosing N. The parameter

A relates to the average level of productivity of N in producing H24, and α represents the impact of

covariates on the marginal productivity of N. Initial conditions have positive impacts on month-24 height

depending on the value of α .12 The production function includes protein input N in the first two years,

11 As we describe below, the treatment villages received Atole – high in protein – and the control villages received
Fresco — the supplement without protein.

12 This is a more general specification than a model in which the difference in health between month 0 and month
24 is the production function output and initial health is not included in X . Compared to a model with difference
in health as the output and that also includes initial health in X , the model here produces similar coefficients.
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with β determining the concavity of the production function with respect to nutritional inputs.

We assume that only total protein intake in the first 24 months matters. Potentially, the timing of

nutritional intakes within the first 24 months could be important. In the data, however, lagged inputs

over the first 24 months of life are persistent, and it is difficult to distinguish relative productivity across

subperiods (Puentes et al. 2016).

In our model, households know the production function. Our assumption contrasts with the literature

in which parents have beliefs about the parameters of the production function (e.g., see Cunha et al. 2013).

A more general model would allow parents to have biased beliefs about the parameter β . We do not

pursue this approach because the intervention we consider in this paper did not include educating parents

on the benefits of protein on health. We return to this issue in Section 4.

2.3 Preferences

The utility of a household in village v whose child was born in period y – each period is two years – is a

function of the household consumption, C, and the child’s height at age 24 months, H24:

Uyv
(
C,H24,Ryv

)
=C+ρ ·C2 + γ ·H24 +λ · (H24 −Ryv) ·1

{
H24 ≥ Ryv

}
, (3)

where 1 denotes the indicator function.

Parental utility is a function of the reference health, as measured in height, with which households

compare their children’s health, Ryv. The parameter γ is positive, but, depending on the relative values of

λ and γ , preferences for health are flexible and could be linear, convex, or concave. If λ = 0, preferences

are linear in health H24. If λ > 0, preferences are convex in health, and parents invest more in health

after health exceeds the reference point. If −γ < λ < 0, preferences are strictly increasing and concave:

parents have strong preference for their child to reach the reference point and weaker preference beyond

that. If −γ = λ < 0, households gain utility from increasing health up to the reference health Ryv, but

there are no utility gains from increasing health beyond that point. If λ <−γ < 0, preferences for health

peak at the reference point, meaning that households want their children to be healthier (e.g. taller) up to

the reference point but not beyond it.
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2.4 Parental Beliefs about Reference Points

In our model, the parents of children born in village v and period y adopt the expected height of children

born in the same village in period y− 1 as their reference point. Thus, Ry,v = E
(

H24
y−1,v

)
. In effect,

parents of a new cohort do not know what the average height of the new cohort will be in the future.

Instead, they infer it by observing the realized outcomes of the previous cohort. Therefore, our model

is similar to the literature in behavioral economics that expresses reference points as expectations (Bell

1985; Koszegi and Rabin 2006; Loomes and Sugden 1986). However, we depart from that literature

because in our framework parents do not know E
(

H24
y−1,v

)
. Instead, they have subjective beliefs about

it. In particular, our model proposes that, from the point of view of the parents, E
(

H24
y−1,v

)
is normally

distributed with mean µRy,v and variance σ2
Ry,v

.

We assume that parents use data on the children they observe to estimate µRy,v and σ2
Ry,v

(Greenwood

and Hanson 2015; Nerlove 1958). This assumption about the parental estimation of mean beliefs is

plausible given the geographic proximity and the high degree of interactions among households within

villages. The assumption that the relevant comparison group corresponds to children from the same

village is in line with the literature that has found that the relevant comparison groups are individuals

who are close (e.g., see Huang et al. 2020; Kinsler and Pavan 2021).

Suppose there are My−1,v children born in period y−1 in village v.
{

H24
i,y−1,v

}My−1,v

i=1
are the realized

health outcomes observed by parents of newborns in period y to determine the subjective mean and

variance beliefs about the reference point Ry,v = E
(

H24
y−1,v

)
. Specifically, for mean beliefs:

µRy,v =
1

My−1,v

My−1,v

∑
i=1

H24
i,y−1,v . (4)

µRy,v is a sample mean that differs depending on the realized outcomes of children born in the previous

cohort in the village setting. When reference points uncertainty arises from sampling error, variance

beliefs would be:

σ
2
Ry,v

=
1

My−1,v (My−1,v −1)

My−1,v

∑
i=1

(
H24

i,y−1,v −µRy,v

)2
. (5)

We do not include heterogeneity in µRy,v or σ2
Ry,v

by socio-economic characteristics because the

experimental study took place in very small villages. We expect every household to observe the same

height distribution.

In our framework, if a significant fraction of the selected sample has developmental delays, the parents
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will form biased mean beliefs about reference points, which, in turn, causes sub-optimal investments.13

This aspect of the model calls for interventions that address such forms of biases. One type of intervention

is to improve parental knowledge about developmental norms described in Fink et al. (2017) and

Marini et al. (2017). In addition, as we demonstrate in our decomposition exercise, policies that impact

developmental outcomes in the selected group of children will impact the bias in mean beliefs and,

consequently, affect investment choices.

2.5 Maximization Problem

Following our discussions on parental beliefs, given Ωy,v =
(
Y, pN

yv,δ ,X ,ε,µRy,v ,σ
2
Ry,v

)
, each household

solves the following maximization problem:

max
C,N

{
C+ρ ·C2 +

{
γ ·H24 +λ ·

∫
Ryv

(
H24 −Ryv

)
1
{

H24 > Ryv
}

φ

(
Ryv; µRyv ,σ

2
Ryv

)
dRyv

}}
, (6)

subject to the budget constraint (1), the production function (2), the equation that determines mean beliefs

(4), and some measure of variance beliefs σ2
Ry,v

. Let N (Ωy,v) denote the policy function for nutrition. If

σ2
Ry,v

= 0, preferences for health would be piecewise linear with a kink at µRyv . If σ2
Ry,v

> 0, preferences

for health are continuously differentiable; if additionally γ > 0 and λ < 0, preferences for health are

concave.

The optimization problem in Equation (6) does not permit analytical solutions.14 To illustrate how

changes in key parameters impact optimal choices, we present in Figure 1 the consumption-health

possibility frontier along with several indifference curves for an individual, using estimated parameters

from our model.15 In each panel, solid dots indicate optimal choices (i.e., the combination of height

and household consumption where indifference curves are tangent to the consumption-health possibility

frontier).

Panel a shows several indifference curves and the consumption-health possibility frontier. The figure

13 In our context, we say that beliefs are biased if they deviate from WHO anthropometric standards, which are
based on growth data from “healthy breastfed infants and young children from widely diverse ethnic backgrounds
and cultural settings” who live “under conditions likely to favor the achievement of their full genetic growth
potential” (WHO 2006).

14 In Appendix Section A.1, we discuss the first-order condition for the optimal nutritional choice problem. In
Appendix Section A.2.1, we describe the procedures for numerical solutions.

15 The consumption-health possibility frontier is jointly determined by the household budget and the child height
production function.
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clearly shows the asymmetry in indifference curves. To the left of the mean reference height, parents are

willing to sacrifice a large amount of consumption for a small increase in the child’s height. In contrast, to

the right of the mean reference height, parents are willing to forego only a small amount of consumption

for a large increment in height.

In panel b, we vary the λ parameter. Marginal benefits of additional nutritional intakes on expected

utility are increasing in λ . Additionally, reference points matter more when λ deviates more from zero.

Visually, at more negative values of λ , the curvature of the indifference curve increases. The greater the

curvature of the indifference curve, the more critical the role of reference height in determining parental

nutritional choices and, consequently, the child’s height at age 24 months.

In panel c, we fix λ and vary µRy,v . When λ < 0, the marginal benefits of additional nutritional intakes

are increasing in µRy,v . The greater the value of µRy,v , the lower the household consumption and the taller

the child at age 24 months.

Finally, panel d of Figure 1 presents the effect of increasing uncertainty about the parental estimates

of mean height, σ2
Ry,v

. Given the estimated parameters from the empirical model, higher values of σ2
Ry,v

increase the marginal benefits of additional nutrition when expected height exceeds µRy,v and reduces the

curvature of the indifference curves. These lead to an increase in nutritional choices. In the limit, as σ2
Ry,v

approaches infinity, preferences become linear in height, and predictions from models with and without

reference points become empirically indistinguishable.

We use the estimated parameters to produce Figure 1. However, in general, the household response to

an increase in uncertainty depends on the values of γ and λ . When marginal utility gains from additional

investment in health are positive after the mean reference point µR – which means −γ < λ < 0 – an

increase in σR will lead to an increase in investments in health. In contrast, if marginal utility from

additional investment in health is negative after the mean reference point µR – which generates backward

bending indifference curves – a similar increase of σR could reduce investment in health. Ceteris paribus,

there is a threshold level of λ where increases in σR have no impact on health investments. In Appendix

Section A.1.3, we discuss the intuition behind these results and provide graphical illustrations.

2.6 Evolution of Distribution Function of Height at Age 24 Months

As discussed above, static individual choices have dynamic aggregate effects because the heights for the

cohort born in period y are realized in period y+1 and determine the reference point beliefs for the cohort

born in y+1. We make this argument formal by presenting how the distribution function of heights at age
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24 months evolves. Let Γy,v
(
h24
)

denote the distribution function of heights at age 24 months for cohort

y in village v. Note that the parameters µRy,v and σRy,v , elements of the state vector Ωy,v, are functions of

the distribution function Γy−1,v based on realized heights of the cohort born in period y−1. Therefore,

we now use the notation Ωy,v (Γy−1,v) to make this dependence explicit. The following equation describes

the equilibrium law of motion for the distribution function of heights at age 24 months:

Γy,v
(
h24)= Pr

[
H24 (N (Ωy,v (Γy−1,v)) ,X ,ε)≤ h24] , (7)

where Γy,v is the distribution function of H24
y,v in village v for the cohort born in period y, and is realized in

period y+1. Given all other parameters, Equation (7) provides the evolution of reference point beliefs

and implicitly links the probability distribution functions of H24
y,v and H24

y−1,v. The knowledge of this

distribution function is useful because it determines the reference-point parameters. We can use this

equation to simulate paths of height distribution over time across villages. We can also explore the

same equation to simulate paths for counterfactual policies, which we will need to do to conduct our

decomposition exercise.

3 Data

This section describes the data we use to estimate the model presented in the previous section. We present

below specific data features that – in the context of the model – we can use to isolate the effects of

changes in the parameters of the reference points.

3.1 Survey Design and Sample

The data we use in this paper comes from an experimental intervention conducted by The Institute of

Nutrition of Central America and Panama (INCAP), which started a nutritional-supplementation trial

in 1969. Four villages from eastern Guatemala were selected, one pair of villages that was relatively

populous (~900 residents each) and one pair that was less populous (~500 residents each). The villages

were similar in child nutritional status, measured as the height at three years of age (Habicht et al. 1995).

Over 50% of children lacked proper nutrition and were severely stunted, measured as height-for-age

z-scores less than -3.16 The intervention consisted of randomly assigning nutritional supplements. One

16 Guatemalan children continue to suffer from severe malnutrition. In 2015, among Guatemalan households in the
lowest quintile of wealth, approximately 70 percent of children younger than five were stunted. In middle-quintile
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large and one small village were selected to receive a high-protein drink called Atole, and the other

two were selected to receive an alternative supplement called Fresco. Each serving of Atole (180 ml)

contained 11.5 grams of protein and 163 kcal. Fresco had no proteins, and each serving (180 ml) had

59 kcal. The central hypothesis was that the protein supplementation would accelerate physical and

mental development (Habicht et al. 1995). The intervention started in February 1969 in the larger villages

and in May 1969 in the smaller villages and lasted until the end of February 1977, with data collection

taking place until September 1977 (Islam and Hoddinott 2009; Maluccio et al. 2009). The nutritional

supplements were distributed in feeding centers located centrally in each village. The centers were open

twice a day, two to three hours in the mid-morning and two to three hours in the mid-afternoon. All

village members had access to the supplements at the feeding centers.

Information on supplement intake was collected daily for all children up to seven years old. Interview-

ers collected data on height, home diets, and supplement diets every three months for children between 0

and 24 months. All children reported positive supplement intakes. The home dietary data corresponds

to 24-hour recall in the large villages and 72-hour recall in the small villages. It is possible to calculate

protein intakes from the home dietary data, which we use in our estimation. Anthropometric measures

were collected every three months for children 0 to 24 months old.

Given the quarterly data collection for the INCAP dataset in the first 24 months of life, a child was

observed up to nine times. There were 1155 individuals for whom we have at least one height observation

between months 0 and 24, and 363 individuals for whom heights were observed nine times. We focus on

503 individuals for whom we have heights at birth, heights at month 24, and at least two observations

of nutritional inputs between months 15 and 24.17 For these 503 individuals, we have information on

household income for one year in the period of analysis. We also have from the INCAP survey food price

data measured at wholesalers’ purchasing cost per 10,000 grams of each type of food. The food prices

are common for Atole and Fresco villages. Using these data, we estimate protein prices from a simple

hedonic pricing equation system in which the price for each unit of a food item is determined by the sum

of the protein and non-protein caloric values for each unit of food item multiplied by the year-specific

protein and non-protein-calorie prices up to a random error term. More information is available upon

request.

Guatemalan households, 45 percent of children younger than five were stunted (FAO 2019).
17 For 378 individuals, we observe nutritional intakes in months 15, 18, 21 and 24, for 100 individuals, we observe

nutritional intakes three times, and for 25 individuals, we observe nutritional intakes two times.
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3.2 Descriptive statistics

Table 1 presents summary statistics for the variables that we use in our analysis. In Panels a and b, we

show statistics on gender, income, and prices for our main sample of 503 individuals (panel a) and gender

and income for the fuller sample of 1155 individuals (panel b). In Panels c and d, we show statistics

on heights and nutritional intakes, respectively. Table 1 has five columns. The first column presents the

overall means and standard deviations in Atole and Fresco villages combined. The second and third

columns present Atole and Fresco village-specific means and standard deviations. Column four shows the

gaps in means between Atole and Fresco villages for each variable, and column five presents the p-values

for the statistical significance of these gaps.

As mentioned before, the intervention took place in four villages, two Atole or treatment villages

and two Fresco or control villages. In the rest of the paper, when we refer to Atole and Fresco villages,

we merge the information of the two villages that received the same supplement. The limited number

of villages might impact the descriptive statistics’ standard errors since villages can share common

unobserved shocks. We follow the methods developed by Donald and Lang (2007) and Cameron and

Miller (2015) to study how robust our results are to this clustering. The method proposed by Donald and

Lang (2007) consists of estimating averages by clusters, controlling for individual variables, and using

those averages in the regressions. This method greatly reduces the number of observations. We define

clusters as year-village pairs and half-year-village pairs to implement this procedure. Following Cameron

and Miller (2015), we also implement a pair-cluster bootstrap, using the same cluster definition as in

the Donald and Lang (2007) method. Table 1 and Figure 2 report the results without using the clusters

corrections, but the results are robust to those methods.

Panels a and b show that the survey is well-balanced for gender and income between Atole and Fresco

villages. Panel a shows that male children account for 52 percent of our main sample in both Atole and

Fresco villages. In panel b, for the larger sample that includes individuals for whom we observe height

once in the first two years of their lives, the male share is 53 percent in both Atole and Fresco villages.

These indicate that gender-compositional differences do not drive differences between Atole and Fresco

villages in height outcomes and nutritional intakes.

Panels a and b also show that annual household incomes for Atole and Fresco villages have comparable

distribution functions. 18 In panel a, for our main sample, average annual household incomes are 503

18 The survey contains a wealth index constructed with data collected in 1967 and 1975 for all individuals. We also
know the mean and the standard deviation of income for 1974 but only at the village level. Assuming that annual
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quetzales19 in Fresco villages, and 526 quetzales in Atole villages. The difference is statistically

insignificant, with the p-value equal to 0.59. Standard deviations for both villages are almost identical

at ~460 quetzales, indicating a high similarity in the distribution of incomes between Atole and Fresco

villages. For the larger sample in panel b, average incomes per year are almost identical at 454 quetzales

in Atole villages and 444 quetzales in Fresco villages, a statistically insignificant difference of only

2 percent. The higher income in panel a’s main sample compared to the income in panel b’s larger

sample indicates potential selection in terms of which children were observed more often and consistently.

However, both gender and income in both panels a and b are almost precisely balanced, indicating a high

similarity between Atole and Fresco villages.

Panel a also presents summary statistics for the village averages of individual average protein prices

between months 15 and 24 of age for each child. We calculate annual protein prices based on the average

of annual food prices for rice, eggs, chicken, corn, and beef weighted by their respective protein shares 20.

By construction, food prices differ for each calendar year but are identical for Atole and Fresco villages.

For each child, we average over prices that the child faces in months 15, 18, 21, and 24 of age — the

months over which we calculate average nutritional intakes shown in panel d. Depending on the month

and year of birth,21 the average price for each child differs. In Column one of panel a, we show the

overall averages of these individual averages, which is 52.58 quetzales per 10k grams of protein. The

standard deviation is 3.87 quetzales or 7.4 percent of the means, indicating significant price variations

across individuals. Atole and Fresco villages’ averages are almost identical at 52.47 and 52.68 quetzales

(p-value 0.54 for difference), indicating that the distributions of birthdates between Atole and Fresco

villages are well-balanced.

Aggregating across cohorts, panel c of Table 1 shows at birth, Atole-village children, with an average

height of 49.52 cm, are 0.27 cm shorter on average than Fresco-village children whose average height is

49.79 cm. This difference is not statistically different (p-value 0.19). Moving from birth to month 24,

heights for children in Atole villages increase faster than heights for children from Fresco villages. At

household income follows the same distribution as the household wealth distribution and assuming log-normality
of the income distribution, we impute annual household income. We multiply annual income by two to calculate
each household’s total resources in the first two years of a child’s life.

19 Real terms for 1975; the exchange rate was 1 quetzal for 1 US dollar.
20 We obtain protein shares from USDA Food Composition Database (USDA 2019), which provides the protein

values per 100 grams of various food items.
21 The birth date distributions in Atole and Fresco villages are shown in panels a and b of Figure 2 where the size

of scatter plots indicate the relative sample sizes of birth in each calendar-year between 1970 and 1975.
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month 6, Atole children are on average 0.44 cm taller than Fresco children. This gap widens to 0.68 cm

at 12 months and 0.92 cm at 18 months of age. At month 24, the average height in Atole villages is

78.30 cm, and the average height in Fresco villages is 76.97 cm — the Atole height premium is 1.33 cm

(p-value ≤ 0.005).

Panel d of Table 1 presents averages for nutritional intakes per day for children across birth cohorts

between 1970 and 1975. We focus on nutritional intakes in the second year of life in months 15, 18,

21, and 24.22 For month 15 of age, Atole children average 20.07 grams of protein intake per day, 5.78

grams more than children in Fresco villages. In months 18, 21, and 24 of age, the average daily intake

gap between Atole and Fresco villages widens to 6.14, 7.82, and 8.56 grams per day. Overall, averaging

across the four quarters in the second year of life for each child, average protein intakes in Atole villages

at 25.84 grams are 7.06 grams (38 percent) higher than the average for Fresco villages (18.78 grams per

day). The final row of panel d shows the village averages of individual average kcal per day of caloric

intakes from non-protein sources over months 15, 18, 21, and 24 of age, which is 700.55 kcal per day in

Atole villages and 691.78 kcal per day in Fresco villages, a statistically insignificant gap of 2.7 percent.

3.3 Gaps Across Cohorts

We now present data on heights at 24 months of age and average protein intakes between months 15 and

24 of age. We display such data across cohorts of children born between 1970 and 1975. As described

earlier, the nutritional-supplementation experiments started in the first half of 1969. The 503 children in

our sample were born between 1970 and 1975.23 The families into which the children were born change

considerably across cohorts. The percentage of parents in the cohort t +1 who were not parents in the t

cohort is 83%, 87% , 93%, 92%, and 95%, for each year t between 1971 and 1975, respectively.

22 In the first year of life, a significant portion of children obtain nutrition from breast milk, and it is not easy to
impute the protein and caloric values of breastmilk given the heterogeneity in breastmilk and feeding durations.
We have nutritional intake data for the 503 individuals of the main sample in most of the four feasible survey
months.

23 We use birth dates to aggregate children into annual birth cohorts. Out of the 503 children in our sample, 39
were born in 1970, 82 in 1971, 93 in 1972, 96 in 1973, 101 in 1974, and 92 in 1975. The lower number of
observations for children born in 1970 is because information on small villages started to be measured on May
1st, 1969, which decreases the number of observations with data at birth for that cohort, compared with the rest.
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3.3.1 Height Gaps Across Cohorts

Panel a of Figure 2 presents results for cohorts aggregated over each birth year between 1970 and 1975.

The average height-at-month-24 gaps between Atole and Fresco children are 0.2 cm (76.6−76.4) for the

1970 cohort and 1.6 cm (78.8−77.1) for the 1975 birth cohort.24,25

Panel a also shows linear and local polynomial approximated height trends in Atole and Fresco

villages. They show a relatively flat pattern for heights at month 24 across cohorts in Fresco villages and

a significantly increasing pattern for heights at month 24 across cohorts in Atole villages. Specifically,

the linear trend indicates that each additional cohort year is associated with an increase of 0.34 cm (s.e.

0.13) in heights at month 24 in Atole villages and a slightly positive but insignificant increase of 0.11 cm

(s.e. 0.14) in heights at month 24 in Fresco villages.

3.3.2 Nutritional Gaps Across Cohorts

Panel b of Figure 2 shows protein intakes across cohorts. Again, we show village cohort averages

aggregated over individual averages for 15, 18, 21, and 24 months. We aggregate results to full-year

cohorts in panel b, which shows that the average protein intake gaps between Atole and Fresco villages

were 3.9 grams (21.3− 17.4) in 1970 and 7.9 grams (26.3− 18.4) in 1975.26 Looking at percentage

differences, for the annual cohorts, the average protein intakes in Atole villages were 22, 36, 37, 35, 40,

and 43 percent higher in Atole villages than in Fresco villages for the six annual birth cohorts from 1970

to 1975.27

24 Children born in the first half of 1970 have approximately the same average height in Atole and Fresco villages
at 24 months of age – both at approximately 76.4 cm. However, for those born in the second half of 1975, the
average month-24 heights are 78.9 cm and 76.9 cm for Atole and Fresco village children, respectively.

25 We test whether other variables could explain the increasing heights at month 24 gap across cohorts in Atole and
Fresco villages. We regress heights at month 24 on four birth cohort year groups – 1970, 1971, 1972-73, and
1974-75 – and the interaction of these birth cohort groups with the Atole dummy. We include gender, protein
prices, incomes, and initial heights. These variables are the state variables of our structural model. The results
with and without covariates are similar, which is not surprising given that, as we saw in Table 1, there are no
significant statistical differences between Atole and Fresco villages in gender ratios, incomes, protein prices, and
initial heights.

26 Atole children born in the first half of 1970 have 21.1 grams of daily protein on average, and corresponding
Fresco children had 17.4 grams on average (3.7 grams gap). For those born in the second half of 1975, the
cohort-group average increased to 27.3 grams per day in Atole villages and 18.9 grams in Fresco villages (8.4
grams gap).

27 We test for the significance of the average protein-intake gap between Atole and Fresco villages across cohorts.
We include gender dummies, food prices, incomes, and initial heights as covariates. Without controls, the average
intake gaps were 3.85 (1970), 6.76 (1971), 6.70 (1972-73), and 8.02 (1974-75) grams per day between Atole
and Fresco village cohorts. Including controls, the gap estimates were 4.31, 7.35, 6.88, and 7.88 grams per day,
showing a similar increasing trend.
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Panel b shows trends from linear and local polynomial approximations of average protein intakes

across cohorts similar to those for heights. Specifically, we find that each additional year is associated

with a 0.68 grams (s.e. 0.38) increase in intakes for Atole children and an insignificant increase of 0.17

(s.e. 0.26) grams intakes for Fresco children.

Figure 2 shows that for successive cohorts from 1970 to 1975, there were generally increasing protein-

intake gaps that correspond to increasing height gaps between Atole and Fresco villages. The overall (i.e.,

aggregated across all cohorts) Atole and Fresco protein-intake and height gaps have been observed before

(see, e.g., Puentes et al. 2016), but not the increasing protein-input and height gaps across cohorts.

The empirical question that we face is what can explain these increasing gaps between Atole and

Fresco villages. We discussed that gender shares, incomes, prices, and initial heights do not differ

significantly between Atole and Fresco villages and do not seem to explain the increasing differences

between Atole and Fresco villages across cohorts. Local feeding centers carried out no changes in the

protein and non-protein supplementation policies that might have impacted cohorts differentially over

time. Our structural model with reference-dependent utilities can explain these increasing protein-intake

and height gaps between Atole and Fresco villages.

3.4 Alternative Theories

Potentially, alternative theories could also be consistent with the observed height and protein gaps.

Households might slowly begin to trust the supplement and slowly increase the intakes of Atole and

Fresco. Over time, this could lead to growing calories consumption in both villages, which we observe,

and the growing protein consumption gap across villages. These facts are consistent with both the

reference-point theory and the trust theory. But since the supplement is available daily, we would expect

trust to be developed in a matter of weeks or months, not slowly over almost a decade. Additionally,

the trust theory should increase the extensive margin, but as discussed earlier, all children have positive

supplement intakes since the first year of the experiment.28

Another theory that might be consistent with the gaps we find in the data is that the supplements allow

households to learn about the production function. Under a learning model, specific configurations of

mean and variance parental beliefs could generate similar dynamics; however, the opposite dynamics

might arise if parents overestimate the impact of protein on height or face uncertainty about the impact of

28 Defining trust as the “subjective probability individuals attribute to the possibility of being cheated”, Guiso
et al. (2008) find that a lack of trust impact both extensive and intensive margins of consumer (investor) choices.
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protein on height. If parents overestimate the impact of protein on height, the consumption of protein

decreases over time as parents converge down to the objective estimates of the impact of protein. If

parents face uncertainty about the impact, they will experiment and give more protein to learn and reduce

their uncertainty about the impacts of protein on height. In other words, the learning model might not

predict the same qualitative path of adjustment of protein consumption and evolution of height over time

(e.g., see Antonovics and Golan 2012).

Finally, preferences with habit formation could produce similar dynamics in protein intakes.29 Habit

formation would apply to both control and treatment villages because the villages only differed in the

type of nutritional supplementation they received: Fresco and Atole. The relatively significant increase

in average caloric consumption from the supplement in the Atole villages between 1970 and 1975 of

47 kcal per day in comparison with the average increase of 11 kcal per day in the Fresco villages may

suggest that something beyond habit formation happened in the Atole villages in contrast to the Fresco

villages. However, we cannot rule out habit formation as an alternative explanation. We also note that

habit formation and reference points are not mutually exclusive theories, so they could simultaneously

operate.

Despite our firm beliefs that these explanations are unlikely to drive the dynamics we observe in this

data, we recognize that these alternative theories cannot be directly rejected with the information we

have in our data. A definite test of the different mechanisms implied by these models would require

researchers to elicit parental trust about public programs, parental beliefs about reference points, and

parental perceptions about height production functions. To the best of our knowledge, no parenting

program to date has collected all of this information simultaneously in surveys with participating parents.

4 Identification

In this section, we discuss how we explore the experimentally-induced increasing gaps between Atole

and Fresco villages to identify the vital structural parameters in our model.

29 In his classic work, Pollak (1970) defines habit formation as “allowing past consumption to influence current
tastes”.
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4.1 Measurement Error

We include in the model measurement errors for protein intake and height at age 24 months. The

econometrician observes N∗, which differ from the true optimal nutritional choice N by measurement

error η :

N∗ = N(Ωyv) · eη (8)

Similarly, we assume that the econometrician observes an error-ridden measure of height at age 24

months, H24,∗, which differs from actual height by a measurement error ι :

H24,∗ = H24 (N (Ωyv) ,X ,ε) · eι (9)

We assume that η and ι are normally distributed, and that ε , η , and ι are independent. The standard

deviation of η is ση and the mean is µη =−σ2
η

2 . The standard deviation for ι is σι with mean µι =−σ2
ι

2 .

4.2 Identification of Critical Structural Parameters

For our decomposition exercise, our model requires credible identification of five critical structural

parameters: µRy,v , σ2
Ry,v

, δ , β , and λ . We use equations 4 to identify µRy,v . Given the potential presence of

both sampling and measurement errors, we cannot use Equation 5 to identify σ2
Ry,v

. Rather, we estimate

the model given a range of possible σ2
Ry,v

values bounded at the lower end under the assumption of no

measurement error for the variance parameter from Equation 5, and significant measurement error on the

upper end.

Figure 2 shows the gaps in protein intake between Atole and Fresco villages. In our model, the

protein-supplementation policy experiment works through the δ parameter. We estimate δ > 0 to match

the overall nutritional gap between Atole and Fresco villages.

The parameter β captures the impact of protein intake on height production. The challenge of

estimating β is that protein intake may correlate with the shocks ε . We avoid this problem by exploiting

information from the experimental study in Guatemala. As we described in Section 3, the experiment

induced children in Atole villages to consume more protein. We use the exogenous variation in protein

intake from the experiment to pin down the parameter β .

Crucial to our model is the reference-point parameter λ , which guides the impact of reference points

on nutritional choices. The identification of this parameter requires exogenous variation in reference
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points. In our data, such variation is available by exploring information from the interaction of year

and exogenous assignment to the treatment group. Figure 2 shows the increasing height gaps between

Atole and Fresco villages. This approach is sufficient for identification because there are no statistically

significant differences in levels and trends of incomes, prices, gender, and initial heights between Atole

and Fresco villages (see our discussion in Section 3.2). The model also features other parameters that are

not as important for the decomposition exercise. For example, the parameter ρ (the quadratic term of

non-child-nutrition consumption c) determines the concavity of preferences with respect to c. If income

does not matter, then the model is quasilinear in income with ρ = 0. Hence, ρ is identified by the effect

of income on choices.

For the linear height preference parameters, if γ = 0 (and λ = 0), that would lead to zero nutritional

choices. Given positive nutritional choices, γ > 0. If average nutritional choices are high, γ is higher to

reflect higher preferences for height and vice-versa.

Finally, the productivity shocks impact both nutritional choices and height outcomes. σε is identified

by the positive covariance between the height at month 24 and nutritional choices that are not captured by

income, price, or components of X .

In Appendix Section A.2, we describe how we solve the structural model and present our likelihood

function.

5 Results

5.1 Parameter Estimates

We present estimated parameters in Table 2, with standard errors shown in parentheses. For preferences,

ρ is −0.047, indicating that preferences are concave in c. γ and λ are 0.033 and −0.026, respectively.

Therefore, preferences are also concave in height, and the curvature of the indifference curves indicates

the asymmetry in responses. Parents prefer taller to shorter children, but the marginal benefit from an

additional centimeter of height beyond the reference comparison height is close to zero (albeit positive).

The price discount parameter δ is 0.376, representing a 38% discount in protein prices in Atole

villages. The production-function parameters are β = 0.073, αH0 = 0.022, αmale = 0.009, A = 4.144,

and σε = 0.010. Given these parameters, we show the consumption- and height-possibility frontier along

with indifference curves for an individual in panel a of Figure 1.

The measurement-error estimates are ση = 0.382 and σι = 0.043. These findings indicate that
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measurement error is more severe for nutritional intake than height, which is intuitive.

5.2 Model Fit

Given estimated parameters, we solve for optimal protein choices for each household. Table 3 compares

model and data protein intake and height at month 24 in Fresco and Atole villages. Panel a compares

data and model by aggregating across genders and years. Panel b shows the fit of the model by gender,

aggregated across years. Panel c shows the fit by years but aggregates over gender. The fit is generally

good, but the discrepancy between model prediction and data tends to be greater for protein intake than

height. For example, the model’s worst fit is about protein consumption for girls, and the best fit is for

girls’ height at age 24 months. Across years, the model generally provides good fits for both protein

intake and height, with different outcomes having the worst and the best fit in each year.

We investigate if the model fits Atole villages’ data better than those from the Fresco counterparts, but

we do not find any form of dominance in this comparison. For example, when we break the analysis by

gender, it performs worse for boys in Fresco villages and for girls in Atole villages. We conclude that

there are no systematic differences in fit by experimental groups. This finding provides validation for the

decomposition exercise we perform next.

5.3 Decomposition of Atole–Fresco Gap due to Atole Intervention

We use the estimated model to decompose the relative contributions of prices and reference points to the

height dynamics in Atole and Fresco villages. In Appendix B.1, we discuss additional counterfactuals in

which we compare the relative impacts of poor-targeted and universal policy experiments given reference

points.

The intervention, which started in 1969, leads to a reduction in protein prices in Atole villages. The

discount in this price directly and immediately impacts their protein intake, which explains the difference

in height between Atole and Fresco villages for the 1970-71 cohort. Therefore, this price reduction is the

most significant driving force for the first cohort in our model. The intervention impacted protein intake

and height for the remaining cohorts by simultaneously reducing the price and increasing the reference

points.

Table 4 and Figures 3 and 4 report the results of three counterfactual simulations for Fresco villages

that showcase the capacity of our model to separate the contributions of the price reduction from the
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shifts in reference points.

In the first column of panel a on Table 4, we summarize the simulated average height outcomes and

protein choices for households in Fresco villages. In column five, we show these statistics for households

in Atole villages. Comparing these two columns, the height gaps between Atole and Fresco villages grow

from 1.19 centimeters in 1970-71 to 1.76 centimeters in 1974-75.30

In the second column, we simulate the effect of Fresco households receiving a 38% reduction in the

protein price. This price change reduces the Atole–Fresco height gaps between the first and the fifth

columns, by about 0.6 centimeters, with a small cohort-to-cohort variation.

In column three, we simulate the effect of replacing the reference points in Fresco villages with the

Atole reference points without changing prices. The height gaps between the first and the fifth columns

decrease by about 0.6 centimeters in 1970-71 (48%), to almost a full centimeter in 1974-75 (55%). Figure

3 provides a visualization of results in Table 4.

In column four of Table 4, we simulate protein intake and height at age 24 months of children in

Fresco villages if the households experienced the price discounts and increment in reference points.31

In Figure 4, we decompose the total difference into the effects of the price discounts only (differences

between columns two and one), and the additional effects from also imposing reference-points shifts

(differences between columns four and two). The price discount’s impact is stable at around 0.6 to 0.7

centimeters over time. From 1970 to 1975, the share explained by the price discount decreases from 66%

to 35% of the total impact. During the same period, the share of the total effects explained by reference

points given the price discount increases from 0.39 to 1.02 centimeters, or from 34% to 65% of the total

impact.

5.4 Varying Reference-Points Variance Beliefs

In this section, we continue with the counterfactual decomposition analysis. Here, we use alternative

estimates based on varying assumptions for σ2
Ry,v

. Under our main specifications, we assumed that σ2
Ry,v

is

determined by the variance of the mean belief. It captures the uncertainty parents face with respect to

their mean beliefs. However, we do not have direct empirical evidence for the uncertainty in mean beliefs

30 For the six years of the study, the height gaps between Atole and Fresco villages were 1.12cm, 1.19cm, 1.14cm,
1.41cm, 1.78cm, and 1.79cm.

31 The resulting outcomes closely approximate the simulated results from Atole villages shown in column five.
This result is not surprising given that other state variables do not vary significantly between Atole and Fresco
villages, as seen in Table 1.
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about the reference point. Our ignorance about this parameter matters because the greater the variance

beliefs, the less important the reference points, ceteris paribus.

In this section, we explore alternative values for σ2
Ry,v

. The standard deviation of height at age 24

months is approximately 3.5 centimeters. The standard error of the mean beliefs is around 0.5 centimeters.

We used σRy,v = 0.5 for the main specification results discussed so far. 32

5.4.1 Alternative Model Estimates under Varying σRy,v

To assess the sensitivity of our results, we re-estimate the model for values of σRy,v in the set {1.5,2.5,3.5}.

We pick 3.5 as the upper-bound because it is the standard deviation of the height distribution at age 24

months (see our discussion in Appendix Section A.3). In Table 5, we present parameter estimates for the

model under alternative assumptions on σRy,v .

Overall, as we shift assumptions on the value of σRy,v , which is a parameter of the utility function, the

parameter estimates for preference parameters shift. As σRy,v increases from 0.5 to 3.5, estimates for ρ

decrease, estimates for γ decrease before increasing, and estimates for λ largely decrease.33

Given these estimates, at higher σRy,v levels, the marginal gains from additional units of non-child-

nutrition consumption decrease. At the σRy,v = 3.5, 0.035 = γ < |λ | = |− 0.041|, hence the marginal

gains from an additional unit of height are slightly decreasing beyond the mean of the reference points

distribution. This is true for σRy,v = 2.5 as well. At σRy,v = 0.5, 0.033 = γ > |λ |= |−0.026|, hence the

expected marginal gains from an additional unit of height are slightly increasing beyond the mean of

the reference-points distribution. This is true for σRy,v = 1.5 as well. In essence, the higher the value of

σRy,v , the higher (in absolute value) λ . Therefore, while greater values of σRy,v reduce the importance of

reference points, the greater (absolute) values of λ make reference points more relevant. This finding will

explain why our decomposition exercise is largely invariant to σRy,v .

Production function, price discount, and measurement error parameters are generally stable across

assumptions for the values for σRy,v . As preference parameters adjust to match the same data on nutritional

choices, it does not surprise us that the parameters for the production function and budget are relatively

the same: the input and output relationship has not changed, and the relative gaps in height outcomes and

nutritional choices across Atole and Fresco villages across cohorts have not changed. The measurement

error distribution is essentially the same across values for σRy,v as well because σRy,v is a parameter that

32 See discussions and details in Appendix Section A.4.
33 In Appendix Figure A.2, we visualize the point-estimates for ρ , γ , and λ obtained by re-estimating the model

along a finer set of σRy,v values between 0.5 and 3.5.
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shifts the curvature of indifference curves. Higher σRy,v does not expand the variance of observed shocks

facing households and has limited impacts on the variance of model predicted choices and expected

heights.34

5.4.2 Decomposition under Varying σRy,v

Given the different parameter estimates as reported in Table 5, we conduct the counterfactual decom-

position exercises for σRy,v between 0.5 and 3.5 cm. Figure 5 provides graphical illustrations of the

decompositional results under alternative assumptions on σRy,v . Similar to Figure 4, the results com-

pare the counterfactual scenarios: changing protein price; changing both prices and reference points

simultaneously.

As shown in panel a of 5, the price discount’s impacts are stable and vary between 0.6 and 0.8

centimeters across cohorts and across σRy,v assumptions. The results from σRy,v = 0.5 show a decreasing

height effect attributed to the price discount, however for larger σRy,v the price effect remains fairly

constant across cohorts. Since the price discount is common across the years, this indicates that at the

estimated parameter for σRy,v = 0.5, household choices are more sensitive to variations in prices and

income. The impact of reference-point increases, given the price discount, is monotonically rising from

the 1970 to the 1975 cohorts under all assumptions for σRy,v . For the 1970 cohort, the impact varies

between 0.4 to 0.5 cm across σRy,v . For the 1973 cohort, the impacts are stable at around 0.80 centimeters.

For the 1975 cohort, the impacts vary just a little around one centimeter.

In percentage terms, from 1970 to 1975, the contributions of the price discount decrease under all

assumptions for σRy,v . This is shown in panel b of 5. We can use the different assumptions on σRy,v to

bound the share of the impact of the intervention due to changing protein prices. For example, for the

cohort of children born in 1975, the change in the protein price explains 35% to 43% of the impact on the

height at age 24 months. The change in reference points, given changes in the price, represents 57% to

65% of the total impact. In short, our sensitivity analysis shows that for the cohorts born in 1973 or later,

the change in the reference point is the primary driver of the change in height at age 24 months.

34 In Appendix Table A.1, we show that the fits of the model are very similar under different σRy,v assumptions.
Given our data, it is not possible for us to identify σRy,v directly from nutritional choices and height outcome
patterns across cohorts. Preference parameters are able to adjust flexibly to accommodate varying σRy,v values
and provide similar model fits. This non-identification result is not new in the literature that allows for agents to
have heterogeneous beliefs, as described in Manski (2004).
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6 Conclusion

In this paper, we build and estimate a child-nutritional investment model. The model considers reference-

dependent preferences, where the reference is with respect to the heights of the previous cohort of children

who live in the same village. Reference points shift endogenously as households observe children’s

heights from earlier birth cohorts changing.

For researchers interested in the impact of price subsidies and income transfers, we have introduced a

long-term secondary channel – endogenous changes in reference points – that might affect the impacts of

these policies. For the protein-supplement experiment implemented in Guatemala, which we interpret

as a price-discount policy, by 1975 – six years after the start of the policy – 57% to 65% of the policy’s

impact are due to its impact on shifting reference points.

Our paper also shows significant height increases might be realized from shifting reference points

for highly-stunted populations. It is an open question how to exogenously shift these reference points in

the short run, although the Peruvian experience mentioned in the introduction indicates that educational

campaigns could be effective on a large scale over time. The cost of an educational campaign to inform

households about alternative reference heights might be lower than income transfers and price subsidies

with similar effects on heights.

We recognize that our analysis requires a crucial assumption: parents use the data on a selected

group of children to estimate mean and variance beliefs about the reference height. We argued that our

assumption is consistent with research in economics, medicine, and anthropology, but we recognize that

there are many other alternatives, such as rational expectations, Bayesian updating, or social learning

models. Unfortunately, the literature in economics knows very little about such a critical element of the

model we propose in this paper. Therefore, it is necessary to encourage research that elicits parental

subjective distributions of reference points as part of parent-directed interventions to reduce stunting.

Within a randomized controlled trial, the availability of such data would shed light on the process parents

use to update critical moments of the subjective distribution. With such evidence, one could have a more

robust representation of our model that would better inform the design of public policies to improve

children’s health.

25



References
Almoosawi, S., A. R. Jones, K. N. Parkinson, M. S. Pearce, H. Collins, and A. J. Adamson.

2016. “Parental Perception of Weight Status: Influence on Children’s Diet in the Gateshead
Millennium Study.” PLOS ONE 11, no. 2 (February): e0144931. https://doi.org/10.1371/
journal.pone.0144931.

Antonovics, K., and L. Golan. 2012. “Experimentation and Job Choice.” Journal of Labor
Economics 30, no. 2 (April): 333–366. https://doi.org/10.1086/663356.

Attanasio, O., F. Cunha, and P. Jervis. 2019. “Subjective Parental Beliefs: Their Measurement
and Role,” no. 26516 (November). https://doi.org/10.3386/w26516.

Behrman, J. R., M. C. Calderon, S. H. Preston, J. Hoddinott, R. Martorell, and A. D. Stein. 2009.
“Nutritional Supplementation in Girls Influences the Growth of Their Children: Prospective
Study in Guatemala.” The American Journal of Clinical Nutrition 90, no. 5 (November):
1372–1379. https://doi.org/10.3945/ajcn.2009.27524.

Bell, D. E. 1985. “Disappointment in Decision Making under Uncertainty.” Operations Research
33, no. 1 (February): 1–27. https://doi.org/10.1287/opre.33.1.1.

Ben-Joseph, E. P., S. A. Dowshen, and N. Izenberg. 2009. “Do Parents Understand Growth
Charts? A National, Internet-Based Survey.” Pediatrics 124, no. 4 (October): 1100–1109.
https://doi.org/10.1542/peds.2008-0797.

Berndt, S. I., S. Gustafsson, R. Mägi, A. Ganna, E. Wheeler, M. F. Feitosa, A. E. Justice, et al.
2013. “Genome-Wide Meta-Analysis Identifies 11 New Loci for Anthropometric Traits and
Provides Insights into Genetic Architecture.” Nature Genetics 45, no. 5 (April): 501–512.
https://doi.org/10.1038/ng.2606.

Besley, T., and R. Kanbur. 1990. The Principles of Targeting. WPS385. The World Bank,
March 31, 1990. http://documents.worldbank.org/curated/en/212811468739258336/The-
principles-of-targeting.

Black, M. M., S. P. Walker, L. C. Fernald, C. T. Andersen, A. M. DiGirolamo, C. Lu, D. C.
McCoy, et al. 2017. “Early Childhood Development Coming of Age: Science through the
Life Course.” The Lancet 389, no. 10064 (January): 77–90. https://doi.org/10.1016/S0140-
6736(16)31389-7.

Boneva, T., and C. Rauh. 2018. “Parental Beliefs about Returns to Educational Investments—the
Later the Better?” Journal of the European Economic Association 16, no. 6 (December):
1669–1711. https://doi.org/10.1093/jeea/jvy006.

Cameron, A. C., and D. L. Miller. 2015. “A Practitioner’s Guide to Cluster-Robust Inference.”
Journal of Human Resources 50, no. 2 (March): 317–372. https://doi.org/10.3368/jhr.50.2.
317.

Campbell, F., G. Conti, J. J. Heckman, S. H. Moon, R. Pinto, E. Pungello, and Y. Pan. 2014.
“Early Childhood Investments Substantially Boost Adult Health.” Science 343, no. 6178
(March): 1478–1485. https://doi.org/10.1126/science.1248429.

Carneiro, P., and J. J. Heckman. 2004. “Human Capital Policy.” In Inequality in America:
What Role for Human Capital Policies?, edited by J. J. Heckman and A. Krueger, 77–240.
Cambrige, MA: MIT Press. https://mitpress.mit.edu/books/inequality-america.

Coady, D., M. E. Grosh, and J. Hoddinott. 2004. Targeting of Transfers in Developing Countries:
Review of Lessons and Experience. World Bank Publications. http://hdl.handle.net/10986/
14902.

26

https://doi.org/10.1371/journal.pone.0144931
https://doi.org/10.1371/journal.pone.0144931
https://doi.org/10.1086/663356
https://doi.org/10.3386/w26516
https://doi.org/10.3945/ajcn.2009.27524
https://doi.org/10.1287/opre.33.1.1
https://doi.org/10.1542/peds.2008-0797
https://doi.org/10.1038/ng.2606
http://documents.worldbank.org/curated/en/212811468739258336/The-principles-of-targeting
http://documents.worldbank.org/curated/en/212811468739258336/The-principles-of-targeting
https://doi.org/10.1016/S0140-6736(16)31389-7
https://doi.org/10.1016/S0140-6736(16)31389-7
https://doi.org/10.1093/jeea/jvy006
https://doi.org/10.3368/jhr.50.2.317
https://doi.org/10.3368/jhr.50.2.317
https://doi.org/10.1126/science.1248429
https://mitpress.mit.edu/books/inequality-america
http://hdl.handle.net/10986/14902
http://hdl.handle.net/10986/14902


Cunha, F., I. Elo, and J. Culhane. 2013. Eliciting Maternal Expectations about the Technology of
Cognitive Skill Formation. Working Paper 19144. National Bureau of Economic Research,
June. https://doi.org/10.3386/w19144.

. 2022. “Maternal Subjective Expectations about the Technology of Skill Formation
Predict Investments in Children One Year Later.” Journal of Econometrics, https://doi.org/
10.1016/j.jeconom.2020.07.044.

Cunha, F., M. Gerdes, and S. Nihtianova. 2021. Language Environment and Maternal Ex-
pectations: An Evaluation of the LENA Start Program. Working Paper. Rice University,
July.

Cunha, F., and J. J. Heckman. 2007. “The Technology of Skill Formation.” American Economic
Review 97, no. 2 (May): 31–47. https://doi.org/10.1257/aer.97.2.31.

. 2009. “The Economics and Psychology of Inequality and Human Development.”
Journal of the European Economic Association 7, nos. 2-3 (May): 320–364. https://doi.org/
10.1162/jeea.2009.7.2-3.320.

Cunha, F., J. J. Heckman, and S. M. Schennach. 2010. “Estimating the Technology of Cognitive
and Noncognitive Skill Formation.” Econometrica 78, no. 3 (May): 883–931. https://doi.
org/10.3982/ECTA6551.

Cuomo, B., A. Joosten, and S. Vaz. 2021. “Scoping Review on Noticing Concerns in Child De-
velopment: A Missing Piece in the Early Intervention Puzzle.” Disability and Rehabilitation
43 (18): 2663–2672. https://doi.org/10.1080/09638288.2019.1707296.

Dewey, K. G. 2016. “Reducing Stunting by Improving Maternal, Infant and Young Child Nutri-
tion in Regions Such as South Asia: Evidence, Challenges and Opportunities.” Maternal &
Child Nutrition 12 (May): 27–38. https://doi.org/10.1111/mcn.12282.

Donald, S. G., and K. Lang. 2007. “Inference with Difference-in-Differences and Other Panel
Data.” The Review of Economics and Statistics 89, no. 2 (May): 221–233. https://doi.org/
10.1162/rest.89.2.221.

Epstein, A. S. 1979. Pregnant Teenagers’ Knowledge of Infant Development. Biennial Meeting of
the Society for Research in Child Development, March. https://eric.ed.gov/?id=ED176875.

FAO. 2019. The State of Food Security and Nutrition in the World 2019. Rome, Italy: Food and
Agriculture Organization of the United Nations. https://doi.org/10.4060/CA5162EN.

Fink, G., R. Levenson, S. Tembo, and P. C. Rockers. 2017. “Home-and Community-Based
Growth Monitoring to Reduce Early Life Growth Faltering: An Open-Label, Cluster-
Randomized Controlled Trial.” The American Journal of Clinical Nutrition 106, no. 4
(October): 1070–1077. https://doi.org/10.3945/ajcn.117.157545.

Gelbach, J. B., and L. H. Pritchett. 1999. More for the Poor Is Less for the Poor: The Politics of
Targeting. 1799. The World Bank, November. https://doi.org/10.1596/1813-9450-1799.

Gertler, P., J. J. Heckman, R. Pinto, A. Zanolini, C. Vermeersch, S. Walker, S. M. Chang, et al.
2014. “Labor Market Returns to an Early Childhood Stimulation Intervention in Jamaica.”
Science 344, no. 6187 (May): 998–1001. https://doi.org/10.1126/science.1251178.

Greenwood, R., and S. G. Hanson. 2015. “Waves in Ship Prices and Investment.” The Quarterly
Journal of Economics 130, no. 1 (February): 55–109. https://doi.org/10.1093/qje/qju035.

Groot, R. de, T. Palermo, S. Handa, L. P. Ragno, and A. Peterman. 2017. “Cash Transfers and
Child Nutrition: Pathways and Impacts.” Development Policy Review 35, no. 5 (September):
621–643. https://doi.org/10.1111/dpr.12255.

27

https://doi.org/10.3386/w19144
https://doi.org/10.1016/j.jeconom.2020.07.044
https://doi.org/10.1016/j.jeconom.2020.07.044
https://doi.org/10.1257/aer.97.2.31
https://doi.org/10.1162/jeea.2009.7.2-3.320
https://doi.org/10.1162/jeea.2009.7.2-3.320
https://doi.org/10.3982/ECTA6551
https://doi.org/10.3982/ECTA6551
https://doi.org/10.1080/09638288.2019.1707296
https://doi.org/10.1111/mcn.12282
https://doi.org/10.1162/rest.89.2.221
https://doi.org/10.1162/rest.89.2.221
https://eric.ed.gov/?id=ED176875
https://doi.org/10.4060/CA5162EN
https://doi.org/10.3945/ajcn.117.157545
https://doi.org/10.1596/1813-9450-1799
https://doi.org/10.1126/science.1251178
https://doi.org/10.1093/qje/qju035
https://doi.org/10.1111/dpr.12255


Guiso, L., P. Sapienza, and L. Zingales. 2008. “Trusting the Stock Market.” The Journal of
Finance 63, no. 6 (December): 2557–2600. https://doi.org/10.1111/j.1540-6261.2008.
01408.x.

Habicht, J.-P., R. Martorell, and J. A. Rivera. 1995. “Nutritional Impact of Supplementation
in the INCAP Longitudinal Study: Analytical Strategies and Inferences.” The Journal of
Nutrition 125, no. 4 (April): 1042–50. https://academic.oup.com/jn/article-abstract/125/
suppl_4/1027S/4730854.

Habicht, J.-P., C. Yarbrough, R. Martorell, R. M. Malina, and R. E. Klein. 1974. “Height and
Weight Standards for Preschool Children: How Relevant Are Ethnic Differences in Growth
Potential?” The Lancet, Originally Published as Volume 1, Issue 7858, 303, no. 7858
(April): 611–615. https://doi.org/10.1016/S0140-6736(74)92663-4.

Hansen, A. R., D. T. Duncan, Y. N. Tarasenko, F. Yan, and J. Zhang. 2014. “Generational Shift
in Parental Perceptions of Overweight among School-Aged Children.” Pediatrics 134, no.
3 (September): 481–488. https://doi.org/10.1542/peds.2014-0012.

Heckman, J. J., S. H. Moon, R. Pinto, P. A. Savelyev, and A. Yavitz. 2010a. “Analyzing Social
Experiments as Implemented: A Reexamination of the Evidence from the Highscope Perry
Preschool Program.” Quantitative Economics 1, no. 1 (July): 1–46. https://doi.org/10.3982/
QE8.

. 2010b. “The Rate of Return to the Highscope Perry Preschool Program.” Journal of
Public Economics 94, nos. 1-2 (February): 114–128. https://doi.org/10.1016/j.jpubeco.
2009.11.001.

Heckman, J. J., R. Pinto, and P. Savelyev. 2013. “Understanding the Mechanisms through Which
an Influential Early Childhood Program Boosted Adult Outcomes.” American Economic
Review 103, no. 6 (October): 2052–86. https://doi.org/10.1257/aer.103.6.2052.

Hess, R. D., and V. C. Shipman. 1965. “Early Experience and the Socialization of Cognitive
Modes in Children.” Child Development 36, no. 4 (December): 869–886. https://doi.org/10.
2307/1126930.

Hoddinott, J., H. Alderman, J. R. Behrman, L. Haddad, and S. Horton. 2013. “The Economic
Rationale for Investing in Stunting Reduction.” Maternal & Child Nutrition 9 (September):
69–82. https://doi.org/10.1111/mcn.12080.

Hoddinott, J., J. R. Behrman, J. A. Maluccio, P. Melgar, A. R. Quisumbing, M. Ramirez-Zea,
A. D. Stein, et al. 2013. “Adult Consequences of Growth Failure in Early Childhood.” The
American Journal of Clinical Nutrition 98, no. 5 (November): 1170–78. https://doi.org/10.
3945/ajcn.113.064584.

Hoddinott, J., J. A. Maluccio, J. R. Behrman, R. Flores, and R. Martorell. 2008. “Effect of a
Nutrition Intervention during Early Childhood on Economic Productivity in Guatemalan
Adults.” The Lancet 371, no. 9610 (February): 411–416. https://doi.org/10.1016/S0140-
6736(08)60205-6.

Huang, W., E. M. Liu, and C. A. Zuppann. 2020. “Relative Obesity and the Formation of
Non-Cognitive Abilities during Adolescence.” Journal of Human Resources (November):
1018. https://doi.org/10.3368/jhr.58.2.1018-9812R2.

Islam, M., and J. Hoddinott. 2009. “Evidence of Intrahousehold Flypaper Effects from a Nutrition
Intervention in Rural Guatemala.” Economic Development and Cultural Change 57, no. 2
(January): 215–238. https://doi.org/10.1086/592876.

28

https://doi.org/10.1111/j.1540-6261.2008.01408.x
https://doi.org/10.1111/j.1540-6261.2008.01408.x
https://academic.oup.com/jn/article-abstract/125/suppl_4/1027S/4730854
https://academic.oup.com/jn/article-abstract/125/suppl_4/1027S/4730854
https://doi.org/10.1016/S0140-6736(74)92663-4
https://doi.org/10.1542/peds.2014-0012
https://doi.org/10.3982/QE8
https://doi.org/10.3982/QE8
https://doi.org/10.1016/j.jpubeco.2009.11.001
https://doi.org/10.1016/j.jpubeco.2009.11.001
https://doi.org/10.1257/aer.103.6.2052
https://doi.org/10.2307/1126930
https://doi.org/10.2307/1126930
https://doi.org/10.1111/mcn.12080
https://doi.org/10.3945/ajcn.113.064584
https://doi.org/10.3945/ajcn.113.064584
https://doi.org/10.1016/S0140-6736(08)60205-6
https://doi.org/10.1016/S0140-6736(08)60205-6
https://doi.org/10.3368/jhr.58.2.1018-9812R2
https://doi.org/10.1086/592876


Kahneman, D., and A. Tversky. 1979. “Prospect Theory: An Analysis of Decision under Risk.”
Econometrica 47, no. 2 (March): 263–291. https://doi.org/10.2307/1914185.

Kinsler, J., and R. Pavan. 2021. “Local Distortions in Parental Beliefs over Child Skill.” Journal
of Political Economy 129, no. 1 (January): 81–100. https://doi.org/10.1086/711347.

Koszegi, B., and M. Rabin. 2006. “A Model of Reference Dependent Preferences.” Quarterly
Journal of Economics 121, no. 4 (November): 1133–1165. https://doi.org/10.1093/qje/121.
4.1133.

Lango Allen, H., K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon, F. Rivadeneira, C. J.
Willer, et al. 2010. “Hundreds of Variants Clustered in Genomic Loci and Biological
Pathways Affect Human Height.” Nature 467, no. 7317 (September): 832–838. https :
//doi.org/10.1038/nature09410.

Laraway, K. A., L. L. Birch, M. L. Shaffer, and I. M. Paul. 2010. “Parent Perception of
Healthy Infant and Toddler Growth.” Clinical Pediatrics 49, no. 4 (April): 343–349. https:
//doi.org/10.1177/0009922809343717.

Lechtig, A., G. Cornale, M. E. Ugaz, and L. Arias. 2009. “Decreasing Stunting, Anemia, and
Vitamin A Deficiency in Peru: Results of the Good Start in Life Program.” Food and
Nutrition Bulletin 30, no. 1 (March): 37–48. https://doi.org/10.1177/156482650903000104.

Loomes, G., and R. Sugden. 1986. “Disappointment and Dynamic Consistency in Choice under
Uncertainty.” Review of Economic Studies 53, no. 2 (April): 271–282. https://doi.org/10.
2307/2297651.

Lucas, P., L. Arai, J. Baird, J. Kleijnen, C. Law, and H. Roberts. 2007. “A Systematic Review
of Lay Views about Infant Size and Growth.” Archives of Disease in Childhood 92, no. 2
(February): 120–127. https://doi.org/10.1136/adc.2005.087288.

Maluccio, J. A., J. Hoddinott, J. R. Behrman, R. Martorell, A. R. Quisumbing, and A. D.
Stein. 2009. “The Impact of Improving Nutrition during Early Childhood on Education
among Guatemalan Adults.” The Economic Journal 119, no. 537 (March): 734–763. https:
//doi.org/10.1111/j.1468-0297.2009.02220.x.

Mansbach, I. K., and C. W. Greenbaum. 1999. “Developmental Maturity Expectations of Israeli
Fathers and Mothers: Effects of Education, Ethnic Origin, and Religiosity.” International
Journal of Behavioral Development 23, no. 3 (September): 771–797. https://doi.org/10.
1080/016502599383793.

Manski, C. F. 2004. “Measuring Expectations.” Econometrica 72 (September): 1329–1376.
https://doi.org/10.1111/j.1468-0262.2004.00537.x.

Marini, A., C. Rokx, and P. Gallagher. 2017. Standing Tall : Peru’s Success in Overcoming Its
Stunting Crisis. 117053. The World Bank, June 28, 2017. http://hdl.handle.net/10986/
28321.

Martorell, R., and A. Zongrone. 2012. “Intergenerational Influences on Child Growth and
Undernutrition.” Paediatric and Perinatal Epidemiology 26, no. s1 (July): 302–314. https:
//doi.org/10.1111/j.1365-3016.2012.01298.x.

Mathieu, M.-E., V. Drapeau, and A. Tremblay. 2010. “Parental Misperception of Their Child’s
Body Weight Status Impedes the Assessment of the Child’s Lifestyle Behaviors.” Inter-
national Journal of Pediatrics 2010 (September 2, 2010). https://doi.org/10.1155/2010/
306703.

May, A. L., M. Donohue, K. S. Scanlon, B. Sherry, K. Dalenius, P. Faulkner, and L. L. Birch.
2007. “Child-Feeding Strategies Are Associated with Maternal Concern about Children

29

https://doi.org/10.2307/1914185
https://doi.org/10.1086/711347
https://doi.org/10.1093/qje/121.4.1133
https://doi.org/10.1093/qje/121.4.1133
https://doi.org/10.1038/nature09410
https://doi.org/10.1038/nature09410
https://doi.org/10.1177/0009922809343717
https://doi.org/10.1177/0009922809343717
https://doi.org/10.1177/156482650903000104
https://doi.org/10.2307/2297651
https://doi.org/10.2307/2297651
https://doi.org/10.1136/adc.2005.087288
https://doi.org/10.1111/j.1468-0297.2009.02220.x
https://doi.org/10.1111/j.1468-0297.2009.02220.x
https://doi.org/10.1080/016502599383793
https://doi.org/10.1080/016502599383793
https://doi.org/10.1111/j.1468-0262.2004.00537.x
http://hdl.handle.net/10986/28321
http://hdl.handle.net/10986/28321
https://doi.org/10.1111/j.1365-3016.2012.01298.x
https://doi.org/10.1111/j.1365-3016.2012.01298.x
https://doi.org/10.1155/2010/306703
https://doi.org/10.1155/2010/306703


Becoming Overweight, but Not Children’s Weight Status.” Journal of the American Dietetic
Association 107, no. 7 (July): 1167–1174. https://doi.org/10.1016/j.jada.2007.04.009.

Moore, L. C., C. V. Harris, and A. S. Bradlyn. 2012. “Exploring the Relationship between
Parental Concern and the Management of Childhood Obesity.” Maternal and Child Health
Journal 16, no. 4 (May): 902–908. https://doi.org/10.1007/s10995-011-0813-x.

Moradi, A. 2010. “Nutritional Status and Economic Development in Sub-Saharan Africa,
1950–1980.” Economics & Human Biology 8, no. 1 (March): 16–29. https://doi.org/10.
1016/j.ehb.2009.12.002.

Mulcahy, H., and E. Savage. 2016. “Uncertainty: A Little Bit Not Sure. Parental Concern
about Child Growth or Development.” Journal of Child Health Care: For Professionals
Working with Children in the Hospital and Community 20, no. 3 (September): 333–343.
https://doi.org/10.1177/1367493515587059.

Nerlove, M. 1958. “Adaptive Expectations and Cobweb Phenomena.” The Quarterly Journal of
Economics 72, no. 2 (May): 227–240. https://doi.org/10.2307/1880597.

Ninio, A. 1980. “Picture-Book Reading in Mother–Infant Dyads Belonging to Two Subgroups
in Israel.” Child Development 51, no. 2 (June): 587–590. https://doi.org/10.2307/1129299.

Ninio, A., and N. Rinott. 1988. “Fathers’ Involvement in the Care of Their Infants and Their
Attributions of Cognitive Competence to Infants.” Child Development 59, no. 3 (June):
652–663. https://doi.org/10.2307/1130565.

Penny, M. E., H. M. Creed-Kanashiro, R. C. Robert, M. R. Narro, L. E. Caulfield, and R. E. Black.
2005. “Effectiveness of an Educational Intervention Delivered through the Health Services
to Improve Nutrition in Young Children: A Cluster-Randomised Controlled Trial.” The
Lancet 365, no. 9474 (May): 1863–1872. https://doi.org/10.1016/S0140-6736(05)66426-4.

Pollak, R. A. 1970. “Habit Formation and Dynamic Demand Functions.” Journal of Political
Economy 78 (4, Part 1): 745–763. https://doi.org/10.1086/259667.

Puentes, E., F. Wang, J. R. Behrman, F. Cunha, J. Hoddinott, J. A. Maluccio, L. S. Adair, et al.
2016. “Early Life Height and Weight Production Functions with Endogenous Energy and
Protein Inputs.” Economics & Human Biology 22 (September): 65–81. https://doi.org/10.
1016/j.ehb.2016.03.002.

Reifsnider, E., J. Allan, and M. Percy. 2000. “Mothers’ Explanatory Models of Lack of Child
Growth.” Public Health Nursing 17, no. 6 (November): 434–442. https://doi.org/10.1046/j.
1525-1446.2000.00434.x.

Richter, L. M., B. Daelmans, J. Lombardi, J. Heymann, F. L. Boo, J. R. Behrman, C. Lu,
et al. 2017. “Investing in the Foundation of Sustainable Development: Pathways to Scale
up for Early Childhood Development.” The Lancet 389, no. 10064 (January): 103–118.
https://doi.org/10.1016/S0140-6736(16)31698-1.

Ruel, M. T., and J.-P. Habicht. 1992. “Growth Charts Only Marginally Improved Maternal
Learning from Nutrition Education and Growth Monitoring in Lesotho.” The Journal of
Nutrition 122, no. 9 (September): 1772–1780. https://doi.org/10.1093/jn/122.9.1772.

Swyden, K., S. B. Sisson, K. Lora, A. Weedn, A. Sheffield Morris, B. DeGrace, and K. A.
Copeland. 2015. “Relationship between Parental Perception and Concern for Child Weight
and Influence on Obesogenic Parenting Practices.” Advances in Pediatric Research 2, no. 2
(May 13, 2015): 1–9. https://www.longdom.org/articles/relationship-between-parental-
perception - and - concern - for - child - weightand - influence - on - obesogenic - parenting -
practices.pdf.

30

https://doi.org/10.1016/j.jada.2007.04.009
https://doi.org/10.1007/s10995-011-0813-x
https://doi.org/10.1016/j.ehb.2009.12.002
https://doi.org/10.1016/j.ehb.2009.12.002
https://doi.org/10.1177/1367493515587059
https://doi.org/10.2307/1880597
https://doi.org/10.2307/1129299
https://doi.org/10.2307/1130565
https://doi.org/10.1016/S0140-6736(05)66426-4
https://doi.org/10.1086/259667
https://doi.org/10.1016/j.ehb.2016.03.002
https://doi.org/10.1016/j.ehb.2016.03.002
https://doi.org/10.1046/j.1525-1446.2000.00434.x
https://doi.org/10.1046/j.1525-1446.2000.00434.x
https://doi.org/10.1016/S0140-6736(16)31698-1
https://doi.org/10.1093/jn/122.9.1772
https://www.longdom.org/articles/relationship-between-parental-perception-and-concern-for-child-weightand-influence-on-obesogenic-parenting-practices.pdf
https://www.longdom.org/articles/relationship-between-parental-perception-and-concern-for-child-weightand-influence-on-obesogenic-parenting-practices.pdf
https://www.longdom.org/articles/relationship-between-parental-perception-and-concern-for-child-weightand-influence-on-obesogenic-parenting-practices.pdf


Thompson, A. L., L. Adair, and M. E. Bentley. 2014. “"Whatever Average Is:" Understanding
African-American Mothers’ Perceptions of Infant Weight, Growth, and Health.” Current
Anthropology 55, no. 3 (June): 348–355. https://doi.org/10.1086/676476.

USDA. 2019. “FoodData Central.” United States Department of Agriculture Agricultural Re-
search Service. https://fdc.nal.usda.gov/.

Victora, C. G., L. Adair, C. Fall, P. C. Hallal, R. Martorell, L. M. Richter, H. S. Sachdev, et al.
2008. “Maternal and Child Undernutrition: Consequences for Adult Health and Human
Capital.” The Lancet 371, no. 9609 (January): 340–357. https://doi.org/10.1016/S0140-
6736(07)61692-4.

Victora, C. G., M. de Onis, P. C. Hallal, M. Blössner, and R. Shrimpton. 2010. “Worldwide
Timing of Growth Faltering: Revisiting Implications for Interventions.” Pediatrics 125, no.
3 (March): 2009–1519. https://doi.org/10.1542/peds.2009-1519.

WHO. 2006. Who Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-
for-Length, Weight -for-Height and Body Mass Index-for-Age: Methods and Development.
World Health Organization. https://apps.who.int/iris/handle/10665/43413.

31

https://doi.org/10.1086/676476
https://fdc.nal.usda.gov/
https://doi.org/10.1016/S0140-6736(07)61692-4
https://doi.org/10.1016/S0140-6736(07)61692-4
https://doi.org/10.1542/peds.2009-1519
https://apps.who.int/iris/handle/10665/43413


60 70 80 90 100 110 120

Health level (month 24 height in cm)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ll 

c
o
n
s
u
m

p
ti
o
n
 o

th
e
r 

th
a
n
 c

h
ild

 n
u
tr

it
io

n

(a) Contours of indifference curves at given estimates

76 78 80 82

Health level (month 24 height in cm)

1.1

1.12

1.14

1.16

1.18

1.2

A
ll 

c
o
n
s
u
m

p
ti
o
n
 o

th
e
r 

th
a
n
 c

h
ild

 n
u
tr

it
io

n =-0.035

=-0.025

=-0.015

(b) Vary λ

76 78 80 82

Health level (month 24 height in cm)

1.1

1.12

1.14

1.16

1.18

1.2

A
ll 

c
o
n
s
u
m

p
ti
o
n
 o

th
e
r 

th
a
n
 c

h
ild

 n
u
tr

it
io

n

R
=75.09

R
=77.09

R
=79.09

(c) Vary µR

76 78 80 82

Health level (month 24 height in cm)

1.1

1.12

1.14

1.16

1.18

1.2

A
ll 

c
o
n
s
u
m

p
ti
o
n
 o

th
e
r 

th
a
n
 c

h
ild

 n
u
tr

it
io

n
R

=0.05

R
=0.5

R
=3.5

(d) Vary σR

Fig. 1. Consumption and height outcome indifference curves and choice frontiers. Note: Health
possibility frontier and indifference curves are visualized in blue (solid-line) given estimated
parameters and characteristics for one particular child. The consumption and expected height
outcome frontier is determined by the budget constraint as well as the production function.
Panels b, c and d show results from varying one parameter at a time in red (dashed-line) and
orange (dotted-line). See Section 2.5 for discussions.
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Fig. 2. Increasing protein and height gaps across cohorts. Note: See Section 3.3 for discussions.
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Fig. 3. Decompose protein choice gaps between Atole and Fresco villages. Note: We evaluate
the effects of giving fresco villages Atole price and Atole reference points on the protein choice
gaps between Atole and Fresco villages. See Section 5.3 for discussions.
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Fig. 5. Decompose height gaps between Atole and Fresco villages with varying σR. Note: We
re-estimate the model under different reference points standard deviation assumptions. Given
estimates at selected σR values, we compare the contributions, in levels and shares, of reference
points changes to the height gaps between Atole and Fresco villages. See Section 5.4 for
discussions.
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Table 1: Summary statistics for various variables

Atole and Fresco villages differences

All Group averages p-values testing

mean (sd) Fresco Atole gap p-value

Panel a: Gender income price (N=503, main sample)
Male 0.52 0.52 0.52 -0.00 0.92

(0.50) (0.50) (0.50)
Income (quetzale) 515.57 503.68 526.00 22.32 0.59

(460.9) (464.4) (458.4)
Mth 15-24 protein price (quetzale/10k grams) 52.58 52.47 52.68 0.21 0.54

(3.87) (3.93) (3.81)

Panel b: Gender income (N=1115, height observed once in first 24 months)
Male 0.53 0.53 0.53 0.00 0.98

(0.50) (0.50) (0.50)
Income (quetzale) 449.49 444.63 454.06 9.43 0.72

(432.3) (446.4) (419.0)

Panel c: Height
Month 0 (cm) N=503 49.64 49.79 49.52 -0.27 0.19

(2.29) (2.29) (2.29)
Month 6 (cm) N=463 62.72 62.49 62.93 0.44 0.05

(2.46) (2.50) (2.42)
Month 12 (cm) N=475 68.81 68.45 69.13 0.68 0.01

(2.99) (3.13) (2.83)
Month 18 (cm) N=482 73.37 72.88 73.80 0.92 0.00

(3.23) (3.26) (3.15)
Month 24 (cm) N=503 77.66 76.97 78.30 1.33 0.00

(3.47) (3.49) (3.33)

Panel d: Average daily nutritional intake
Month 15 protein (grams/day) N=464 17.43 14.29 20.07 5.78 0.00

(10.5) (9.14) (10.9)
Month 18 protein (grams/day) N=461 21.52 18.27 24.41 6.14 0.00

(11.4) (9.61) (12.0)
Month 21 protein (grams/day) N=475 24.45 20.17 27.99 7.82 0.00

(11.4) (9.03) (11.9)
Month 24 protein (grams/day) N=462 26.99 22.51 31.07 8.56 0.00

(12.0) (9.02) (13.0)
Avg mth 15-24 protein (grams/day) N=503 22.54 18.78 25.84 7.06 0.00

(8.98) (6.43) (9.62)
Avg mth 15-24 non-protein (kcal/day) N=503 691.78 681.78 700.55 18.77 0.38

(236.5) (236.2) (236.9)

Note: See Section 3.2 for discussions.
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Table 2: Estimated model parameters (σR = 0.50 cm)

Parameter estimates (s.e.)

Preference Production function

ρ −0.0473 (0.0031) A 4.1435 (0.0854)
γ 0.0325 (0.0059) αH0 0.0220 (0.0088)
λ −0.0257 (0.0056) αmale 0.0086 (0.0016)

β 0.0725 (0.0158)
σε 0.0097 (0.0010)

Price discount Measurement error

δ 0.3756 (0.0249) ση 0.3823 (0.0151)
σι 0.0427 (0.0017)

Note: See Section 5.1 for discussions.
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Table 3: The fit of the estimated model’s simulated choices to data

Average protein choices (s.e) Average height outcome (s.e)

Fresco Atole Fresco Atole

Model Data p-val Model Data p-val Model Data p-val Model Data p-val

Panel a: Average
All 19.38 18.78 0.18 25.10 25.84 0.24 76.77 76.97 0.44 78.19 78.30 0.52

(0.45) (0.42) (0.64) (0.59) (0.26) (0.23) (0.17) (0.20)

Panel b: Averages across genders
Female 18.15 17.31 0.18 23.96 25.19 0.13 76.07 76.19 0.75 77.60 77.69 0.72

(0.63) (0.61) (0.80) (0.81) (0.37) (0.30) (0.25) (0.25)
Male 20.48 20.10 0.52 26.16 26.43 0.81 77.40 77.67 0.36 78.74 78.86 0.63

(0.60) (0.56) (1.11) (0.85) (0.30) (0.33) (0.25) (0.30)

Panel c: Averages across years
1970-71 18.43 18.17 0.78 23.13 24.19 0.37 76.52 76.83 0.47 77.71 77.18 0.18

(0.95) (0.80) (1.18) (1.12) (0.43) (0.41) (0.39) (0.40)
1972-73 19.30 18.97 0.68 24.51 25.68 0.21 76.80 76.73 0.79 78.07 78.57 0.13

(0.79) (0.74) (0.93) (0.88) (0.27) (0.42) (0.33) (0.32)
1974-75 19.97 18.96 0.17 27.13 27.15 0.99 76.89 77.24 0.29 78.65 78.77 0.70

(0.74) (0.66) (1.14) (1.06) (0.33) (0.36) (0.31) (0.33)

Note: For model columns, we report the model population mean predictions. Standard errors in model columns are based
on the standard deviation of simulated sample means, with each simulated sample having the same sample size as the
observed data. For data columns, we report sub-group observed sample means. Standard errors are based on the observed
sample standard deviation and sample size. The p-value column reports the probability of results that deviate further from
the observed sample mean occurring, given the sampling distribution given estimated parameters. See Section 5.2 for
discussions.
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Table 4: Decompose the protein gap between Atole and Fresco villages

Average protein choice across birth years

Fresco Fresco counterfactuals Atole

simulated
without

counterfac-
tuals

Fresco with
Atole price

discount

Fresco with
Atole ref.

point

Fresco with
both Atole
price and
ref. point

simulated
without

counterfac-
tuals

Panel a: Height across birth cohorts
1970-71 76.52 77.20 77.09 77.68 77.71
1972-73 76.80 77.35 77.57 78.08 78.07
1974-75 76.89 77.48 77.86 78.43 78.65

Panel b: Protein across birth cohorts
1970-71 18.43 20.80 20.48 22.69 23.13
1972-73 19.30 21.35 22.27 24.33 24.51
1974-75 19.97 22.13 23.95 26.32 27.13

Note: See Section 5.3 for discussions.
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Table 5: Parameter estimates from estimating the model under different assumptions about the
standard deviation of the reference-points distribution σR

Parameter estimates (s.e.)

σR = 0.5 cm σR =1.5 cm σR =2.5 cm σR =3.5 cm

Preference and price discount

ρ -0.0473 (0.0031) -0.0662 (0.0034) -0.0712 (0.0044) -0.0725 (0.0044)
γ 0.0325 (0.0059) 0.0277 (0.0025) 0.0317 (0.0038) 0.0347 (0.0041)
λ -0.0257 (0.0056) -0.0261 (0.0038) -0.0348 (0.0066) -0.0410 (0.0068)

Production function and price discount

δ 0.3756 (0.0249) 0.3756 (0.0412) 0.3756 (0.0396) 0.3756 (0.0333)
A 4.1435 (0.0854) 4.1064 (0.1318) 4.1040 (0.0976) 4.1036 (0.0766)
αH0 0.0220 (0.0088) 0.0298 (0.0177) 0.0337 (0.0195) 0.0344 (0.0118)
αmale 0.0086 (0.0016) 0.0074 (0.0016) 0.0074 (0.0016) 0.0074 (0.0016)
β 0.0725 (0.0158) 0.0752 (0.0169) 0.0753 (0.0162) 0.0753 (0.0138)
σε 0.0097 (0.0010) 0.0100 (0.0014) 0.0100 (0.0014) 0.0100 (0.0014)

Measurement error

ση 0.3823 (0.0151) 0.3827 (0.0152) 0.3830 (0.0153) 0.3830 (0.0152)
σι 0.0427 (0.0017) 0.0425 (0.0017) 0.0425 (0.0017) 0.0425 (0.0017)

Note: Estimation results from re-estimating the model under different reference points standard deviation assump-
tions. See Section 5.4 for discussions.
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ONLINE APPENDIX

You are What Your Parents Expect:
Height and Local Reference Points

Fan Wang, Esteban Puentes, Jere R. Behrman, Flávio Cunha

A Solution and Estimation Details (Online Publication)

A.1 Reference Point and Preference for Height

A.1.1 The Optimal Nutritional-Choice Problem

Given Equation (1) for the budget constraint, Equation (2) for the production function, Equation (3) for

preferences, and the reference points distributions discussed in Section 2.4, the nutritional-choice problem

is:

max
N

{
C+ρ ·C2 + γ ·H24 +λ ·

∫
Ryv

(
H24 −Ryv

)
·1
{

H24 > Ryv
}

dF(Ryv)

}
C+ pN

yv · (1−δ ·1{v = Atole}) ·N = Y

H24 = exp(A+X ·α + ε) ·Nβ

(A.1)

For notational convenience, we drop subscripts, let Â= exp(A+X ·α + ε), replace H24 and C as functions

of N, and rewrite Equation (A.1) as:

max
N



(Y − p ·N)+ρ · (Y − p ·N)2

+γ · Â ·Nβ

+λ ·
(
Â ·Nβ −µR

)
·Φ
(

Â·Nβ−µR
σR

)
+λ ·σR ·φ

(
Â·Nβ−µR

σR

)


(A.2)

In Equation (A.2), we analytically integrate the integral from Equation (A.1).A.1

A.1 The expected utility function contained the expectation of a truncated normal random variable:

∫
Ryv

(
H24 −Ryv

)
·1
{

H24 > Ryv
}

dF(Ryv)=
(
H24 −µRyv

)
·

(
Φ

(
H24 −µRyv

σRyv

))
+σRyv ·φ

(
H24 −µRyv

σRyv

)
(A.3)
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A.1.2 Marginal Benefits and Marginal Costs

Solving Equation (A.2), from first-order conditions, we have the following optimality condition:

p+2 ·ρ · p ·Y −2 ·ρ · p2 ·N︸ ︷︷ ︸
Marginal utility costs of nutrition

=

Marginal expected utility benefits of nutrition︷ ︸︸ ︷
β · Â ·Nβ−1︸ ︷︷ ︸

Marginal product of
nutrition on height

·

γ +λ ·Φ

(
Â ·Nβ −µR

σR

)
︸ ︷︷ ︸

Reference points effects


︸ ︷︷ ︸

Marginal expected utility
of height

given reference points

,
(A.4)

which is obtained after canceling out equivalent terms.A.2,A.3

Equation (A.4) equates the marginal utility costs and benefits of additional nutritional inputs N. If

λ = 0, the term associated with reference points disappears. Given γ > 0, if −γ < λ < 0, marginal

benefits are positive and decreasing in N.A.4 If λ < −γ < 0, as expected height increases beyond µR,

marginal benefits become marginal losses.

Consider the reference points component of marginal benefits of N. First, marginal benefits are

increasing in λ . Second, with λ < 0, the marginal benefits are increasing in µR and decreasing in N:

marginal benefits diminish as expected height approaches µR. Third, as uncertainty increases, preferences

become more linear in height:

lim
σR→∞

(
γ +λ ·Φ

(
Â ·Nβ −µR

σR

))
= γ +λ ·0.5 .

A.2 For details on derivation, see here. This is the interior optimality condition. Given quadratic utility on C as well
as potential marginal losses beyond µR, households might choose corners. Given our estimated parameters, in
particular ρ , and the joint income and price distribution for households, empirical optimal choices are in the
interior.

A.3 Equation (A.4) does not permit an analytical expression for the optimal nutritional choices N.
A.4 Since 0 < β < 1, the marginal product of nutrition on height is decreasing in N. Additionally, with λ < 0, the

marginal expected utility of height is decreasing in N:

∂

(
γ +λ ·Φ

(
Â·Nβ−µR

σR

))
∂N

= λ ·

(
β · Â ·Nβ−1

σR

)
·φ

((
Â ·Nβ −µR

)
σR

)
< 0 .

With −γ < λ < 0, as N increases, marginal expected utility of height remains positive:

lim
N→∞

(
γ +λ ·Φ

(
Â ·Nβ −µR

σR

))
= γ +λ > 0 .
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In effect, as σR increases towards infinity, predictions from models with and without reference points can

not be distinguished. Fourth, the derivative of the normal CDF with respect to its σR has alternating signs

depending on the relative values of Â ·Nβ and µR:

∂

(
γ +λ ·Φ

(
Â·Nβ−µR

σR

))
∂σR

= (−1) ·λ ·

(
Â ·Nβ −µR

σ2
R

)
·φ

(
Â ·Nβ −µR

σR

)
.

It turns out that increasing σR can increase or decrease optimal choices depending on the relative values

of γ and λ . We illustrate the effects of changing σR on optimal choices in Figure A.1, which we discuss

in the next set of paragraphs.

A.1.3 Optimal Nutritional Choices and σR

Panels a, c, and e of Figure A.1 show health (height) at age 24 months along the x-axis and household

consumption along the y-axis. We plot the shape of indifference curves for a given value of γ and different

values of λ and σR together with the consumption-health possibility frontier, which combines the budget

constraint with the production function for height.

Panels b, d, and f show the difference between height at age 24 months and the mean beliefs about

the reference height along the x-axis, and the component of utility that includes the reference point for

height along the y-axis. We believe it is helpful to zero in on this component because it is the primary

driver of our empirical analysis, and it shows the role that the parameters λ and σR play in our study of

the determinants of height at age 24 months.

In panels a and b, we use our estimated values of γ and λ for the scenario in which σR = 0.5. In

panels c and d, we set λ to be negative 1.5 times the estimated value of γ . In panels e and f, the λ value

is lowered to be negative 2.5 times the estimated value of γ .

For the configuration of values of γ and λ in panel a, an increase in σR increases optimal height

because the marginal benefits of height levels that exceed µR remains positive as panel b shows. However,

for the configuration of values of γ and λ in panel c, we have a bliss point for height that varies just a

little as we increase σR. In panel e, as λ continues to decrease, the disutility of height beyond the mean

reference point decreases so fast that the uncertainty becomes costly. As a result, an exogenous increase

in σR reduces the optimal level of height.
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Fig. A.1. Reference points distribution standard deviation (σR) and health outcomes
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A.2 Model Solution and Estimation

A.2.1 Model Solution

We use an iterative grid search routine that integrates over the two shocks facing the household (Ryv and

ε) to solve the model. First, for each household, given Ωyv, we construct a grid with Q1 points for protein

intake. The points range from zero protein intake up to the maximum that each household could purchase.

Second, we assume that Ryv and ε follow independent normal distributions. We draw M productivity

shocks ε for each household from N (0, σ2
ε ).

Third, for each household and each ε shock drawn, we compute the integral over the distribution of

Ryv analytically because we can use the fact that the component of the utility function that depends on

reference point involves the expectation of a truncated normal random variable as shown in Equation

(A.2). Thus, each point on the choice grid has an expected utility value associated with it. Then, we find

the grid point that has the maximum expected utility value.

Fourth, we construct a new finer household-specific choice grid with Q2 points around the optimal

nutritional choice from the initial Q1 point grid. We repeat steps one through four to evaluate the

expected utility function and find the maximum as before. The process is iterated for Z iterations until the

total difference in optimal nutritional choices between iterations meets the convergence criteria. This

solution provides the exact optimal choices for each household. Given our estimation problem, the speed

of obtaining the likelihood function given each set of parameters is determined by M, the number of

productivity shocks that we draw. For M less than 50, we can evaluate the likelihood within seconds.

A.2.2 Likelihood

Let ln
(

H24,∗
i

)
and ln

(
H24(Ωyvi;θ)

)
denote the log of observed and model predicted height at age 24

months, respectively. Similarly, let ln(N∗
i ) and ln(N(Ωyvi;θ)) denote the log of observed and model

predicted protein intake. We note that the model predicted values depend on the vector of parameters θ :

θ = { ρ,γ,λ︸ ︷︷ ︸
Preference

,

Atole
disc.︷︸︸︷
δ ,A,α,β ,σε︸ ︷︷ ︸

Production
Function

,ση ,σι}

According to our discussion in Section 4, the likelihood is based on the model optimal and observed
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nutritional choices, as well as the model simulated and observed heights at 24 months of age:

max
θ∈Θ

1975

∑
y=1970

∑
v

{ nyv

∑
i=1

log
(∫

ε

φι

(
lnH∗

24,i − lnH24(Ωyvi;θ)
)
·φη

(
lnN∗

i − lnN(Ωyvi;θ)
)
dF(εi)

)}
(A.5)

To find the θ that maximizes the likelihood, we search across parameter space using quasi-Newton

methods, and initiate the likelihood with a range of parameter values to find the global maximum.A.5 We

obtain standard errors from the approximated inverse Hessian.

A.3 Alternative Assumptions about Variance Beliefs

Our model assumes that parents adopt the expected height of two-year-old children in their village as

the reference point. Parents estimate the expected height using the observations of the children in their

village. We assume that their estimation of the expected height follows a normal distribution with mean

belief parameter µRy,v and variance belief parameter σ2
Ry,v. In our empirical analysis, we assume that µRy,v

captures the uncertainty about the mean belief, so σRy,v = 0.5.

In our sensitivity analysis, we adopt the assumption that the variance belief is equal to the variance

of height. We argue that this approach is an upper bound for variance beliefs. Under this assumption,

σRy,v = 3.5. To complete our sensitivity analysis, we also investigate our model’s decomposition findings

for scenarios in which σRy,v = 1.5 and σRy,v = 2.5.

A.4 Data for Estimation

We include in the estimation children who were born between 1970 and 1975. We show summary

statistics for these children in Sections 3.2 and 3.3. As discussed earlier, we do not observe both initial

heights and heights at month 24 for children born before or after these years.

We use the months 15 to 24 average protein intakes, heights at month 24, protein prices, incomes,

gender, and initial height variables shown in Table 1 and described in Section 3.2 as N, H24, pN
yv, Y , and

components of X . We use protein intakes because Puentes et al. (2016) shows that proteins rather than

non-protein components of calories matter for height growth in these INCAP data. Ideally, our intake

A.5 Initial values of the parameters: for preference parameters, we investigate ρ equals to or less than 0, and we
test a range of γ values, with corresponding λ values that make preference in height linear, or have different
degrees of concavity. For the Atole discount δ parameter, we test from 10 to 90 percent discounts at 10 percent
intervals. We start production function parameters at the same values always, which are parameters estimated
from a instrumental variable regression in which the Atole dummy is an instrument for protein intakes.
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variable should be averaged from month 0 to month 24. However, we do not observe protein values from

month 0 to month 12 for close to half of our sample because data collection for this age group started

in 1973. Also, it is not easy to estimate the protein component of breastmilk for children who rely on

breastfeeding in the first year of life.

In terms of reference points, controlling for gender, we use the predicted value of the linear trends

across cohorts between 1970 to 1975 – the trends and coefficients are shown in Figure 2 and described

in Section 3.3 – as the reference points for Atole and Fresco villages. Specifically, we use the linear

trends from panels a and b of Figure 2 along with a gender adjustment. The trend for Atole villages could

also be approximated with a quadratic trend, but switching to quadratic trends has minimal effects on

estimated parameters. Potentially, we could also use the local polynomial approximated nonlinear trends

as reference points, but the linear trends as shown in Figure 2 closely approximate the local polynomial

trends, which further could be fluctuating due to sample variation for each birth cohort group. This

provides us with a set of village, cohort-calendar-year and gender-specific predictions of height at 24

months of age: E(H24|year,gender,atole) = φ0 +φ1 ·year+φ2 · atole ·year+φ3 ·gender. We use the 24

months of age height predictions to obtain µRyear,gender,atole . For example, the predicted linear-trend value

that corresponds to the height at month 24 of those born in 1970 is the mean reference point for the

cohort born in 1972: µR1972,gender,v = E(H24|1970,gender,v). By construction, if simulated results from

our estimated model match the average 24 months of age heights for different cohorts, we will also have

matched the mean reference point values.

For the main results presented in the paper, we fix σRyear,gender,atole = 0.5 for Atole and Fresco villages in

all years. We do this because the standard error of mean height across cohorts and villages is generally

around 0.5 cm. The average standard error of heights in Fresco villages is 0.60, 0.59, and 0.51 cm for

the 1970-71, 1972-73, and 1974-75 cohorts, respectively. The average standard errors of height in Atole

villages are 0.67, 0.45, and 0.48 cm for the 1970-71, 1972-73, and 1974-75 cohorts, respectively.

For our alternative assumption for the standard deviation of the reference points discussed in Appendix

Section A.3, we fix σRyear,gender,atole = 3.5 for Atole and Fresco villages in all years. We do this because

height variances across cohorts and villages do not seem to vary systematically. The standard deviations

of heights in Fresco villages are 3.33, 3.34, and 3.24 cm for the 1970-71, 1972-73, and 1974-75 cohorts,

respectively. The standard deviation of height in Atole villages are 3.13, 3.73, and 3.53 cm for the

1970-71, 1972-73, and 1974-75 cohorts, respectively.
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A.5 Additional Estimation Information

A.5.1 Additional Model fit

Table A.1: Model Predictions from estimating the model under different assumptions about the
standard deviation of reference points distribution σR.

Average protein choices Average height outcome

σR = 0.5 σR = 1.5 σR = 2.5 σR = 3.5 σR = 0.5 σR = 1.5 σR = 2.5 σR = 3.5

Panel a: Average
Fresco 19.38 19.24 19.25 19.29 76.77 76.77 76.78 76.77

Atole 25.10 25.30 25.30 25.47 78.19 78.32 78.33 78.39

Panel b: Averages across genders
Fresco Female 18.15 18.14 18.16 18.15 76.07 76.11 76.12 76.11

Fresco Male 23.96 24.17 24.17 24.24 77.60 77.74 77.75 77.81

Atole Female 20.48 20.23 20.23 20.30 77.40 77.36 77.36 77.35

Atole Male 26.16 26.34 26.33 26.60 78.74 78.85 78.86 78.93

Panel c: Averages across years
Fresco 1970-71 18.43 18.61 18.63 18.61 76.52 76.59 76.60 76.57

Atole 1970-71 23.13 23.52 23.46 23.46 77.71 77.85 77.85 77.88

Fresco 1972-73 19.30 19.22 19.24 19.25 76.80 76.79 76.79 76.79

Atole 1972-73 24.51 24.76 24.76 24.92 78.07 78.20 78.20 78.27

Fresco 1974-75 19.97 19.61 19.61 19.69 76.89 76.86 76.86 76.85

Atole 1974-75 27.13 27.13 27.15 27.46 78.65 78.78 78.80 78.87

In Table A.1, we provide additional information on the fits of the estimated model under varying

assumptions about σRy,v . Model fits with respect to protein choices and height outcomes are presented

across the columns, and model fits with respect to overall averages in Atole and Fresco villages, as well

as average by gender and time are presented in separate rows.

Estimated models across σRy,v assumptions – with estimates shown in Table 5 – are all able to provide

similarly good fits between model predictions and key data moments.

A.5.2 Additional Estimates

In Table 5, we present parameter estimates under four assumptions for σRy,v from 0.5 cm to 3.5 cm. In this

section, for additional information, we provide key estimates from estimating the model at σRy,v values

from 0.25 cm to 3.75 cm at 0.05 cm intervals. In Figure A.2, we visualize the point-estimates results for

the core preference parameters of ρ , γ , and λ in three sub-figures. We mark with dashed blue lines values
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Fig. A.2. Preference parameter estimates from estimating the model under different assumptions
about the standard deviation of reference points distribution σRy,v

of σRy,v along the x-axis where σRy,v = 0.5 and σRy,v = 3.5.

For ρ , the quadratic coefficient on non-nutritional consumptions, the estimated coefficient becomes

more negative as σRy,v increases. This finding implies lower marginal gains from additional non-nutritional

consumption at higher σRy,v .

γ and λ change in a symmetric fashion. Between σRy,v = 0.5 and σRy,v = 3.5, γ increases with σRy,v ,

and λ decreases with σRy,v . These correspond to higher marginal gains from additional height, before the

mean of the reference points distribution, at higher σRy,v . Moreover, these also correspond to a sharper

decline in marginal gains from additional height, after the mean of the reference points distribution, at

higher σRy,v . As noted in our discussion of Table 5, preferences past the mean reference point are slightly

increasing (γ >−λ ) at lower σR values, and slightly decreasing (γ <−λ ) at higher σRy,v values.

The changes in parameter estimates as we vary σRy,v reflect an effort by the estimation routine to fit

the data. As σRy,v increases from 0.5 cm to 3.5 cm, increases in γ estimates and decreases in ρ estimates

increase incentives to invest in child health, but reductions in λ estimates reduce the incentives to invest

in child health above the reference point. Overall, the estimated models across σRy,v assumptions provide

a good fit with the data as shown in Table A.1.

We note that below σRy,v < 0.25, γ parameter estimates increase sharply and λ parameter estimates

drop sharply. While model fits from the estimated parameters between σRy,v = 0.5 and σRy,v = 3.5 are

similar, the fit is significantly worse when σRy,v falls below 0.4 cm.
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B Additional Counterfactual Exercises (Online Publication)

B.1 Targeted versus Universal Policy Experiments

We evaluate the impacts of counterfactual policy experiments that target protein-price discounts towards

the most impoverished children and a universal policy that provides standard price discounts for all, given

a fixed budget. The analysis in this section allows us to exploit dynamic features of our model with

reference points to distinguish among three possible effects of protein-price-subsidy policies: 1, the direct

impact of subsidies on treated children; 2, the indirect effect of subsidies via shifting reference points on

treated children; 3, the indirect impact of shifting reference points on untreated children.

Our outcome of interest remains height at 24 months of age. There has been a long debate in both the

development and early childhood literature about the trade-offs between targeted vs. universal subsidy

policies (Besley and Kanbur 1990; Coady et al. 2004; Gelbach and Pritchett 1999). Under universal

subsidy policies, the entire population benefits. Under targeted policies, subsidies are generally given to

those deemed (means-tested for) the most in need.

Within our empirical setting, our first key result here is that the universal policy – which is generally

considered to be insufficiently beneficial for the poor – is much better for the most impoverished children

in later than earlier cohorts because their heights increase substantially in later cohorts due to aggregate

increases in reference points. Given our estimates, the gaps between targeted and universal policies on

the poor are smaller once we consider the endogenous evolution of reference points.

Our second key result is that, after an initial period in which only targeted individuals benefit, the

targeted policy – which would typically only benefit the poor – has substantial positive effects on the

non-targeted most affluent children through the externality of reference point changes.

Both results show that reference points amplify targeted and universal subsidy policies on all children

within the same village. We analyze the height distributions induced by budget-equivalent policies that

gradually increase the proportion of children receiving price subsidies. The budget is equal to the cost of

providing the observed levels of consumption of health-center-provided free proteins in the Atole villages.

Overall, we find that within our empirical context, all policies induce similar mean heights. However, the

policies generate substantial differences in height variances: the most-targeted and the most-universal

policies both increase variances. Within the set of budget-balancing policies we consider, we find that

variance in height is minimized when 70 percent of the most-impoverished children receive 18 percent

price discounts.

51



In Section 5.4, we show model estimates under varying assumptions on the standard deviation of the

reference points distribution. Similar to the decompositional analysis, targeted and universal policies are

similar when we use the estimates from different columns of Table 5.

B.1.1 Simulation Design – Budget Balancing Targeted to Universal Policies

In Section B.1, we compare policies in which increasingly more significant fractions of individuals in a

village are targeted as subsidy recipients. To keep subsidy costs the same across policies, we reduce the

subsidies provided to targeted children as the fraction of children targeted increases. We conduct policy

counterfactuals that target children by annual household income.

To simulate the policies, we draw 500 individuals based on the empirical joint distribution of incomes,

gender, and initial heights of all children from Atole villages. Then, we start at the reference point from

Atole villages in the year 1970 and simulate our model forward. Each model period is two years, and

we simulate the model four times to obtain results for the 1970, 1972, 1974, and 1976 cohorts. The

state-space distribution and protein prices facing households are the same across cohorts, but each cohort

faces different endogenously evolving reference pointsB.1, which lead to variations in nutritional choices

and heights.B.2

Following the model interpretation of the protein supplementation policy as a price discount, our

counterfactuals here involve changing that discount.B.3 Under the universal policies, all families receive

subsidies through a standard price discount. Under the policies that target the poor, we transfer the

subsidies that rich children received under the universal policy to poor children by increasing the price

discount that the poor receive. Specifically, let τ be the fraction of most impoverished children receiving

price discounts and δ be the percentage price discount that children receive. Z (τ,δ ) is the total cost of a

subsidy in grams of protein for 1970, 1972, 1974, and 1976 cohorts, given height distribution Γ for each

B.1 We shift the mean of the reference points distribution. Under the assumption in Appendix Section A.3 the
standard deviation of the reference points is based on the variance of the height distribution, this variance, as
discussed in Appendix Section A.4, is stable across cohorts. Under the assumption in Section 2.6, since the
number of new-borne is similar across cohorts, the standard error of the mean estimate of reference points
distribution would also be stable across cohorts.

B.2 The goal is to isolate the effects of price subsidy and reference point changes, and abstract away from other
potential observed differences in initial heights, non-protein prices, and incomes. If the price discount policy
were 38 percent and provided to all individuals, the height path would be similar to the observed height path,
but it would not be identical because all of our simulated cohorts are identical except for their reference points.

B.3 Alternatively, we could provide households with different levels of protein transfers, but that would involve
forcing households to consume a fixed level of subsidized proteins.
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cohort:

Z (τ,δ ) = ∑
cohort

∈{70,72,74,76}

{
δ ·
∫

ε

∫ F−1
Y (τ)

Ymin

∫
X

N
(

Y,X ,ε;
δ ,Γcohort

)
f (X |Y ) f (Y ) f (ε)dXdY dε

}
. (B.1)

As described earlier, we fix the joint distribution of the state space variables across cohorts, and so only

the height distribution Γ is cohort-specific in Equation (B.1). We start Γ1970 as mentioned using the

actual height distribution in the year 1970 from Atole villages, and solve for subsequent reference point

distributions following Equations (4), (5), and (7).

We first solve for Z(τ = 0.1,δ = 0.9), when 10 percent of the poorest simulated households are

provided with a 90 percent protein price discount. Then, for τ ∈ (0.2,0.3, ...,0.9,1.0), we solve for the δ

that minimizes the difference between Z(0.1,0.9) and Z(τ,δ ):

δ (τ,Z (0.1,0.9)) = arg min
δ∈[0.01,...,1.00]

|Z (τ,δ )−Z (0.1,0.9) | (B.2)

Solving for the δ values following Equation (B.2), we find that policies that provide 55, 50, 39, 30, 25, 21,

18, 16, 14 and 13 percent price discounts for 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent of children,

ranked from the poorest to the richest, cost approximately the same as Z (0.1,0.9).B.4

B.1.2 Targeted Policies on Bottom Quintile ("Poorest") and Top Quintile ("Richest")

We discuss in this section the impact of policies with different degrees of targeting/price-discounts on

children from the bottom 20 "poorest" and top 20 percent "richest" of the income distribution. We

compare targeting 20, 40, 60, 80 percent of the most impoverished children and universal policy. Price

discounts at 55, 30, 21, 16, and 13 percent for each of the five policies are calculated to preserve budget

balance. The different price discounts associated with different targeting policies are used for policy

comparisons. The poorest children receive subsidies under all five policies, but the richest children only

receive subsidies under the universal policy.

We start the simulation with the 1970 reference points and the observed distributions. Figure B.1

presents results for the cohort born in 1970. Figure B.3 presents the differences in heights for the poorest

children from the 1970, 1972, 1974, and 1976 cohorts. Figure B.2 presents results for the 1976 cohort.

B.4 These budget-balancing price discounts differ minimally when estimates from different columns of Table 5 are
used. The specific numbers shown here are computed under σRy,v = 3.5. For consistency across comparisons,
we use these price discounts for results when σRy,v = 0.5 as well.
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Fig. B.1. Effects of targeted policies on richest and poorest households (1970), σRy,v = 3.5 cm

Fig. B.2. Effects of targeted policies on richest and poorest households (1976), σRy,v = 3.5 cm

Figure B.3 shows results using estimates from both σRy,v = 0.5 and σRy,v = 3.5. Due to space limitations,

Figures B.1 and B.2 are shown only for σRy,v = 3.5. The orange solid (green dashed) line shows median

heights for the poorest (richest) children in all figures. The flat horizontal lines show that in the absence

of the price discount policy, median heights at month 24 for the poorest and the wealthiest children in the
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1970 cohort were 76.7 and 77.4 cm, respectively (0.7 cm gap).B.5

Figure B.1 shows that under targeted subsidies, the most impoverished children from the 1970 cohort

experience a significant increase in heights, with median heights increasing by 1.3, 0.6, 0.4, and 0.3 cm

when the most impoverished children receive 55, 30, 21, and 16 percent targeted discounts. With a

55 percent price discount, the most impoverished children’s median height reaches 77.9 cm and is

0.5 cm higher than the median height for the wealthiest children. When both the richest and the most

impoverished children receive 13 percent price discounts under the universal policy, median height

increases more for the poorest (+0.25 cm) than the richest (+0.17 cm).

Figure B.3 shows similar results in panel a under σRy,v = 0.5 and in panel b under σRy,v = 3.5. Panel b of

Figure B.3 shows that with 55 percent price discounts under the most-targeted policy, due to endogenous

shifts in reference-point distributions, median heights increase significantly by 1.3, 1.9, 2.4, and 2.7 cm

for the 1970, 1972, 1974, and 1976 cohorts of the poorest children, respectively.B.6 On the other hand, the

universal policy provides small height increases to the poorest initially, but effects amplify significantly

across cohorts. Specifically, for the 1970 cohort of the poorest children, the most-targeted policy (55

percent discount) increases the median height by 1.3 cm, which is 4.8 times larger than the 0.26 cm

median height increase induced by the universal policy (13 percent price discount). For the 1976 cohort

of the poorest children, however, the effect of the most-targeted policy is only 1.8 times greater than the

effect of the universal policy, each of which increases median heights by 2.7 and 1.5 cm, respectively.B.7

Figure B.2 presents results for the 1976 cohort. Here we compare heights for the 1976 cohort to the

heights at month 24 for the 1970 poorest and richest cohorts without subsidies. Across the five policies

from most-targeted to universal, heights for the richest children increase by 1.3, 1.3, 1.3, 1.3, and 1.6 cm,

equivalent to 48, 65, 76, 81, and 103 percent of the increases in heights for the poorest children, which

are 2.7, 2.0, 1.7, 1.6, and 1.5 cm. The 1.3 cm median height increases for the richest children under

the four targeted policies are due to the reference-point externality of the treatments on non-targeted

individuals. The poorest children reach a higher median height (79.4 cm) than the richest non-targeted

children (78.8 cm) only under the 55 percent price discount policy.

B.5 These correspond to median daily protein intakes of 19.0 and 22.1 grams for the poorest and wealthiest children.
B.6 Correspondingly, median protein intake increases by 23, 38, 50, and 58 percent for these cohorts.
B.7 Comparing the poorest children across cohorts, the increase in median height is 5.8 times larger for the 1976

cohort compared to the 1970 cohort (1.5 vs. 0.26 cm). The increase in median height for the richest children
across cohorts is 2.2 times (2.7 vs. 1.25 cm). Additionally, for the 1970 cohort of the poorest children, 100
percent of the increases in height are due to first-period price-discount effects, but for the 1976 cohort of the
poorest children, under 55, 30, 21, 15, and 13 percent price discounts, first-period price-discount effects only
account for 46, 31, 24, 19, and 16 percent of the total effect of each policy.
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(a) σRy,v = 0.5 cm

(b) σRy,v = 3.5 cm

Fig. B.3. Effects of targeted policies on poorest households

B.1.3 Distributional Effects of Different Levels of Targeted Policies

This section focuses on illustrating the potential distributional effects of targeting given reference points.

A planner might be interested in maximizing some joint village welfare function that considers the entire

distribution of height or moments of this distribution. We do not assume which percentiles or levels of
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height interest the planner. Given the specifics of our empirical setting, we present the full predicted

distribution that contains information that might be of interest to a planner interested in early childhood

height and health outcomes.

Figure B.4 plots various percentile levels of overall – including both targeted and non-targeted children

– heights of month-24 distributionsB.8 under each policy experiment. As shown in both panel a and panel

b of Figure B.4, given our sample of individuals, mean heights are relatively constant across targeting

levels, and variance is minimized when 70 percent of the poorest children are targeted to receive subsidies.

Specifically, we analyze the effects of targeting from 20 to 90 percent of the poorest children at 10 percent

intervals along with a universal policy. Price discounts at 55, 39, 30, 25, 21, 18, 16, 14, and 13 percent

for each of the nine policies are calculated to be approximately budgetary constant.

The dashed black line in both panels of Figure B.4 shows that the mean heights across policies differ

by at most only 0.054 cm.B.9 Our policy experiments shift a fixed amount of subsidies from one subset of

individuals to another in the form of price discounts. Our findings suggest that these policies have linear

effects on height.B.10 Who receives the transfers and how much they receive changes the relative heights

among individuals, but not the overall average height significantly.

As policies shift price-discount intensity and recipients, there are significant variations in height

distributions across policies. One measure of variation is the difference between the 10th and 90th

percentiles of heights across policies, which is the difference between the dashed blue lines at the top and

bottom of both panels of Figure B.4. In panel b, these gaps are 1.5, 1.1, 0.9, and 0.75 cm when 20, 30, 40,

and 50 percent of the most impoverished children receive price discounts. The gaps are the tightest at

0.69, 0.66, and 0.66 cm under policies that provide 60, 70, and 80 percent of most impoverished children

with price discounts;B.11 the gaps widen again to 0.8 and 0.9 cm under the two most universal policies.

In our setting, the tightening of the height distribution’s higher and lower percentiles drives the

minimization of height variation when 70 percent of the most impoverished children are targeted. Under

the most-targeted policies, children from the poorest households receive huge discounts and become the

B.8 The distributional outcomes are presented without drawing from the measurement error distributions.
B.9 The highest mean in panel b, 78.58 cm, is achieved under targeting 20 percent of the poorest households, and

the lowest mean, 78.52 cm, is achieved under the universal policy.
B.10 One might suspect that the variations in means across policies would be large given the concavity of the

production function: all else equal, one gram of protein transferred from those with high intake to those with
lower intake should lead to a net gain in overall height. Here, however, given that households re-optimize with
new subsidies, the increases in protein intakes are less than the amounts of protein transferred to the poor.

B.11 In panel b, the s.d. of heights, at 0.40 cm, is also the smallest for the policy that targets 70 percent of most
impoverished children.
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(a) σRy,v = 0.5 cm]

(b) σRy,v = 3.5 cm

Fig. B.4. Height Distribution from Targeted to Universal Subsidies

tallest children, driving the 90th percentile of height at the month-24 distribution up.B.12 Concurrently,

B.12 For the most-targeted policy that provides 55 percent price discounts to the children in the lowest quintile of
income, these most impoverished children’s heights increase significantly, and they move to the highest quintile
of realized height in the month-24 distribution. As shown in Figure B.1, the median heights of these most
impoverished children under the 55 percent discount policy exceed the median heights of children from the
wealthiest quintile of income. Hence this pushes the 80 and 90th percentile of the overall height distribution up
under the most-targeted policies.
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many children with below-median income do not receive subsidies under the most-targeted policies, and

they push down the 10th and 20th percentiles of the height distribution. Second, under the universal

policies, children from the wealthiest households receive price discounts, and they drive the 90th percentile

height distribution up.B.13 Concurrently, because subsidies for the poorest households are much lower

than under more-targeted policies, they push the 10th and 20th percentiles of the height distribution lower.

Consequently, we observe the broader distributions of heights under the most-universal and most-targeted

policies, but a tighter distribution in the middle of Figure B.4.

B.13 As shown in Figure B.1, the smaller discount (13 percent discount under the universal policy) given to the
wealthiest children allows them to achieve higher heights at month 24 than a more significant discount (16 to 21
percent under slightly more-targeted policies) given to children in the lower portions of the income distribution.
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