time | Calls | line |
---|
| | 7 | function result_map = ff_abzr_fibs_vf(varargin)
|
| | 8 | %% FF_ABZ_FIBS_VF borr + save one asset formal informal + loop
|
| | 9 | % This program solves the infinite horizon dynamic single asset and single
|
| | 10 | % shock problem with loops. This file contains codes that processes
|
| | 11 | % borrowing and handles formal and informal choices. With R Shock.
|
| | 12 | %
|
| | 13 | % @param param_map container parameter container
|
| | 14 | %
|
| | 15 | % @param support_map container support container
|
| | 16 | %
|
| | 17 | % @param armt_map container container with states, choices and shocks
|
| | 18 | % grids that are inputs for grid based solution algorithm
|
| | 19 | %
|
| | 20 | % @param func_map container container with function handles for
|
| | 21 | % consumption cash-on-hand etc.
|
| | 22 | %
|
| | 23 | % @return result_map container contains policy function matrix, value
|
| | 24 | % function matrix, iteration results, and policy function, value function
|
| | 25 | % and iteration results tables.
|
| | 26 | %
|
| | 27 | % keys included in result_map:
|
| | 28 | %
|
| | 29 | % * mt_val matrix states_n by shock_n matrix of converged value function grid
|
| | 30 | % * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
|
| | 31 | % * mt_cons matrix states_n by shock_n matrix of optimal consumption
|
| | 32 | % levels, unlike modele without formal and informal choices, where we know
|
| | 33 | % c from coh and a, here this needed to be stored because it is the results
|
| | 34 | % from with joint category maximization problem.
|
| | 35 | % * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
|
| | 36 | % difference between iteration
|
| | 37 | % * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
|
| | 38 | % function difference between iterations
|
| | 39 | % * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
|
| | 40 | % proportion of grid points at which policy function changed between
|
| | 41 | % current and last iteration for each element of shock
|
| | 42 | %
|
| | 43 | % @example
|
| | 44 | %
|
| | 45 | % @include
|
| | 46 | %
|
| | 47 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abzr_paramfunc/html/ffs_abzr_fibs_set_default_param.html ffs_abzr_fibs_set_default_param>
|
| | 48 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abzr_paramfunc/html/ffs_abzr_fibs_get_funcgrid.html ffs_abzr_fibs_get_funcgrid>
|
| | 49 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/paramfunc_fibs/html/ffs_fibs_min_c_cost_bridge.html ffs_fibs_min_c_cost_bridge>
|
| | 50 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/paramfunc_fibs/html/ffs_fibs_inf_bridge.html ffs_fibs_inf_bridge>
|
| | 51 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/paramfunc_fibs/html/ffs_fibs_min_c_cost.html ffs_fibs_min_c_cost>
|
| | 52 | % * <https://fanwangecon.github.io/CodeDynaAsset/m_az/solvepost/html/ff_az_vf_post.html ff_az_vf_post>
|
| | 53 | %
|
| | 54 | % @seealso
|
| | 55 | %
|
| | 56 | % * for/inf + save + borr loop: <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abzr_solve/html/ff_abzr_fibs_vf.html ff_abzr_fibs_vf>
|
| | 57 | % * for/inf + borr vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abzr_solve/html/ff_abzr_fibs_vf_vec.html ff_abzr_fibs_vf_vec>
|
| | 58 | % * for/inf + borr optimized-vectorized: <https://fanwangecon.github.io/CodeDynaAsset/m_fibs/m_abzr_solve/html/ff_abzr_fibs_vf_vecsv.html ff_abzr_fibs_vf_vecsv>
|
| | 59 | %
|
| | 60 |
|
| | 61 | %% Default
|
| | 62 | % * it_param_set = 1: quick test
|
| | 63 | % * it_param_set = 2: benchmark run
|
| | 64 | % * it_param_set = 3: benchmark profile
|
| | 65 | % * it_param_set = 4: press publish button
|
| | 66 |
|
| | 67 | it_param_set = 3;
|
| | 68 | [param_map, support_map] = ffs_abzr_fibs_set_default_param(it_param_set);
|
| | 69 |
|
| | 70 | % Note: param_map and support_map can be adjusted here or outside to override defaults
|
| | 71 | % To generate results as if formal informal do not matter
|
| | 72 | param_map('it_a_n') = 35;
|
| | 73 | param_map('fl_z_r_infbr_n') = 3;
|
| | 74 | param_map('it_z_wage_n') = 3;
|
| | 75 | param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_infbr_n');
|
| | 76 | param_map('it_maxiter_val') = 20;
|
| | 77 | % param_map('fl_r_fsv') = 0.025;
|
| | 78 | % param_map('fl_r_fbr') = 0.035;
|
| | 79 | % param_map('bl_b_is_principle') = false;
|
| | 80 | % param_map('st_forbrblk_type') = 'seg3';
|
| | 81 | % param_map('fl_forbrblk_brmost') = -19;
|
| | 82 | % param_map('fl_forbrblk_brleast') = -1;
|
| | 83 | % param_map('fl_forbrblk_gap') = -1.5;
|
| | 84 | % param_map('bl_b_is_principle') = false;
|
| | 85 |
|
| | 86 | [armt_map, func_map] = ffs_abzr_fibs_get_funcgrid(param_map, support_map); % 1 for override
|
| | 87 | default_params = {param_map support_map armt_map func_map};
|
| | 88 |
|
| | 89 | %% Parse Parameters 1
|
| | 90 |
|
| | 91 | % if varargin only has param_map and support_map,
|
| | 92 | params_len = length(varargin);
|
| | 93 | [default_params{1:params_len}] = varargin{:};
|
| | 94 | param_map = [param_map; default_params{1}];
|
| | 95 | support_map = [support_map; default_params{2}];
|
| | 96 | if params_len >= 1 && params_len <= 2
|
| | 97 | % If override param_map, re-generate armt and func if they are not
|
| | 98 | % provided
|
| | 99 | bl_input_override = true;
|
| | 100 | [armt_map, func_map] = ffs_abzr_fibs_get_funcgrid(param_map, support_map, bl_input_override);
|
| | 101 | else
|
| | 102 | % Override all
|
| | 103 | armt_map = [armt_map; default_params{3}];
|
| | 104 | func_map = [func_map; default_params{4}];
|
| | 105 | end
|
| | 106 |
|
| | 107 | % append function name
|
| | 108 | st_func_name = 'ff_abzr_fibs_vf';
|
| | 109 | support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
|
| | 110 | support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
|
| | 111 | support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
|
| | 112 |
|
| | 113 | %% Parse Parameters 2
|
| | 114 |
|
| | 115 | % armt_map
|
| | 116 | params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z_r_infbr_mesh_wage', 'ar_z_wage_mesh_r_infbr'});
|
| | 117 | [ar_a, mt_z_trans, ar_z_r_infbr_mesh_wage, ar_z_wage_mesh_r_infbr] = params_group{:};
|
| | 118 |
|
| | 119 | % Formal choice Menu/Grid and Interest Rate Menu/Grid
|
| | 120 | params_group = values(armt_map, {'ar_forbrblk_r', 'ar_forbrblk'});
|
| | 121 | [ar_forbrblk_r, ar_forbrblk] = params_group{:};
|
| | 122 |
|
| | 123 | % func_map
|
| | 124 | params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_coh', 'f_cons_coh_fbis', 'f_cons_coh_save'});
|
| | 125 | [f_util_log, f_util_crra, f_coh, f_cons_coh_fbis, f_cons_coh_save] = params_group{:};
|
| | 126 |
|
| | 127 | % param_map
|
| | 128 | params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min',...
|
| | 129 | 'fl_nan_replace', 'bl_default', 'bl_bridge', 'bl_rollover', 'fl_default_aprime'});
|
| | 130 | [it_a_n, it_z_n, fl_crra, fl_beta, fl_c_min, ...
|
| | 131 | fl_nan_replace, bl_default, bl_bridge, bl_rollover, fl_default_aprime] = params_group{:};
|
| | 132 | params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
|
| | 133 | [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
|
| | 134 |
|
| | 135 | % param_map, Formal informal
|
| | 136 | params_group = values(param_map, {'fl_r_fsv', 'bl_b_is_principle'});
|
| | 137 | [fl_r_fsv, bl_b_is_principle] = params_group{:};
|
| | 138 |
|
| | 139 | % support_map
|
| | 140 | params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
|
| | 141 | 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
|
| | 142 | 'bl_display_minccost', 'bl_display_infbridge', ...
|
| | 143 | 'bl_time', 'bl_display_defparam', 'bl_display', 'it_display_every', 'bl_post'});
|
| | 144 | [bl_profile, st_profile_path, ...
|
| | 145 | st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
|
| | 146 | bl_display_minccost, bl_display_infbridge, ...
|
| | 147 | bl_time, bl_display_defparam, bl_display, it_display_every, bl_post] = params_group{:};
|
| | 148 |
|
| | 149 | %% Initialize Output Matrixes
|
| | 150 |
|
| | 151 | mt_val_cur = zeros(it_a_n,it_z_n);
|
| | 152 | mt_val = mt_val_cur - 1;
|
| | 153 | mt_pol_a = zeros(it_a_n,it_z_n);
|
| | 154 | mt_pol_a_cur = mt_pol_a - 1;
|
| | 155 | mt_pol_cons = zeros(it_a_n,it_z_n);
|
| | 156 |
|
| | 157 | % collect optimal borrowing formal and informal choices
|
| | 158 | mt_pol_b_bridge = zeros(it_a_n,it_z_n);
|
| | 159 | mt_pol_inf_borr_nobridge = zeros(it_a_n,it_z_n);
|
| | 160 | mt_pol_for_borr = zeros(it_a_n,it_z_n);
|
| | 161 | mt_pol_for_save = zeros(it_a_n,it_z_n);
|
| | 162 |
|
| | 163 | %% Initialize Convergence Conditions
|
| | 164 |
|
| | 165 | bl_vfi_continue = true;
|
| | 166 | it_iter = 0;
|
| | 167 | ar_val_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 168 | ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
|
| | 169 | mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
|
| | 170 |
|
| | 171 | %% Iterate Value Function
|
| | 172 | % Loop solution with 4 nested loops
|
| | 173 | %
|
| | 174 | % # loop 1: over exogenous states
|
| | 175 | % # loop 2: over endogenous states
|
| | 176 | % # loop 3: over choices
|
| | 177 | % # loop 4: add future utility, integration--loop over future shocks
|
| | 178 | %
|
| | 179 |
|
| | 180 | % Start Profile
|
| | 181 | if (bl_profile)
|
| | 182 | close all;
|
| | 183 | profile off;
|
| | 184 | profile on;
|
< 0.001 | 1 | 185 | end
|
| | 186 |
|
| | 187 | % Start Timer
|
< 0.001 | 1 | 188 | if (bl_time)
|
< 0.001 | 1 | 189 | tic;
|
< 0.001 | 1 | 190 | end
|
| | 191 |
|
| | 192 | % Utility at-Default/at-limiting-case-when-nodefault
|
< 0.001 | 1 | 193 | if (fl_crra == 1)
|
| | 194 | fl_u_cmin = f_util_log(fl_c_min);
|
< 0.001 | 1 | 195 | else
|
< 0.001 | 1 | 196 | fl_u_cmin = f_util_crra(fl_c_min);
|
< 0.001 | 1 | 197 | end
|
| | 198 |
|
| | 199 |
|
| | 200 | % Value Function Iteration
|
< 0.001 | 1 | 201 | while bl_vfi_continue
|
< 0.001 | 21 | 202 | it_iter = it_iter + 1;
|
| | 203 |
|
| | 204 | %% Iterate over a and z states
|
| | 205 | % handling borrowing and default possibility
|
| | 206 |
|
| | 207 | % loop 1: over exogenous states
|
< 0.001 | 21 | 208 | for it_z_i = 1:it_z_n
|
| | 209 |
|
< 0.001 | 189 | 210 | fl_z_r_borr = ar_z_r_infbr_mesh_wage(it_z_i);
|
< 0.001 | 189 | 211 | fl_z_wage = ar_z_wage_mesh_r_infbr(it_z_i);
|
| | 212 |
|
| | 213 | % loop 2: over endogenous states
|
< 0.001 | 189 | 214 | for it_a_j = 1:it_a_n
|
| | 215 |
|
| | 216 | % Get asset state
|
< 0.001 | 6615 | 217 | fl_a = ar_a(it_a_j);
|
| | 218 |
|
| | 219 | % Initialize storage
|
0.009 | 6615 | 220 | ar_val_cur = zeros(size(ar_a));
|
0.004 | 6615 | 221 | ar_c_cur = zeros(size(ar_a));
|
0.004 | 6615 | 222 | ar_b_bridge = zeros(size(ar_a));
|
0.004 | 6615 | 223 | ar_inf_borr_nobridge = zeros(size(ar_a));
|
0.004 | 6615 | 224 | ar_for_borr = zeros(size(ar_a));
|
0.004 | 6615 | 225 | ar_for_save = zeros(size(ar_a));
|
| | 226 |
|
| | 227 | % calculate cash on hand
|
0.021 | 6615 | 228 | fl_coh = f_coh(fl_z_wage, fl_a);
|
| | 229 |
|
| | 230 | % loop 3: over choices
|
< 0.001 | 6615 | 231 | for it_ap_k = 1:it_a_n
|
| | 232 |
|
| | 233 | % get next period asset choice
|
0.010 | 231525 | 234 | fl_ap = ar_a(it_ap_k);
|
| | 235 |
|
| | 236 | %% Compute Consumption given Borrowing and Savings
|
| | 237 | % find the today's consumption maximizing formal and informal
|
| | 238 | % choices given a' and coh. The formal and informal choices need to
|
| | 239 | % generate exactly a', but depending on which formal and informal
|
| | 240 | % joint choice is used, the consumption cost today a' is different.
|
| | 241 | % Note here, a is principle + interests. Three areas:
|
| | 242 | %
|
| | 243 | % * *CASE A* a' > 0: savings, do not need to optimize over formal and
|
| | 244 | % informal choices
|
| | 245 | % * *CASE B* a' < 0 & coh < 0: need bridge loan to pay for unpaid debt, and
|
| | 246 | % borrowing over-all, need to first pick bridge loan to pay for
|
| | 247 | % debt, if bridge loan is insufficient, go into default. After
|
| | 248 | % bridge loan, optimize over formal+informal, borrow+save joint
|
| | 249 | % choices.
|
| | 250 | % * *CASE C* $ a' < 0 & coh > 0: do not need to get informal bridge loans,
|
| | 251 | % optimize over for+inf save, for+save+borr, inf+borr only, for
|
| | 252 | % borrow only.
|
| | 253 | %
|
| | 254 |
|
0.011 | 231525 | 255 | if (fl_ap < 0)
|
| | 256 |
|
| | 257 | % Calculate Bridge Loan Borrowing
|
0.004 | 66150 | 258 | if (bl_bridge && fl_coh < 0)
|
| | 259 |
|
< 0.001 | 17010 | 260 | bl_input_override = true;
|
0.212 | 17010 | 261 | [fl_aprime_nobridge, fl_b_bridge, fl_c_bridge] = ffs_fibs_inf_bridge(...
|
| 17010 | 262 | bl_b_is_principle, fl_z_r_borr, fl_ap, fl_coh, ...
|
| 17010 | 263 | bl_display_infbridge, bl_input_override);
|
| | 264 |
|
0.002 | 49140 | 265 | else
|
| | 266 |
|
0.002 | 49140 | 267 | fl_aprime_nobridge = fl_ap;
|
0.002 | 49140 | 268 | fl_b_bridge = 0;
|
0.002 | 49140 | 269 | fl_c_bridge = 0;
|
| | 270 |
|
0.003 | 66150 | 271 | end
|
| | 272 |
|
| | 273 | % Find Optimal Formal Informal Borrow Save Combo
|
| | 274 | % calculate consumption gain from formal + informal
|
| | 275 | % borrowing and savings choices.
|
0.003 | 66150 | 276 | bl_input_override = true;
|
6.266 | 66150 | 277 | [fl_max_c_nobridge, fl_inf_borr_nobridge, fl_for_borr, fl_for_save] = ...
|
| | 278 | ffs_fibs_min_c_cost(...
|
| 66150 | 279 | bl_b_is_principle, fl_z_r_borr, fl_r_fsv, ...
|
| 66150 | 280 | ar_forbrblk_r, ar_forbrblk, ...
|
| 66150 | 281 | fl_aprime_nobridge, bl_display_minccost, bl_input_override);
|
| | 282 |
|
| | 283 | % Compute Consumption given Formal and Informal joint
|
| | 284 | % consumption with formal borrow menu + bridge loans.
|
0.172 | 66150 | 285 | fl_c = f_cons_coh_fbis(fl_coh, fl_max_c_nobridge + fl_c_bridge);
|
| | 286 |
|
0.006 | 165375 | 287 | else
|
| | 288 |
|
| | 289 | % consumption with savings
|
0.309 | 165375 | 290 | fl_c = f_cons_coh_save(fl_coh, fl_ap);
|
| | 291 |
|
| | 292 | % assign values for formal and informal choices
|
| | 293 | % possible that fl_coh < 0, but if then fl_ap > 0 is
|
| | 294 | % not valid choice
|
0.685 | 165375 | 295 | [fl_b_bridge, fl_inf_borr_nobridge, fl_for_borr, fl_for_save] = deal(0, 0, 0, fl_ap);
|
| | 296 |
|
0.011 | 231525 | 297 | end
|
| | 298 |
|
| | 299 | %% Compute Utility With Default
|
| | 300 | % if rollover is not allowed and bridge is not allowed,
|
| | 301 | % then as long as coh <= 0, also treat as not allowed
|
| | 302 | % states.
|
| | 303 | % assign u(c)
|
0.017 | 231525 | 304 | if (fl_c <= fl_c_min || ...
|
| 121485 | 305 | ( ~bl_rollover && ~bl_bridge && fl_coh < fl_c_min))
|
| | 306 |
|
0.006 | 110040 | 307 | if (bl_default)
|
| | 308 | % defaults
|
| | 309 | % current utility: only today u(cmin)
|
0.005 | 110040 | 310 | ar_val_cur(it_ap_k) = fl_u_cmin;
|
| | 311 | % transition out next period, debt wiped out
|
0.005 | 110040 | 312 | for it_az_q = 1:it_z_n
|
0.981 | 990360 | 313 | ar_val_cur(it_ap_k) = ar_val_cur(it_ap_k) + ...
|
| 990360 | 314 | fl_beta*mt_z_trans(it_z_i, it_az_q)*mt_val_cur((ar_a == fl_default_aprime), it_az_q);
|
0.040 | 990360 | 315 | end
|
| | 316 |
|
| | 317 | % Replace Consumption if default cmin
|
0.005 | 110040 | 318 | fl_c = fl_c_min;
|
| | 319 | else
|
| | 320 | % if default is not allowed: v = fl_nan_replace
|
| | 321 | ar_val_cur(it_ap_k) = fl_nan_replace;
|
| | 322 |
|
| | 323 | % Replace Consumption if no default nan
|
| | 324 | fl_c = 0;
|
0.005 | 110040 | 325 | end
|
| | 326 |
|
| | 327 | % no action, defaulting
|
0.005 | 110040 | 328 | fl_b_bridge = 0;
|
0.005 | 110040 | 329 | fl_inf_borr_nobridge = 0;
|
0.005 | 110040 | 330 | fl_for_borr = 0;
|
0.005 | 110040 | 331 | fl_for_save = 0;
|
| | 332 |
|
0.005 | 121485 | 333 | else
|
| | 334 | % Solve Optimization Problem: max_{a'} u(c(a,a',z)) + beta*EV(a',z')
|
| | 335 | % borrowed enough to pay debt (and borrowing limit not exceeded)
|
| | 336 | % saved only the coh available.
|
| | 337 | % current utility
|
0.006 | 121485 | 338 | if (fl_crra == 1)
|
| | 339 | ar_val_cur(it_ap_k) = f_util_log(fl_c);
|
0.005 | 121485 | 340 | else
|
0.245 | 121485 | 341 | ar_val_cur(it_ap_k) = f_util_crra(fl_c);
|
0.004 | 121485 | 342 | end
|
| | 343 | % loop 4: add future utility, integration--loop over future shocks
|
0.006 | 121485 | 344 | for it_az_q = 1:it_z_n
|
0.081 | 1093365 | 345 | ar_val_cur(it_ap_k) = ar_val_cur(it_ap_k) + ...
|
| 1093365 | 346 | fl_beta*mt_z_trans(it_z_i, it_az_q)*mt_val_cur(it_ap_k, it_az_q);
|
0.042 | 1093365 | 347 | end
|
0.009 | 231525 | 348 | end
|
| | 349 |
|
| | 350 | %% Store Values
|
| | 351 |
|
| | 352 | % Could get the formal and informal values from
|
| | 353 | % ffs_fibs_min_c_cost_bridge.m
|
| | 354 | % bl_input_override = true;
|
| | 355 | % [fl_c, fl_b_bridge, fl_inf_borr_nobridge, fl_for_borr, fl_for_save] = ...
|
| | 356 | % ffs_fibs_min_c_cost_bridge(fl_ap, fl_coh, ...
|
| | 357 | % param_map, support_map, armt_map, func_map, bl_input_override);
|
| | 358 |
|
| | 359 | % Store consumption
|
0.010 | 231525 | 360 | ar_c_cur(it_ap_k) = fl_c;
|
| | 361 |
|
| | 362 | % Save/Update Borrowing Information
|
0.011 | 231525 | 363 | ar_b_bridge(it_ap_k) = fl_b_bridge;
|
0.010 | 231525 | 364 | ar_inf_borr_nobridge(it_ap_k) = fl_inf_borr_nobridge;
|
0.012 | 231525 | 365 | ar_for_borr(it_ap_k) = fl_for_borr;
|
0.010 | 231525 | 366 | ar_for_save(it_ap_k) = fl_for_save;
|
| | 367 |
|
0.011 | 231525 | 368 | end
|
| | 369 |
|
| | 370 | %% Optimize over Next Period Asset Choices
|
| | 371 | % optimal choice value
|
0.023 | 6615 | 372 | [fl_opti_val_z, fl_opti_idx_z] = max(ar_val_cur);
|
< 0.001 | 6615 | 373 | fl_opti_aprime_z = ar_a(fl_opti_idx_z);
|
< 0.001 | 6615 | 374 | fl_opti_c_z = ar_c_cur(fl_opti_idx_z);
|
| | 375 |
|
| | 376 | % corresponding optimal borrowing and savings choices
|
< 0.001 | 6615 | 377 | fl_opti_b_bridge = ar_b_bridge(fl_opti_idx_z);
|
< 0.001 | 6615 | 378 | fl_opti_inf_borr_nobridge = ar_inf_borr_nobridge(fl_opti_idx_z);
|
< 0.001 | 6615 | 379 | fl_opti_for_borr = ar_for_borr(fl_opti_idx_z);
|
< 0.001 | 6615 | 380 | fl_opti_for_save = ar_for_save(fl_opti_idx_z);
|
| | 381 |
|
| | 382 | %% Find Optimal Choices for Defaults or Not
|
| | 383 | % Handle Default is optimal or not
|
< 0.001 | 6615 | 384 | if (fl_opti_c_z <= fl_c_min)
|
< 0.001 | 120 | 385 | if (bl_default)
|
| | 386 | % if defaulting is optimal choice, at these states, not required
|
| | 387 | % to default, non-default possible, but default could be optimal
|
< 0.001 | 120 | 388 | fl_opti_aprime_z = fl_default_aprime;
|
| | 389 | else
|
| | 390 | % if default is not allowed, then next period same state as now
|
| | 391 | % this is absorbing state, this is the limiting case, single
|
| | 392 | % state space point, lowest a and lowest shock has this.
|
| | 393 | fl_opti_aprime_z = min(ar_a);
|
< 0.001 | 120 | 394 | end
|
< 0.001 | 120 | 395 | end
|
| | 396 |
|
| | 397 | %% Store Optimal Choices and Value Given(a,z)
|
| | 398 |
|
| | 399 | % store overal savings, value and consumption
|
0.001 | 6615 | 400 | mt_val(it_a_j,it_z_i) = fl_opti_val_z;
|
0.001 | 6615 | 401 | mt_pol_a(it_a_j,it_z_i) = fl_opti_aprime_z;
|
0.001 | 6615 | 402 | mt_pol_cons(it_a_j,it_z_i) = fl_opti_c_z;
|
| | 403 |
|
| | 404 | % store savings and borrowing formal and inf optimal choices
|
< 0.001 | 6615 | 405 | mt_pol_b_bridge(it_a_j,it_z_i) = fl_opti_b_bridge;
|
< 0.001 | 6615 | 406 | mt_pol_inf_borr_nobridge(it_a_j,it_z_i) = fl_opti_inf_borr_nobridge;
|
0.001 | 6615 | 407 | mt_pol_for_borr(it_a_j,it_z_i) = fl_opti_for_borr;
|
< 0.001 | 6615 | 408 | mt_pol_for_save(it_a_j,it_z_i) = fl_opti_for_save;
|
| | 409 |
|
0.002 | 6615 | 410 | end
|
0.001 | 189 | 411 | end
|
| | 412 |
|
| | 413 | %% Check Tolerance and Continuation
|
| | 414 |
|
| | 415 | % Difference across iterations
|
0.002 | 21 | 416 | ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur);
|
0.002 | 21 | 417 | ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur);
|
< 0.001 | 21 | 418 | mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n);
|
| | 419 |
|
| | 420 | % Update
|
< 0.001 | 21 | 421 | mt_val_cur = mt_val;
|
< 0.001 | 21 | 422 | mt_pol_a_cur = mt_pol_a;
|
| | 423 |
|
| | 424 | % Print Iteration Results
|
< 0.001 | 21 | 425 | if (bl_display && (rem(it_iter, it_display_every)==0))
|
| | 426 | fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
|
| | 427 | it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
|
| | 428 | tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ...
|
| | 429 | mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]);
|
| | 430 | tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
|
| | 431 | tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'};
|
| | 432 | disp('mval = mean(mt_val_cur,1), average value over a')
|
| | 433 | disp('map = mean(mt_pol_a_cur,1), average choice over a')
|
| | 434 | disp('Hval = mt_val_cur(it_a_n,:), highest a state val')
|
| | 435 | disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice')
|
| | 436 | disp(tb_valpol_iter);
|
| | 437 | end
|
| | 438 |
|
| | 439 | % Continuation Conditions:
|
| | 440 | % 1. if value function convergence criteria reached
|
| | 441 | % 2. if policy function variation over iterations is less than
|
| | 442 | % threshold
|
< 0.001 | 21 | 443 | if (it_iter == (it_maxiter_val + 1))
|
< 0.001 | 1 | 444 | bl_vfi_continue = false;
|
0.001 | 20 | 445 | elseif ((it_iter == it_maxiter_val) || ...
|
| 19 | 446 | (ar_val_diff_norm(it_iter) < fl_tol_val) || ...
|
| 19 | 447 | (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol))
|
| | 448 | % Fix to max, run again to save results if needed
|
< 0.001 | 1 | 449 | it_iter_last = it_iter;
|
< 0.001 | 1 | 450 | it_iter = it_maxiter_val;
|
< 0.001 | 1 | 451 | end
|
| | 452 |
|
< 0.001 | 21 | 453 | end
|
| | 454 |
|
| | 455 | % End Timer
|
< 0.001 | 1 | 456 | if (bl_time)
|
< 0.001 | 1 | 457 | toc;
|
< 0.001 | 1 | 458 | end
|
| | 459 |
|
| | 460 | % End Profile
|
< 0.001 | 1 | 461 | if (bl_profile)
|
0.004 | 1 | 462 | profile off
|
| | 463 | profile viewer
|
| | 464 | st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
|
| | 465 | profsave(profile('info'), strcat(st_profile_path, st_file_name));
|
| | 466 | end
|
| | 467 |
|
| | 468 | %% Process Optimal Choices
|
| | 469 |
|
| | 470 | result_map = containers.Map('KeyType','char', 'ValueType','any');
|
| | 471 | result_map('mt_val') = mt_val;
|
| | 472 |
|
| | 473 | result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
|
| | 474 | result_map('cl_mt_coh') = {f_coh(ar_z_r_infbr_mesh_wage, ar_a'), zeros(1)};
|
| | 475 |
|
| | 476 | result_map('cl_mt_pol_c') = {mt_pol_cons, zeros(1)};
|
| | 477 | result_map('cl_mt_pol_b_bridge') = {mt_pol_b_bridge, zeros(1)};
|
| | 478 | result_map('cl_mt_pol_inf_borr_nobridge') = {mt_pol_inf_borr_nobridge, zeros(1)};
|
| | 479 | result_map('cl_mt_pol_for_borr') = {mt_pol_for_borr, zeros(1)};
|
| | 480 | result_map('cl_mt_pol_for_save') = {mt_pol_for_save, zeros(1)};
|
| | 481 |
|
| | 482 | result_map('ar_st_pol_names') = ["cl_mt_pol_a", "cl_mt_pol_coh", "cl_mt_pol_c", ...
|
| | 483 | "cl_mt_pol_b_bridge", "cl_mt_pol_inf_borr_nobridge", "cl_mt_pol_for_borr", "cl_mt_pol_for_save"];
|
| | 484 |
|
| | 485 | % Get Discrete Choice Outcomes
|
| | 486 | result_map = ffs_fibs_identify_discrete(result_map, bl_input_override);
|
| | 487 |
|
| | 488 | %% Post Solution Graph and Table Generation
|
| | 489 | % Note in comparison with *abzr*, results here, even when using identical
|
| | 490 | % parameters would differ because in *abzr* solved where choices are
|
| | 491 | % principle. Here choices are principle + interests in order to facilitate
|
| | 492 | % using the informal choice functions.
|
| | 493 | %
|
| | 494 | % Note that this means two things are
|
| | 495 | % different, on the one hand, the value of asset for to coh is different
|
| | 496 | % based on the grid of assets. If the asset grid is negative, now per grid
|
| | 497 | % point, there is more coh because that grid point of asset no longer has
|
| | 498 | % interest rates. On the other hand, if one has positive asset grid point
|
| | 499 | % on arrival, that is worth less to coh. Additionally, when making choices
|
| | 500 | % for the next period, now choices aprime includes interests. What these
|
| | 501 | % mean is that the a grid no longer has the same meaning. We should expect
|
| | 502 | % at higher savings levels, for the same grid points, if optimal grid
|
| | 503 | % choices are the same as before, consumption should be lower when b
|
| | 504 | % includes interest rates and principle. This is however, not true when
|
| | 505 | % arriving in a period with negative a levels, for the same negative a
|
| | 506 | % level and same a prime negative choice, could have higher consumption
|
| | 507 | % here becasue have to pay less interests on debt. This tends to happen for
|
| | 508 | % smaller levels of borrowing choices.
|
| | 509 | %
|
| | 510 | % Graphically, when using interest + principle, big difference in
|
| | 511 | % consumption as a fraction of (coh - aprime) figure. In those figures,
|
| | 512 | % when counting in principles only, the gap in coh and aprime is
|
| | 513 | % consumption, but now, as more is borrowed only a small fraction of coh
|
| | 514 | % and aprime gap is consumption, becuase aprime/(1+r) is put into
|
| | 515 | % consumption.
|
| | 516 |
|
| | 517 | if (bl_post)
|
| | 518 | bl_input_override = true;
|
| | 519 | result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
|
| | 520 | result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
|
| | 521 | result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
|
| | 522 |
|
| | 523 | % Standard AZ graphs
|
| | 524 | result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 525 |
|
| | 526 | % Graphs for results_map with FIBS contents
|
| | 527 | result_map = ff_az_fibs_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
|
| | 528 | end
|
| | 529 |
|
| | 530 | end
|
Other subfunctions in this file are not included in this listing.