This is a static copy of a profile report

Home

Function details for ff_iwkz_vfThis is a static copy of a profile report

Home

ff_iwkz_vf (Calls: 1, Time: 581.657 s)
Generated 03-Jul-2019 20:07:53 using performance time.
function in file C:\Users\fan\CodeDynaAsset\m_akz\solve\ff_iwkz_vf.m
Copy to new window for comparing multiple runs

Parents (calling functions)
No parent
Lines where the most time was spent

Line NumberCodeCallsTotal Time% TimeTime Plot
255
ar_val_cur(it_cohp_k) = f_grid...
47286000455.118 s78.2%
248
fl_c = f_cons(fl_coh, fl_w_ast...
47286000111.720 s19.2%
252
fl_ev_condi_z_max_z = ar_ev_co...
472860002.233 s0.4%
258
if fl_c <= 0
472860002.179 s0.4%
262
end
472860001.928 s0.3%
All other lines  8.480 s1.5%
Totals  581.657 s100% 
Children (called functions)

Function NameFunction TypeCallsTotal Time% TimeTime Plot
...coh,bprime,kprime)(coh-kprime-bprime)anonymous function4728600056.400 s9.7%
ff_wkz_evffunction1110.132 s0.0%
meanfunction1110.012 s0.0%
Self time (built-ins, overhead, etc.)  525.114 s90.3%
Totals  581.657 s100% 
Code Analyzer results
Line numberMessage
130The value assigned here to 'fl_r_save' appears to be unused. Consider replacing it by ~.
130The value assigned here to 'fl_r_borr' appears to be unused. Consider replacing it by ~.
130The value assigned here to 'fl_wage' appears to be unused. Consider replacing it by ~.
Coverage results
Show coverage for parent directory
Total lines in function358
Non-code lines (comments, blank lines)198
Code lines (lines that can run)160
Code lines that did run58
Code lines that did not run102
Coverage (did run/can run)36.25 %
Function listing
time 
Calls 
 line
   7 
function result_map = ff_iwkz_vf(varargin)
   8 
%% FF_IWKZ_VF solve infinite horizon exo shock + endo asset problem
   9 
% This program solves the infinite horizon dynamic savings and risky
  10 
% capital asset problem with some ar1 shock. This is the two step solution
  11 
% with interpolation version of
  12 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html
  13 
% ff_wkz_vf>, which solves the problem in two steps without interpolation. See
  14 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_evf.html
  15 
% ff_wkz_evf> for details about the second stage. 
  16 
%
  17 
% @param param_map container parameter container
  18 
%
  19 
% @param support_map container support container
  20 
%
  21 
% @param armt_map container container with states, choices and shocks
  22 
% grids that are inputs for grid based solution algorithm
  23 
%
  24 
% @param func_map container container with function handles for
  25 
% consumption cash-on-hand etc.
  26 
%
  27 
% @return result_map container contains policy function matrix, value
  28 
% function matrix, iteration results, and policy function, value function
  29 
% and iteration results tables. 
  30 
%
  31 
% keys included in result_map:
  32 
%
  33 
% * mt_val matrix states_n by shock_n matrix of converged value function grid
  34 
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
  35 
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
  36 
% difference between iteration
  37 
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
  38 
% function difference between iterations
  39 
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
  40 
% proportion of grid points at which policy function changed between
  41 
% current and last iteration for each element of shock
  42 
%
  43 
% @example
  44 
%
  45 
% @include
  46 
%
  47 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/ff_wkz_evf.m ff_wkz_evf>
  48 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/ffs_akz_set_default_param.m ffs_akz_set_default_param>
  49 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/ffs_akz_get_funcgrid.m ffs_akz_get_funcgrid>
  50 
% * <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solvepost/ff_akz_vf_post.m ff_akz_vf_post>
  51 
%
  52 
% @seealso
  53 
%
  54 
% * concurrent (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf.html ff_akz_vf>
  55 
% * concurrent (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vec.html ff_akz_vf_vec>
  56 
% * concurrent (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf_vecsv.html ff_akz_vf_vecsv>
  57 
% * two-stage (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html ff_wkz_vf>
  58 
% * two-stage (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vec.html ff_wkz_vf_vec>
  59 
% * two-stage (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf_vecsv.html ff_wkz_vf_vecsv>
  60 
% * two-stage + interpolate (safe + risky) loop: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf.html ff_iwkz_vf>
  61 
% * two-stage + interpolate (safe + risky) vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vec.html ff_iwkz_vf_vec>
  62 
% * two-stage + interpolate (safe + risky) optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vecsv.html ff_iwkz_vf_vecsv>
  63 
%
  64 

  65 

  66 
%% Default
  67 
% * it_param_set = 1: quick test
  68 
% * it_param_set = 2: benchmark run
  69 
% * it_param_set = 3: benchmark profile
  70 
% * it_param_set = 4: press publish button
  71 

  72 
it_param_set = 2;
  73 
bl_input_override = true;
  74 
[param_map, support_map] = ffs_akz_set_default_param(it_param_set);
  75 

  76 
% Note: param_map and support_map can be adjusted here or outside to override defaults
  77 
% param_map('it_w_n') = 50;
  78 
% param_map('it_ak_n') = param_map('it_w_n');
  79 
% param_map('it_z_n') = 15;
  80 
% param_map('fl_coh_interp_grid_gap') = 0.1;
  81 
% param_map('it_c_interp_grid_gap') = 10^-4;
  82 

  83 
% get armt and func map
  84 
[armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
  85 
default_params = {param_map support_map armt_map func_map};
  86 

  87 
%% Parse Parameters 1
  88 

  89 
% if varargin only has param_map and support_map,
  90 
params_len = length(varargin);
  91 
[default_params{1:params_len}] = varargin{:};
  92 
param_map = [param_map; default_params{1}];
  93 
support_map = [support_map; default_params{2}];
  94 
if params_len >= 1 && params_len <= 2
  95 
    % If override param_map, re-generate armt and func if they are not
  96 
    % provided
  97 
    bl_input_override = true;
  98 
    [armt_map, func_map] = ffs_akz_get_funcgrid(param_map, support_map, bl_input_override);
  99 
else
 100 
    % Override all
 101 
    armt_map = [armt_map; default_params{3}];
 102 
    func_map = [func_map; default_params{4}];
 103 
end
 104 

 105 
% append function name
 106 
st_func_name = 'ff_iwkz_vf';
 107 
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
 108 
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
 109 
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
 110 

 111 
%% Parse Parameters 2
 112 

 113 
% armt_map
 114 
params_group = values(armt_map, {'ar_w', 'ar_z'});
 115 
[ar_w, ar_z] = params_group{:};
 116 
params_group = values(armt_map, {'ar_interp_c_grid', 'ar_interp_coh_grid', ...
 117 
    'mt_interp_coh_grid_mesh_z', 'mt_z_mesh_coh_interp_grid'});
 118 
[ar_interp_c_grid, ar_interp_coh_grid, ...
 119 
    mt_interp_coh_grid_mesh_z, mt_z_mesh_coh_interp_grid] = params_group{:};
 120 
params_group = values(armt_map, {'mt_coh_wkb', 'mt_z_mesh_coh_wkb'});
 121 
[mt_coh_wkb, mt_z_mesh_coh_wkb] = params_group{:};
 122 

 123 
% func_map
 124 
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons'});
 125 
[f_util_log, f_util_crra, f_cons] = params_group{:};
 126 

 127 
% param_map
 128 
params_group = values(param_map, {'fl_r_save', 'fl_r_borr', 'fl_w',...
 129 
    'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'});
 130 
[fl_r_save, fl_r_borr, fl_wage, it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:};
 131 
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
 132 
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
 133 

 134 
% support_map
 135 
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
 136 
    'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
 137 
    'bl_time', 'bl_display', 'it_display_every', 'bl_post'});
 138 
[bl_profile, st_profile_path, ...
 139 
    st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
 140 
    bl_time, bl_display, it_display_every, bl_post] = params_group{:};
 141 

 142 
%% Initialize Output Matrixes
 143 

 144 
mt_val_cur = zeros(length(ar_interp_coh_grid),length(ar_z));
 145 
mt_val = mt_val_cur - 1;
 146 
mt_pol_a = zeros(length(ar_interp_coh_grid),length(ar_z));
 147 
mt_pol_a_cur = mt_pol_a - 1;
 148 
mt_pol_k = zeros(length(ar_interp_coh_grid),length(ar_z));
 149 
mt_pol_k_cur = mt_pol_k - 1;
 150 

 151 
%% Initialize Convergence Conditions
 152 

 153 
bl_vfi_continue = true;
 154 
it_iter = 0;
 155 
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
 156 
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
 157 
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
 158 

 159 
%% Pre-calculate u(c)
 160 
% Interpolation, see
 161 
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
 162 
% fs_u_c_partrepeat_main> for why interpolate over u(c)
 163 

 164 
% Evaluate
 165 
if (fl_crra == 1)
 166 
    ar_interp_u_of_c_grid = f_util_log(ar_interp_c_grid);
 167 
    fl_u_neg_c = f_util_log(fl_c_min);
 168 
else
 169 
    ar_interp_u_of_c_grid = f_util_crra(ar_interp_c_grid);
 170 
    fl_u_neg_c = f_util_crra(fl_c_min);
 171 
end
 172 
ar_interp_u_of_c_grid(ar_interp_c_grid <= fl_c_min) = fl_u_neg_c;
 173 

 174 
% Get Interpolant
 175 
f_grid_interpolant_spln = griddedInterpolant(ar_interp_c_grid, ar_interp_u_of_c_grid, 'spline');
 176 

 177 
%% Iterate Value Function
 178 
% Loop solution with 4 nested loops
 179 
%
 180 
% # loop 1: over exogenous states
 181 
% # loop 2: over endogenous states
 182 
% # loop 3: over choices
 183 
% # loop 4: add future utility, integration--loop over future shocks
 184 
%
 185 

 186 
% Start Profile
 187 
if (bl_profile)
 188 
    close all;
 189 
    profile off;
 190 
    profile on;
< 0.001 
      1 
 191
end 
 192 

 193 
% Start Timer
< 0.001 
      1 
 194
if (bl_time) 
< 0.001 
      1 
 195
    tic; 
< 0.001 
      1 
 196
end 
 197 

 198 
% Value Function Iteration
< 0.001 
      1 
 199
while bl_vfi_continue 
< 0.001 
    111 
 200
    it_iter = it_iter + 1; 
 201 
    
 202 
    %% Interpolate (1) reacahble v(coh(k(w,z),b(w,z),z),z) given v(coh, z)
 203 
    % v(coh,z) solved on ar_interp_coh_grid, ar_z grids, see
 204 
    % ffs_iwkz_get_funcgrid.m. Generate interpolant based on that, Then
 205 
    % interpolate for the coh reachable levels given the k(w,z) percentage
 206 
    % choice grids in the second stage of the problem
 207 

 208 
    % Generate Interpolant for v(coh,z)
  0.060 
    111 
 209
    f_grid_interpolant_value = griddedInterpolant(... 
    111 
 210
        mt_z_mesh_coh_interp_grid', mt_interp_coh_grid_mesh_z', mt_val_cur', 'linear'); 
 211 
    
 212 
    % Interpoalte for v(coh(k(w,z),b(w,z),z),z)
  0.079 
    111 
 213
    mt_val_wkb_interpolated = f_grid_interpolant_value(mt_z_mesh_coh_wkb, mt_coh_wkb); 
 214 
    
 215 
    %% Solve Second Stage Problem k*(w,z)
 216 
    % This is the key difference between this function and
 217 
    % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
 218 
    % ffs_akz_set_functions> which solves the two stages jointly    
 219 
    % Interpolation first, because solution coh grid is not the same as all
 220 
    % points reachable by k and b choices given w. 
 221 
        
< 0.001 
    111 
 222
    bl_input_override = true; 
  0.137 
    111 
 223
    [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, mt_ev_condi_z_max_bp] = ... 
    111 
 224
        ff_wkz_evf(mt_val_wkb_interpolated, param_map, support_map, armt_map, bl_input_override); 
 225 
    
 226 
    %% Solve First Stage Problem w*(z) given k*(w,z)
 227 
    % loop 1: over exogenous states
< 0.001 
    111 
 228
    for it_z_i = 1:length(ar_z) 
 229 
        
 230 
        % Get 2nd Stage Arrays
  0.002 
   1665 
 231
        ar_ev_condi_z_max_z = mt_ev_condi_z_max(:, it_z_i);         
  0.001 
   1665 
 232
        ar_w_kstar_z = mt_ev_condi_z_max_kp(:, it_z_i); 
  0.001 
   1665 
 233
        ar_w_astar_z = mt_ev_condi_z_max_bp(:, it_z_i);         
 234 
        
 235 
        % loop 2: over endogenous states
< 0.001 
   1665 
 236
        for it_coh_interp_j = 1:length(ar_interp_coh_grid) 
 237 
            % Get cash-on-hand which include k,b,z
  0.055 
 945720 
 238
            fl_coh = mt_interp_coh_grid_mesh_z(it_coh_interp_j, it_z_i); 
 239 
            
 240 
            % loop 3: over choices, only w vector
 241 
            % we choose w(z), know from ff_wkz_evf k*(w,z), b*=w-k*
  0.908 
 945720 
 242
            ar_val_cur = zeros(size(ar_w)); 
  0.050 
 945720 
 243
            for it_cohp_k = 1:length(ar_w)                                 
  1.879 
47286000 
 244
                fl_w_kstar_z = ar_w_kstar_z(it_cohp_k); 
  1.909 
47286000 
 245
                fl_w_astar_z = ar_w_astar_z(it_cohp_k); 
 246 
                
 247 
                % consumption
 111.720 
47286000 
 248
                fl_c = f_cons(fl_coh, fl_w_astar_z, fl_w_kstar_z); 
 249 
                                
 250 
                % loop 4: add future utility, integration already done in
 251 
                % ff_wkz_evf
  2.233 
47286000 
 252
                fl_ev_condi_z_max_z = ar_ev_condi_z_max_z(it_cohp_k); 
 253 
                
 254 
                % Interpolate (2)
 455.118 
47286000 
 255
                ar_val_cur(it_cohp_k) = f_grid_interpolant_spln(fl_c) + fl_beta*fl_ev_condi_z_max_z; 
 256 
                
 257 
                % Replace if negative consumption
  2.179 
47286000 
 258
                if fl_c <= 0 
  0.704 
20442870 
 259
                    ar_val_cur(it_cohp_k) = fl_u_neg_c; 
  0.914 
20442870 
 260
                end 
 261 
                
  1.928 
47286000 
 262
            end 
 263 
            
 264 
            % maximization over loop 3 choices for loop 1+2 states
  1.293 
 945720 
 265
            it_max_lin_idx = find(ar_val_cur == max(ar_val_cur)); 
  0.060 
 945720 
 266
            mt_val(it_coh_interp_j,it_z_i) = ar_val_cur(it_max_lin_idx(1)); 
  0.052 
 945720 
 267
            mt_pol_a(it_coh_interp_j,it_z_i) = ar_w_astar_z(it_max_lin_idx(1)); 
  0.055 
 945720 
 268
            mt_pol_k(it_coh_interp_j,it_z_i) = ar_w_kstar_z(it_max_lin_idx(1)); 
 269 
            
  0.043 
 945720 
 270
        end 
  0.002 
   1665 
 271
    end 
 272 
    
 273 
    %% Check Tolerance and Continuation
 274 
    
 275 
    % Difference across iterations
  0.093 
    111 
 276
    ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); 
  0.106 
    111 
 277
    ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur); 
  0.009 
    111 
 278
    ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/length(ar_interp_coh_grid); 
  0.006 
    111 
 279
    ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/length(ar_interp_coh_grid); 
  0.017 
    111 
 280
    mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]); 
 281 
    
 282 
    % Update
  0.011 
    111 
 283
    mt_val_cur = mt_val; 
  0.006 
    111 
 284
    mt_pol_a_cur = mt_pol_a; 
  0.006 
    111 
 285
    mt_pol_k_cur = mt_pol_k; 
 286 
    
 287 
    % Print Iteration Results
< 0.001 
    111 
 288
    if (bl_display && (rem(it_iter, it_display_every)==0)) 
 289 
        fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
 290 
            it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
 291 
        tb_valpol_iter = array2table([mean(mt_val_cur,1);...
 292 
                                      mean(mt_pol_a_cur,1); ...
 293 
                                      mean(mt_pol_k_cur,1); ...
 294 
                                      mt_val_cur(length(ar_interp_coh_grid),:); ...
 295 
                                      mt_pol_a_cur(length(ar_interp_coh_grid),:); ...
 296 
                                      mt_pol_k_cur(length(ar_interp_coh_grid),:)]);
 297 
        tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
 298 
        tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'};
 299 
        disp('mval = mean(mt_val_cur,1), average value over a')
 300 
        disp('map  = mean(mt_pol_a_cur,1), average choice over a')
 301 
        disp('mkp  = mean(mt_pol_k_cur,1), average choice over k')
 302 
        disp('Hval = mt_val_cur(ar_interp_coh_grid,:), highest a state val')
 303 
        disp('Hap = mt_pol_a_cur(ar_interp_coh_grid,:), highest a state choice')
 304 
        disp('mak = mt_pol_k_cur(ar_interp_coh_grid,:), highest k state choice')                
 305 
        disp(tb_valpol_iter);
 306 
    end
 307 
    
 308 
    % Continuation Conditions:
 309 
    % 1. if value function convergence criteria reached
 310 
    % 2. if policy function variation over iterations is less than
 311 
    % threshold
< 0.001 
    111 
 312
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 313
        bl_vfi_continue = false; 
  0.002 
    110 
 314
    elseif ((it_iter == it_maxiter_val) || ... 
    110 
 315
            (ar_val_diff_norm(it_iter) < fl_tol_val) || ... 
    110 
 316
            (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) 
 317 
        % Fix to max, run again to save results if needed
< 0.001 
      1 
 318
        it_iter_last = it_iter; 
< 0.001 
      1 
 319
        it_iter = it_maxiter_val;         
< 0.001 
      1 
 320
    end 
 321 
    
< 0.001 
    111 
 322
end 
 323 

 324 
% End Timer
< 0.001 
      1 
 325
if (bl_time) 
< 0.001 
      1 
 326
    toc; 
< 0.001 
      1 
 327
end 
 328 

 329 
% End Profile
< 0.001 
      1 
 330
if (bl_profile) 
  0.012 
      1 
 331
    profile off 
 332 
    profile viewer
 333 
    st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
 334 
    profsave(profile('info'), strcat(st_profile_path, st_file_name));
 335 
end
 336 

 337 
%% Process Optimal Choices
 338 

 339 
result_map = containers.Map('KeyType','char', 'ValueType','any');
 340 
result_map('mt_val') = mt_val;
 341 

 342 
result_map('cl_mt_pol_coh') = {mt_interp_coh_grid_mesh_z, zeros(1)};
 343 
result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
 344 
result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)};
 345 
result_map('cl_mt_pol_c') = {f_cons(mt_interp_coh_grid_mesh_z, mt_pol_a, mt_pol_k), zeros(1)};
 346 
result_map('ar_st_pol_names') = ["cl_mt_pol_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"];
 347 

 348 
if (bl_post)
 349 
    bl_input_override = true;
 350 
    result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
 351 
    result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
 352 
    result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
 353 
    
 354 
    % graphing based on coh_wkb, but that does not match optimal choice
 355 
    % matrixes for graphs. 
 356 
    armt_map('mt_coh_wkb') = mt_interp_coh_grid_mesh_z;
 357 
    armt_map('it_ameshk_n') = length(ar_interp_coh_grid);
 358 
    armt_map('ar_a_meshk') = mt_interp_coh_grid_mesh_z(:,1);
 359 
    armt_map('ar_k_mesha') = zeros(size(mt_interp_coh_grid_mesh_z(:,1)) + 0);
 360 
    
 361 
    result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
 362 
end
 363 

 364 
end

Other subfunctions in this file are not included in this listing.