time | Calls | line |
---|
| | 7 | function result_map = ff_akz_vf(varargin)
|
| | 8 | %% FF_AKZ_VF solve infinite horizon exo shock + endo asset problem
|
| | 9 | % This program solves the infinite horizon dynamic savings and risky
|
| | 10 | % capital asset problem with some ar1 shock. The two assets could be a safe
|
| | 11 | % bond and a risky stock if the risky asset has constant return to scale.
|
| | 12 | % Alternatively, the risky asset could be a capital investment asset with
|
| | 13 | % decreasing return to scale. There is risky component to the risky capital
|
| | 14 | % investment, but one could also potentially resale a fraction of the risky
|
| | 15 | % capital after depreciation, giving the household/investor/entrepreur a
|
| | 16 | % safe minimum return to risky investment. The state variable is the
|
| | 17 | % cash-on-hand, which is determined by risky and safe asset as well as the
|
| | 18 | % shock jointly.
|
| | 19 | %
|
| | 20 | % This problem is more computationally intensive to solve
|
| | 21 | % compared to the single asset problem, shown here:
|
| | 22 | % <https://fanwangecon.github.io/CodeDynaAsset/m_az/solve/html/ff_az_vf.html
|
| | 23 | % ff_az_vf>. Here I show the looped solution. As before, as we expand the
|
| | 24 | % state and choices spaces to have a looped slow version of the code so
|
| | 25 | % that one could debug and make sure the model works.
|
| | 26 | %
|
| | 27 | % Vectorized, optimized vectorized versions of the code are shown here:
|
| | 28 | % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vec.html
|
| | 29 | % ff_akz_vf_vec> and here:
|
| | 30 | % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vecsv.html
|
| | 31 | % ff_akz_vf_vecsv>. These improve upon the speed, yet the
|
| | 32 | % speed is still not as fast as we need for some applications.
|
| | 33 | %
|
| | 34 | % The basic forms of the one and two asset problems have analytically
|
| | 35 | % tractable mathmatical solutions. The benefit of these grid based solution
|
| | 36 | % algorithm is that we are able to add very flexible constraints to the
|
| | 37 | % problem or incorporate additional discrete choices that make the
|
| | 38 | % underlying problem non-continous and non-differentiable and mathamtically
|
| | 39 | % untractable.
|
| | 40 | %
|
| | 41 | % @param param_map container parameter container
|
| | 42 | %
|
| | 43 | % @param support_map container support container
|
| | 44 | %
|
| | 45 | % @param armt_map container container with states, choices and shocks
|
| | 46 | % grids that are inputs for grid based solution algorithm
|
| | 47 | %
|
| | 48 | % @param func_map container container with function handles for
|
| | 49 | % consumption cash-on-hand etc.
|
| | 50 | %
|
| | 51 | % @return result_map container contains policy function matrix, value
|
| | 52 | % function matrix, iteration results, and policy function, value function
|
| | 53 | % and iteration results tables.
|
| | 54 | %
|
| | 55 | % keys included in result_map:
|
| | 56 | %
|
| | 57 | % * mt_val matrix states_n by shock_n matrix of converged value function grid
|
| | 58 | % * mt_pol_a matrix states_n by shock_n matrix of converged policy function
|
| | 59 | % grid safe asset
|
| | 60 | % * mt_pol_k matrix states_n by shock_n matrix of converged policy function
|
| | 61 | % grid risky asset
|
| | 62 | % * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
|
| | 63 | % difference between iteration
|
| | 64 | % * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
|
| | 65 | % function difference between iterations
|
| | 66 | % * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
|
| | 67 | % proportion of grid points at which policy function changed between
|
| | 68 | % current and last iteration for each element of shock
|
| | 69 | %
|
| | 70 | % @example
|
| | 71 | %
|
| | 72 | % it_param_set = 2;
|
| | 73 | % [param_map, support_map] = ffs_akz_set_default_param(it_param_set);
|
| | 74 | % % Simulation Accuracy
|
| | 75 | % param_map('it_w_n') = 750;
|
| | 76 | % param_map('it_ak_n') = param_map('it_w_n');
|
| | 77 | % param_map('it_z_n') = 11;
|
| | 78 | % % Display Parameters
|
| | 79 | % support_map('bl_display') = false;
|
| | 80 | % support_map('bl_display_final') = false;
|
| | 81 | % support_map('bl_time') = true;
|
| | 82 | % support_map('bl_profile') = false;
|
| | 83 | % % Call Program with external parameters that override defaults
|
| | 84 | % ff_akz_vf(param_map, support_map);
|
| | 85 | %
|
| | 86 | % @include
|
| | 87 | %
|
| | 88 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_default_param.html ffs_akz_set_default_param>
|
| | 89 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_get_funcgrid.html ffs_akz_get_funcgrid>
|
| | 90 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solvepost/html/ff_akz_vf_post.html ff_akz_vf_post>
|
| | 91 | %
|
| | 92 | % @seealso
|
| | 93 | %
|
| | 94 | % * concurrent (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf.html ff_akz_vf>
|
| | 95 | % * concurrent (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vec.html ff_akz_vf_vec>
|
| | 96 | % * concurrent (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vecsv.html ff_akz_vf_vecsv>
|
| | 97 | % * two-stage (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html ff_wkz_vf>
|
| | 98 | % * two-stage (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vec.html ff_wkz_vf_vec>
|
| | 99 | % * two-stage (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vecsv.html ff_wkz_vf_vecsv>
|
| | 100 | % * two-stage + interpolate (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf.html ff_iwkz_vf>
|
| | 101 | % * two-stage + interpolate (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vec.html ff_iwkz_vf_vec>
|
| | 102 | % * two-stage + interpolate (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vecsv.html ff_iwkz_vf_vecsv>
|
| | 103 | %
|
| | 104 |
|
| | 105 | %% Default
|
| | 106 | % * it_param_set = 1: quick test
|
| | 107 | % * it_param_set = 2: benchmark run
|
| | 108 | % * it_param_set = 3: benchmark profile
|
| | 109 | % * it_param_set = 4: press publish button
|
| | 110 |
|
| | 111 | it_param_set = 2;
|
| | 112 | bl_input_override = true;
|
| | 113 | [param_map, support_map] = ffs_akz_set_default_param(it_param_set);
|
| | 114 |
|
| | 115 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 116 | % param_map('it_w_n') = 50;
|
| | 117 | % param_map('it_z_n') = 15;
|
| | 118 |
|
| | 119 | % get armt and func map
|
| | 120 | [armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
|
| | 121 | default_params = {param_map support_map armt_map func_map};
|
| | 122 |
|
| | 123 | %% Parse Parameters 1
|
| | 124 |
|
| | 125 | % if varargin only has param_map and support_map,
|
| | 126 | params_len = length(varargin);
|
| | 127 | [default_params{1:params_len}] = varargin{:};
|
| | 128 | param_map = [param_map; default_params{1}];
|
| | 129 | support_map = [support_map; default_params{2}];
|
| | 130 | if params_len >= 1 && params_len <= 2
|
| | 131 | % If override param_map, re-generate armt and func if they are not
|
| | 132 | % provided
|
| | 133 | bl_input_override = true;
|
| | 134 | [armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override);
|
| | 135 | else
|
| | 136 | % Override all
|
| | 137 | armt_map = [armt_map; default_params{3}];
|
| | 138 | func_map = [func_map; default_params{4}];
|
| | 139 | end
|
| | 140 |
|
| | 141 | % append function name
|
| | 142 | st_func_name = 'ff_akz_vf';
|
| | 143 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 144 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 145 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 146 |
|
| | 147 | %% Parse Parameters 2
|
| | 148 |
|
| | 149 | % armt_map
|
| | 150 | params_group = values(armt_map, {'mt_z_trans', 'ar_z'});
|
| | 151 | [ mt_z_trans, ar_z] = params_group{:};
|
| | 152 | params_group = values(armt_map, {'ar_a_meshk', 'ar_k_mesha', 'mt_coh_wkb', 'it_ameshk_n'});
|
| | 153 | [ar_a_meshk, ar_k_mesha, mt_coh_wkb, it_ameshk_n] = params_group{:};
|
| | 154 | % func_map
|
| | 155 | params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons', 'f_coh'});
|
| | 156 | [f_util_log, f_util_crra, f_cons, f_coh] = params_group{:};
|
| | 157 | % param_map
|
| | 158 | params_group = values(param_map, {'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'});
|
| | 159 | [it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:};
|
| | 160 | params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
|
| | 161 | [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
|
| | 162 | % support_map
|
| | 163 | params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
|
| | 164 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 165 | 'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
|
| | 166 | [bl_profile, st_profile_path, ...
|
| | 167 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 168 | bl_time, bl_display, it_display_every, bl_post] = params_group{:};
|
| | 169 |
|
| | 170 | %% Initialize Output Matrixes
|
| | 171 |
|
| | 172 | mt_val_cur = zeros(length(ar_a_meshk),length(ar_z));
|
| | 173 | mt_val = mt_val_cur - 1;
|
| | 174 | mt_pol_a = zeros(length(ar_a_meshk),length(ar_z));
|
| | 175 | mt_pol_a_cur = mt_pol_a - 1;
|
| | 176 | mt_pol_k = zeros(length(ar_a_meshk),length(ar_z));
|
| | 177 | mt_pol_k_cur = mt_pol_k - 1;
|
| | 178 |
|
| | 179 | %% Initialize Convergence Conditions
|
| | 180 |
|
| | 181 | bl_vfi_continue = true;
|
| | 182 | it_iter = 0;
|
| | 183 | ar_val_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 184 | ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 185 | mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
|
| | 186 |
|
| | 187 | %% Iterate Value Function
|
| | 188 | % Loop solution with 4 nested loops
|
| | 189 | %
|
| | 190 | % # loop 1: over exogenous states
|
| | 191 | % # loop 2: over endogenous states
|
| | 192 | % # loop 3: over choices
|
| | 193 | % # loop 4: add future utility, integration--loop over future shocks
|
| | 194 | %
|
| | 195 |
|
| | 196 | % Start Profile
|
| | 197 | if (bl_profile)
|
| | 198 | close all;
|
| | 199 | profile off;
|
| | 200 | profile on;
|
< 0.001 | 1 | 201 | end
|
| | 202 |
|
| | 203 | % Start Timer
|
< 0.001 | 1 | 204 | if (bl_time)
|
< 0.001 | 1 | 205 | tic;
|
< 0.001 | 1 | 206 | end
|
| | 207 |
|
| | 208 | % Value Function Iteration
|
< 0.001 | 1 | 209 | while bl_vfi_continue
|
< 0.001 | 101 | 210 | it_iter = it_iter + 1;
|
| | 211 |
|
| | 212 | %% Solve Optimization Problem Current Iteration
|
| | 213 |
|
| | 214 | % loop 1: over exogenous states
|
< 0.001 | 101 | 215 | for it_z_i = 1:length(ar_z)
|
| | 216 |
|
| | 217 | % loop 2: over endogenous states
|
< 0.001 | 1515 | 218 | for it_coh_j = 1:length(ar_a_meshk)
|
| | 219 | % Get cash-on-hand which include k,b,z
|
0.155 | 1931625 | 220 | fl_coh = mt_coh_wkb(it_coh_j, it_z_i);
|
| | 221 |
|
| | 222 | % loop 3: over choices
|
19.691 | 1931625 | 223 | ar_val_cur = zeros(size(ar_a_meshk));
|
0.116 | 1931625 | 224 | for it_cohp_k = 1:length(ar_a_meshk)
|
98.518 | 2462821875 | 225 | fl_ap = ar_a_meshk(it_cohp_k);
|
91.268 | 2462821875 | 226 | fl_kp = ar_k_mesha(it_cohp_k);
|
| | 227 |
|
| | 228 | % consumption
|
3975.264 | 2462821875 | 229 | fl_c = f_cons(fl_coh, fl_ap, fl_kp);
|
| | 230 |
|
| | 231 | % current utility
|
90.007 | 2462821875 | 232 | if (fl_crra == 1)
|
| | 233 | ar_val_cur(it_cohp_k) = f_util_log(fl_c);
|
| | 234 | fl_u_neg_c = f_util_log(fl_c_min);
|
82.271 | 2462821875 | 235 | else
|
7814.828 | 2462821875 | 236 | ar_val_cur(it_cohp_k) = f_util_crra(fl_c);
|
4128.946 | 2462821875 | 237 | fl_u_neg_c = f_util_crra(fl_c_min);
|
88.669 | 2462821875 | 238 | end
|
| | 239 |
|
| | 240 | % loop 4: add future utility, integration--loop over future shocks
|
96.695 | 2462821875 | 241 | for it_zp_q = 1:length(ar_z)
|
1984.555 | 36942328125 | 242 | ar_val_cur(it_cohp_k) = ar_val_cur(it_cohp_k) + fl_beta*mt_z_trans(it_z_i,it_zp_q)*mt_val_cur(it_cohp_k,it_zp_q);
|
1179.525 | 36942328125 | 243 | end
|
| | 244 |
|
| | 245 | % Replace if negative consumption
|
77.053 | 2462821875 | 246 | if fl_c <= 0
|
5755.462 | 1089037247 | 247 | ar_val_cur(it_cohp_k) = fl_u_neg_c;
|
38.662 | 1089037247 | 248 | end
|
| | 249 |
|
86.512 | 2462821875 | 250 | end
|
| | 251 |
|
| | 252 | % maximization over loop 3 choices for loop 1+2 states
|
9.034 | 1931625 | 253 | it_max_lin_idx = find(ar_val_cur == max(ar_val_cur));
|
0.183 | 1931625 | 254 | mt_val(it_coh_j,it_z_i) = ar_val_cur(it_max_lin_idx(1));
|
0.170 | 1931625 | 255 | mt_pol_a(it_coh_j,it_z_i) = ar_a_meshk(it_max_lin_idx(1));
|
0.161 | 1931625 | 256 | mt_pol_k(it_coh_j,it_z_i) = ar_k_mesha(it_max_lin_idx(1));
|
| | 257 |
|
0.139 | 1931625 | 258 | end
|
0.002 | 1515 | 259 | end
|
| | 260 |
|
| | 261 | %% Check Tolerance and Continuation
|
| | 262 |
|
| | 263 | % Difference across iterations
|
0.120 | 101 | 264 | ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
|
0.142 | 101 | 265 | ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur);
|
0.016 | 101 | 266 | ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/(it_ameshk_n);
|
0.011 | 101 | 267 | ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/(it_ameshk_n);
|
0.021 | 101 | 268 | mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]);
|
| | 269 |
|
| | 270 | % Update
|
0.012 | 101 | 271 | mt_val_cur = mt_val;
|
0.009 | 101 | 272 | mt_pol_a_cur = mt_pol_a;
|
0.008 | 101 | 273 | mt_pol_k_cur = mt_pol_k;
|
| | 274 |
|
| | 275 | % Print Iteration Results
|
< 0.001 | 101 | 276 | if (bl_display && (rem(it_iter, it_display_every)==0))
|
| | 277 | fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
|
| | 278 | it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
|
| | 279 | tb_valpol_iter = array2table([mean(mt_val_cur,1);...
|
| | 280 | mean(mt_pol_a_cur,1); ...
|
| | 281 | mean(mt_pol_k_cur,1); ...
|
| | 282 | mt_val_cur(it_ameshk_n,:); ...
|
| | 283 | mt_pol_a_cur(it_ameshk_n,:); ...
|
| | 284 | mt_pol_k_cur(it_ameshk_n,:)]);
|
| | 285 | tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
|
| | 286 | tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'};
|
| | 287 | disp('mval = mean(mt_val_cur,1), average value over a')
|
| | 288 | disp('map = mean(mt_pol_a_cur,1), average choice over a')
|
| | 289 | disp('mkp = mean(mt_pol_k_cur,1), average choice over k')
|
| | 290 | disp('Hval = mt_val_cur(it_ameshk_n,:), highest a state val')
|
| | 291 | disp('Hap = mt_pol_a_cur(it_ameshk_n,:), highest a state choice')
|
| | 292 | disp('mak = mt_pol_k_cur(it_ameshk_n,:), highest k state choice')
|
| | 293 | disp(tb_valpol_iter);
|
| | 294 | end
|
| | 295 |
|
| | 296 | % Continuation Conditions:
|
| | 297 | % 1. if value function convergence criteria reached
|
| | 298 | % 2. if policy function variation over iterations is less than
|
| | 299 | % threshold
|
< 0.001 | 101 | 300 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 1 | 301 | bl_vfi_continue = false;
|
0.002 | 100 | 302 | elseif ((it_iter == it_maxiter_val) || ...
|
| 100 | 303 | (ar_val_diff_norm(it_iter) < fl_tol_val) || ...
|
| 100 | 304 | (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
|
| | 305 | % Fix to max, run again to save results if needed
|
< 0.001 | 1 | 306 | it_iter_last = it_iter;
|
< 0.001 | 1 | 307 | it_iter = it_maxiter_val;
|
< 0.001 | 1 | 308 | end
|
| | 309 |
|
< 0.001 | 101 | 310 | end
|
| | 311 |
|
| | 312 | % End Timer
|
< 0.001 | 1 | 313 | if (bl_time)
|
< 0.001 | 1 | 314 | toc;
|
< 0.001 | 1 | 315 | end
|
| | 316 |
|
| | 317 | % End Profile
|
< 0.001 | 1 | 318 | if (bl_profile)
|
0.012 | 1 | 319 | profile off
|
| | 320 | profile viewer
|
| | 321 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 322 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 323 | end
|
| | 324 |
|
| | 325 | %% Process Optimal Choices
|
| | 326 |
|
| | 327 | result_map = containers.Map('KeyType','char', 'ValueType','any');
|
| | 328 | result_map('mt_val') = mt_val;
|
| | 329 |
|
| | 330 | mt_coh = f_coh(ar_z, ar_a_meshk, ar_k_mesha);
|
| | 331 | result_map('cl_mt_pol_coh') = {mt_coh, zeros(1)};
|
| | 332 | result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
|
| | 333 | result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)};
|
| | 334 | result_map('cl_mt_pol_c') = {f_cons(mt_coh, mt_pol_a, mt_pol_k), zeros(1)};
|
| | 335 | result_map('ar_st_pol_names') = ["cl_mt_pol_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"];
|
| | 336 |
|
| | 337 | if (bl_post)
|
| | 338 | bl_input_override = true;
|
| | 339 | result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
|
| | 340 | result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
|
| | 341 | result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
|
| | 342 | result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 343 | end
|
| | 344 |
|
| | 345 | end
|
Other subfunctions in this file are not included in this listing.