Risky + Safe Asset (Saving Only) Interpolated-Percentage (Loop)
back to Fan's Dynamic Assets Repository Table of Content.
Contents
- FF_IPWKZ_VF solve infinite horizon exo shock + endo asset problem
- Default
- Parse Parameters 1
- Parse Parameters 2
- Initialize Output Matrixes
- Initialize Convergence Conditions
- Pre-calculate u(c)
- Iterate Value Function
- Interpolate (1) reacahble v(coh(k(w,z),b(w,z),z),z) given v(coh, z)
- Solve Second Stage Problem k*(w,z)
- Solve First Stage Problem w*(z) given k*(w,z)
- Check Tolerance and Continuation
- Process Optimal Choices
function result_map = ff_ipwkz_vf(varargin)
FF_IPWKZ_VF solve infinite horizon exo shock + endo asset problem
This program solves the infinite horizon dynamic savings and risky capital asset problem. This is the two step solution with interpolation and with percentage asset grids version of ff_akz_vf. See ff_wkz_vf for details about the second stage. See ff_iwkz_vf for details about interpolation over u(c) and value(coh,z). The new ingredient here is the use of percentage choice grid rather than level choice grid. This is the looped code.
@param param_map container parameter container
@param support_map container support container
@param armt_map container container with states, choices and shocks grids that are inputs for grid based solution algorithm
@param func_map container container with function handles for consumption cash-on-hand etc.
@return result_map container contains policy function matrix, value function matrix, iteration results, and policy function, value function and iteration results tables.
keys included in result_map:
- mt_val matrix states_n by shock_n matrix of converged value function grid
- mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
- ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function difference between iteration
- ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy function difference between iterations
- mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the proportion of grid points at which policy function changed between current and last iteration for each element of shock
@example
@include
Default
- it_param_set = 1: quick test
- it_param_set = 2: benchmark run
- it_param_set = 3: benchmark profile
- it_param_set = 4: press publish button
it_param_set = 4; bl_input_override = true; [param_map, support_map] = ffs_ipwkz_set_default_param(it_param_set); % parameters can be set inside ffs_ipwkz_set_default_param or updated here param_map('it_w_perc_n') = 10; % param_map('it_ak_perc_n') = param_map('it_w_perc_n'); param_map('it_z_n') = 5; % param_map('fl_coh_interp_grid_gap') = 0.025; % param_map('it_c_interp_grid_gap') = 0.001; % param_map('fl_w_interp_grid_gap') = 0.25; % param_map('it_w_perc_n') = 100; % param_map('it_ak_perc_n') = param_map('it_w_perc_n'); % param_map('it_z_n') = 11; param_map('fl_coh_interp_grid_gap') = 0.5; % param_map('it_c_interp_grid_gap') = 10^-4; param_map('fl_w_interp_grid_gap') = 0.5; % get armt and func map [armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override default_params = {param_map support_map armt_map func_map};
Parse Parameters 1
% if varargin only has param_map and support_map, params_len = length(varargin); [default_params{1:params_len}] = varargin{:}; param_map = [param_map; default_params{1}]; support_map = [support_map; default_params{2}]; if params_len >= 1 && params_len <= 2 % If override param_map, re-generate armt and func if they are not % provided bl_input_override = true; [armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map, bl_input_override); else % Override all armt_map = [armt_map; default_params{3}]; func_map = [func_map; default_params{4}]; end % append function name st_func_name = 'ff_ipwkz_vf'; support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')]; support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')]; support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
Parse Parameters 2
% armt_map params_group = values(armt_map, {'ar_w_perc', 'ar_w_level', 'ar_z'}); [ar_w_perc, ar_w_level, ar_z] = params_group{:}; params_group = values(armt_map, {'ar_interp_c_grid', 'ar_interp_coh_grid', ... 'mt_interp_coh_grid_mesh_z', 'mt_z_mesh_coh_interp_grid',... 'mt_w_by_interp_coh_interp_grid'}); [ar_interp_c_grid, ar_interp_coh_grid, ... mt_interp_coh_grid_mesh_z, mt_z_mesh_coh_interp_grid, ... mt_w_by_interp_coh_interp_grid] = params_group{:}; params_group = values(armt_map, {'mt_coh_wkb', 'mt_z_mesh_coh_wkb'}); [mt_coh_wkb, mt_z_mesh_coh_wkb] = params_group{:}; % func_map params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons'}); [f_util_log, f_util_crra, f_cons] = params_group{:}; % param_map params_group = values(param_map, {'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'}); [it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:}; params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'}); [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:}; % support_map params_group = values(support_map, {'bl_profile', 'st_profile_path', ... 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',... 'bl_time', 'bl_graph_evf', 'bl_display', 'it_display_every', 'bl_post'}); [bl_profile, st_profile_path, ... st_profile_prefix, st_profile_name_main, st_profile_suffix, ... bl_time, bl_graph_evf, bl_display, it_display_every, bl_post] = params_group{:};
Initialize Output Matrixes
mt_val_cur = zeros(length(ar_interp_coh_grid),length(ar_z)); mt_val = mt_val_cur - 1; mt_pol_a = zeros(length(ar_interp_coh_grid),length(ar_z)); mt_pol_a_cur = mt_pol_a - 1; mt_pol_k = zeros(length(ar_interp_coh_grid),length(ar_z)); mt_pol_k_cur = mt_pol_k - 1;
Initialize Convergence Conditions
bl_vfi_continue = true; it_iter = 0; ar_val_diff_norm = zeros([it_maxiter_val, 1]); ar_pol_diff_norm = zeros([it_maxiter_val, 1]); mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
Pre-calculate u(c)
Interpolation, see fs_u_c_partrepeat_main for why interpolate over u(c)
% Evaluate if (fl_crra == 1) ar_interp_u_of_c_grid = f_util_log(ar_interp_c_grid); fl_u_neg_c = f_util_log(fl_c_min); else ar_interp_u_of_c_grid = f_util_crra(ar_interp_c_grid); fl_u_neg_c = f_util_crra(fl_c_min); end ar_interp_u_of_c_grid(ar_interp_c_grid <= fl_c_min) = fl_u_neg_c; % Get Interpolant f_grid_interpolant_spln = griddedInterpolant(ar_interp_c_grid, ar_interp_u_of_c_grid, 'spline');
Iterate Value Function
Loop solution with 4 nested loops
- loop 1: over exogenous states
- loop 2: over endogenous states
- loop 3: over choices
- loop 4: add future utility, integration--loop over future shocks
% Start Profile if (bl_profile) close all; profile off; profile on; end % Start Timer if (bl_time) tic; end % Value Function Iteration while bl_vfi_continue
it_iter = it_iter + 1;
Interpolate (1) reacahble v(coh(k(w,z),b(w,z),z),z) given v(coh, z)
v(coh,z) solved on ar_interp_coh_grid, ar_z grids, see ffs_ipwkz_get_funcgrid.m. Generate interpolant based on that, Then interpolate for the coh reachable levels given the k(w,z) percentage choice grids in the second stage of the problem
% Generate Interpolant for v(coh,z) f_grid_interpolant_value = griddedInterpolant(... mt_z_mesh_coh_interp_grid', mt_interp_coh_grid_mesh_z', mt_val_cur', 'linear', 'nearest'); % Interpoalte for v(coh(k(w,z),b(w,z),z),z) mt_val_wkb_interpolated = f_grid_interpolant_value(mt_z_mesh_coh_wkb, mt_coh_wkb);
Solve Second Stage Problem k*(w,z)
This is the key difference between this function and ffs_akz_set_functions which solves the two stages jointly Interpolation first, because solution coh grid is not the same as all points reachable by k and b choices given w.
support_map('bl_graph_evf') = false; if (it_iter == (it_maxiter_val + 1)) support_map('bl_graph_evf') = bl_graph_evf; end bl_input_override = true; [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, ~] = ... ff_ipwkz_evf(mt_val_wkb_interpolated, param_map, support_map, armt_map, bl_input_override);
Solve First Stage Problem w*(z) given k*(w,z)
loop 1: over exogenous states
for it_z_i = 1:length(ar_z) % Get 2nd Stage Arrays ar_ev_condi_z_max_z = mt_ev_condi_z_max(:, it_z_i); ar_w_level_kstar_z = mt_ev_condi_z_max_kp(:, it_z_i); % Interpolant (2) k*(ar_w_perc) from k*(ar_w_level,z) % There are two w=k'+b' arrays. ar_w_level is the level even grid based % on which we solve the 2nd stage problem in ff_ipwkz_evf.m. Here for % each coh level, we have a different vector of w levels, but the same % vector of percentage ws. So we need to interpolate to get the optimal % k* and b* choices at each percentage level of w. f_interpolante_w_level_kstar_z = griddedInterpolant(ar_w_level, ar_w_level_kstar_z', 'linear', 'nearest'); % Interpolant for (3) EV(k*(ar_w_perc),Z) f_interpolante_ev_condi_z_max_z = griddedInterpolant(ar_w_level, ar_ev_condi_z_max_z', 'linear', 'nearest'); % loop 2: over endogenous states for it_coh_interp_j = 1:length(ar_interp_coh_grid) % Get cash-on-hand which include k,b,z fl_coh = mt_interp_coh_grid_mesh_z(it_coh_interp_j, it_z_i); % loop 3: over choices, only w vector % we choose w(z), know from ff_wkz_evf k*(w,z), b*=w-k* % fl_w_level_perc_z is the level of w given coh and z based on % the w percentage grid generated in ffs_akz_get_funcgrid.m ar_val_cur = zeros(size(ar_w_perc)); ar_w_kstar_z = zeros(size(ar_w_perc)); ar_w_astar_z = zeros(size(ar_w_perc)); for it_cohp_k = 1:length(ar_w_perc) % Interpolate (2) to get optimal k at current percentage grid % level given coh and z fl_w_level_perc_z = mt_w_by_interp_coh_interp_grid(it_cohp_k, it_coh_interp_j); fl_w_kstar_interp_z = f_interpolante_w_level_kstar_z(fl_w_level_perc_z); fl_w_astar_interp_z = fl_w_level_perc_z - fl_w_kstar_interp_z; % store optimal interpolated k and a choices given w ar_w_kstar_z(it_cohp_k) = fl_w_kstar_interp_z; ar_w_astar_z(it_cohp_k) = fl_w_astar_interp_z; % consumption fl_c = f_cons(fl_coh, fl_w_astar_interp_z, fl_w_kstar_interp_z); % Interpolate (3) EV(k*(ar_w_perc),Z) fl_ev_condi_z_max_interp_z = f_interpolante_ev_condi_z_max_z(fl_w_level_perc_z); % Interpolate (4) consumption ar_val_cur(it_cohp_k) = f_grid_interpolant_spln(fl_c) + fl_beta*fl_ev_condi_z_max_interp_z; % Replace if negative consumption if fl_c <= 0 ar_val_cur(it_cohp_k) = fl_u_neg_c; end end % maximization over loop 3 choices for loop 1+2 states it_max_lin_idx = find(ar_val_cur == max(ar_val_cur)); mt_val(it_coh_interp_j,it_z_i) = ar_val_cur(it_max_lin_idx(1)); mt_pol_a(it_coh_interp_j,it_z_i) = ar_w_astar_z(it_max_lin_idx(1)); mt_pol_k(it_coh_interp_j,it_z_i) = ar_w_kstar_z(it_max_lin_idx(1)); end end
Check Tolerance and Continuation
% Difference across iterations ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur); ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/length(ar_interp_coh_grid); ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/length(ar_interp_coh_grid); mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]); % Update mt_val_cur = mt_val; mt_pol_a_cur = mt_pol_a; mt_pol_k_cur = mt_pol_k; % Print Iteration Results if (bl_display && (rem(it_iter, it_display_every)==0)) fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ... it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter)); tb_valpol_iter = array2table([mean(mt_val_cur,1);... mean(mt_pol_a_cur,1); ... mean(mt_pol_k_cur,1); ... mt_val_cur(length(ar_interp_coh_grid),:); ... mt_pol_a_cur(length(ar_interp_coh_grid),:); ... mt_pol_k_cur(length(ar_interp_coh_grid),:)]); tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2)))); tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'}; disp('mval = mean(mt_val_cur,1), average value over a') disp('map = mean(mt_pol_a_cur,1), average choice over a') disp('mkp = mean(mt_pol_k_cur,1), average choice over k') disp('Hval = mt_val_cur(ar_interp_coh_grid,:), highest a state val') disp('Hap = mt_pol_a_cur(ar_interp_coh_grid,:), highest a state choice') disp('mak = mt_pol_k_cur(ar_interp_coh_grid,:), highest k state choice') disp(tb_valpol_iter); end % Continuation Conditions: % 1. if value function convergence criteria reached % 2. if policy function variation over iterations is less than % threshold if (it_iter == (it_maxiter_val + 1)) bl_vfi_continue = false; elseif ((it_iter == it_maxiter_val) || ... (ar_val_diff_norm(it_iter) < fl_tol_val) || ... (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) % Fix to max, run again to save results if needed it_iter_last = it_iter; it_iter = it_maxiter_val; end
end % End Timer if (bl_time) toc; end % End Profile if (bl_profile) profile off profile viewer st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix]; profsave(profile('info'), strcat(st_profile_path, st_file_name)); end
Process Optimal Choices
result_map = containers.Map('KeyType','char', 'ValueType','any'); result_map('mt_val') = mt_val; result_map('cl_mt_pol_coh') = {mt_interp_coh_grid_mesh_z, zeros(1)}; result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)}; result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)}; result_map('cl_mt_pol_c') = {f_cons(mt_interp_coh_grid_mesh_z, mt_pol_a, mt_pol_k), zeros(1)}; result_map('cl_mt_val') = {mt_val, zeros(1)}; result_map('ar_st_pol_names') = ["cl_mt_val", "cl_mt_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"]; if (bl_post) bl_input_override = true; result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last); result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last); result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :); % graphing based on coh_wkb, but that does not match optimal choice % matrixes for graphs. armt_map('mt_coh_wkb') = mt_interp_coh_grid_mesh_z; armt_map('it_ameshk_n') = length(ar_interp_coh_grid); armt_map('ar_a_meshk') = mt_interp_coh_grid_mesh_z(:,1); armt_map('ar_k_mesha') = zeros(size(mt_interp_coh_grid_mesh_z(:,1)) + 0); result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override); end
valgap = norm(mt_val - mt_val_cur): value function difference across iterations polgap = norm(mt_pol_a - mt_pol_a_cur): policy function difference across iterations z1 = z1 perc change: (sum((mt_pol_a ~= mt_pol_a_cur))+sum((mt_pol_k ~= mt_pol_k_cur)))/(2*it_ameshk_n):percentage of state space points conditional on shock where the policy function is changing across iterations valgap polgap z1 z2 z3 z4 z5 ________ _______ _________ _________ _________ _________ _________ iter=1 36.785 48.226 1 1 1 1 1 iter=2 28.476 415.77 1 1 1 1 1 iter=3 23.711 171.52 0.99115 1 1 0.99115 0.9823 iter=4 20.295 54.506 0.30088 0.27434 0.42478 0.70796 0.81416 iter=5 17.619 80.014 0.87611 0.76106 0.70796 0.49558 0.31858 iter=6 15.522 34.407 0.10619 0.17699 0.25664 0.26549 0.49558 iter=7 13.719 15.718 0.053097 0.097345 0.15929 0.15044 0.28319 iter=8 12.137 9.5078 0.044248 0.10619 0.10619 0.11504 0.18584 iter=9 10.761 40.481 0.33628 0.21239 0.061947 0.035398 0.088496 iter=10 9.6255 32.789 0.19469 0.26549 0.25664 0.035398 0.088496 iter=11 8.6679 26.369 0.088496 0.15929 0.19469 0.16814 0.026549 iter=12 7.843 22.292 0.044248 0.070796 0.10619 0.15044 0.070796 iter=13 7.1292 23.6 0.035398 0.035398 0.061947 0.14159 0.18584 iter=14 6.508 25.163 0.017699 0.026549 0.079646 0.070796 0.18584 iter=15 5.9561 16.667 0.017699 0.017699 0.026549 0.061947 0.17699 iter=16 5.4615 11.302 0.0088496 0.053097 0.044248 0.035398 0.19469 iter=17 5.0153 10.162 0.0088496 0.0088496 0.017699 0.070796 0.079646 iter=18 4.6109 7.9175 0.053097 0.0088496 0.0088496 0.044248 0.035398 iter=19 4.2426 7.1609 0.017699 0.035398 0.044248 0.026549 0.044248 iter=20 3.9074 6.8297 0.0088496 0 0.053097 0.026549 0.035398 iter=21 3.6019 5.4418 0 0.044248 0 0.053097 0.026549 iter=22 3.3224 4.8527 0 0 0.026549 0.035398 0.017699 iter=23 3.067 4.6338 0 0.017699 0 0.026549 0.017699 iter=24 2.8333 3.2733 0.0088496 0.0088496 0 0.017699 0.0088496 iter=25 2.619 3.6959 0 0.044248 0.026549 0.017699 0.0088496 iter=26 2.423 3.7483 0 0 0.0088496 0 0.017699 iter=27 2.243 3.8526 0 0 0 0.0088496 0.061947 iter=28 2.078 2.965 0 0 0 0 0.0088496 iter=29 1.9261 3.729 0 0 0 0.0088496 0.0088496 iter=30 1.7869 0 0 0 0 0 0 iter=31 1.6586 2.8528 0 0 0 0 0.0088496 iter=32 1.5407 3.064 0 0 0.017699 0.0088496 0 iter=33 1.4322 0 0 0 0 0 0 iter=34 1.332 3.1215 0 0 0 0.017699 0.026549 iter=35 1.2396 2.7967 0.017699 0 0 0 0.0088496 iter=36 1.1543 1.4383 0 0 0 0.017699 0 iter=37 1.0755 2.0678 0 0.0088496 0 0 0 iter=38 1.0026 2.7407 0 0 0 0.0088496 0 iter=39 0.9352 0 0 0 0 0 0 iter=40 0.87267 0 0 0 0 0 0 iter=41 0.81473 2.7407 0 0 0 0 0.0088496 iter=42 0.76099 0.77814 0 0 0.0088496 0 0 iter=43 0.71108 0 0 0 0 0 0 iter=44 0.66469 2.4603 0 0 0.0088496 0 0 iter=45 0.62156 0 0 0 0 0 0 iter=46 0.58142 0 0 0 0 0 0 iter=47 0.54404 0 0 0 0 0 0 iter=48 0.50922 0.67299 0 0 0 0.017699 0 iter=49 0.47677 0 0 0 0 0 0 iter=50 0.4465 0 0 0 0 0 0 iter=51 0.41825 0 0 0 0 0 0 iter=52 0.39189 0 0 0 0 0 0 iter=53 0.36726 0 0 0 0 0 0 iter=54 0.34426 0 0 0 0 0 0 iter=55 0.32275 0 0 0 0 0 0 iter=56 0.30265 0 0 0 0 0 0 iter=57 0.28384 0 0 0 0 0 0 iter=58 0.26624 0 0 0 0 0 0 iter=59 0.24977 0 0 0 0 0 0 iter=60 0.23434 0 0 0 0 0 0 iter=61 0.2199 0 0 0 0 0 0 iter=62 0.20638 0 0 0 0 0 0 iter=63 0.1937 0 0 0 0 0 0 iter=64 0.18182 0 0 0 0 0 0 iter=65 0.17069 0 0 0 0 0 0 iter=66 0.16026 0 0 0 0 0 0 iter=67 0.15047 0 0 0 0 0 0 iter=68 0.1413 0 0 0 0 0 0 iter=69 0.13269 0 0 0 0 0 0 iter=70 0.12461 0 0 0 0 0 0 iter=71 0.11704 0 0 0 0 0 0 iter=72 0.10993 0 0 0 0 0 0 iter=73 0.10326 0 0 0 0 0 0 iter=74 0.097002 0 0 0 0 0 0 tb_val: V(a,z) value at each state space point z1_0_33942 z2_0_5596 z3_0_92263 z4_1_5212 z5_2_508 __________ _________ __________ _________ ________ coh1:k=0.443648,b=0 -2.913 -2.0124 -0.93716 0.28775 1.4726 coh2:k=0.94931,b=0 0.44426 1.6556 3.0788 4.6197 6.1208 coh3:k=1.45497,b=0 1.5724 2.7463 4.1182 5.6359 7.1183 coh4:k=1.96063,b=0 2.4036 3.5388 4.8476 6.2841 7.7011 coh5:k=2.4663,b=0 3.0225 4.0892 5.3756 6.775 8.1614 coh6:k=2.97196,b=0 3.5759 4.6099 5.8288 7.1796 8.5373 coh7:k=3.47762,b=0 4.0345 5.035 6.2232 7.5197 8.8506 coh8:k=3.98328,b=0 4.4408 5.4084 6.5676 7.8311 9.1147 coh9:k=4.48894,b=0 4.8005 5.7374 6.8684 8.1052 9.36 coh10:k=4.99461,b=0 5.1173 6.0241 7.1282 8.343 9.5829 coh11:k=5.50027,b=0 5.431 6.2863 7.3658 8.5605 9.7865 coh12:k=6.00593,b=0 5.7231 6.5248 7.5828 8.7596 9.9723 coh13:k=6.51159,b=0 5.997 6.7626 7.7791 8.9433 10.143 coh14:k=7.01725,b=0 6.254 6.9941 7.964 9.1185 10.306 coh15:k=7.52291,b=0 6.4975 7.2172 8.1675 9.2935 10.462 coh16:k=8.02858,b=0 6.7288 7.4311 8.3624 9.4705 10.607 coh17:k=8.53424,b=0 6.9492 7.6356 8.5475 9.637 10.745 coh18:k=9.0399,b=0 7.1586 7.8302 8.7227 9.7933 10.877 coh19:k=9.54556,b=0 7.3575 8.0148 8.8882 9.9403 11.008 coh20:k=10.0512,b=0 7.5478 8.1913 9.046 10.08 11.132 coh21:k=10.5569,b=0 7.7299 8.3601 9.197 10.213 11.25 coh22:k=11.0625,b=0 7.9043 8.5219 9.3417 10.339 11.363 coh23:k=11.5682,b=0 8.0703 8.6759 9.4796 10.46 11.469 coh24:k=12.0739,b=0 8.23 8.8241 9.612 10.575 11.571 coh25:k=12.5795,b=0 8.3839 8.9667 9.7394 10.686 11.669 coh26:k=13.0852,b=0 8.5322 9.104 9.8623 10.792 11.764 coh27:k=13.5909,b=0 8.6743 9.236 9.9805 10.895 11.854 coh28:k=14.0965,b=0 8.811 9.3629 10.094 10.993 11.941 coh29:k=14.6022,b=0 8.9434 9.4859 10.204 11.088 12.025 coh30:k=15.1078,b=0 9.0718 9.6051 10.311 11.18 12.107 coh31:k=15.6135,b=0 9.1962 9.7205 10.415 11.269 12.185 coh32:k=16.1192,b=0 9.3155 9.8314 10.514 11.355 12.262 coh33:k=16.6248,b=0 9.4386 9.9391 10.611 11.439 12.335 coh34:k=17.1305,b=0 9.5592 10.044 10.706 11.521 12.407 coh35:k=17.6362,b=0 9.6791 10.146 10.798 11.6 12.477 coh36:k=18.1418,b=0 9.7961 10.245 10.887 11.678 12.545 coh37:k=18.6475,b=0 9.9108 10.342 10.973 11.753 12.611 coh38:k=19.1531,b=0 10.023 10.442 11.057 11.827 12.676 coh39:k=19.6588,b=0 10.133 10.542 11.14 11.899 12.739 coh40:k=20.1645,b=0 10.242 10.641 11.221 11.969 12.801 coh41:k=20.6701,b=0 10.349 10.74 11.299 12.037 12.862 coh42:k=21.1758,b=0 10.455 10.836 11.375 12.104 12.922 coh43:k=21.6814,b=0 10.56 10.932 11.45 12.17 12.98 coh44:k=22.1871,b=0 10.662 11.025 11.523 12.234 13.039 coh45:k=22.6928,b=0 10.763 11.117 11.602 12.297 13.097 coh46:k=23.1984,b=0 10.862 11.209 11.683 12.359 13.155 coh47:k=23.7041,b=0 10.96 11.299 11.765 12.419 13.215 coh48:k=24.2098,b=0 11.056 11.389 11.848 12.479 13.277 coh49:k=24.7154,b=0 11.15 11.478 11.932 12.558 13.347 coh50:k=25.2211,b=0 11.243 11.566 12.016 12.639 13.42 coh64:k=32.3003,b=0 12.423 12.704 13.105 13.654 14.332 coh65:k=32.806,b=0 12.499 12.778 13.175 13.719 14.39 coh66:k=33.3117,b=0 12.574 12.851 13.245 13.783 14.448 coh67:k=33.8173,b=0 12.648 12.923 13.313 13.846 14.505 coh68:k=34.323,b=0 12.722 12.994 13.381 13.908 14.561 coh69:k=34.8287,b=0 12.794 13.064 13.447 13.97 14.616 coh70:k=35.3343,b=0 12.865 13.133 13.513 14.031 14.671 coh71:k=35.84,b=0 12.936 13.201 13.578 14.091 14.724 coh72:k=36.3456,b=0 13.005 13.269 13.642 14.15 14.778 coh73:k=36.8513,b=0 13.074 13.335 13.705 14.208 14.83 coh74:k=37.357,b=0 13.142 13.401 13.767 14.266 14.882 coh75:k=37.8626,b=0 13.209 13.465 13.829 14.323 14.933 coh76:k=38.3683,b=0 13.275 13.529 13.89 14.379 14.984 coh77:k=38.874,b=0 13.34 13.593 13.95 14.435 15.034 coh78:k=39.3796,b=0 13.405 13.655 14.009 14.489 15.083 coh79:k=39.8853,b=0 13.468 13.716 14.067 14.544 15.132 coh80:k=40.3909,b=0 13.531 13.777 14.125 14.597 15.18 coh81:k=40.8966,b=0 13.593 13.837 14.182 14.65 15.228 coh82:k=41.4023,b=0 13.655 13.897 14.239 14.702 15.275 coh83:k=41.9079,b=0 13.715 13.955 14.294 14.754 15.322 coh84:k=42.4136,b=0 13.775 14.013 14.349 14.805 15.368 coh85:k=42.9192,b=0 13.834 14.071 14.404 14.855 15.413 coh86:k=43.4249,b=0 13.893 14.127 14.458 14.905 15.458 coh87:k=43.9306,b=0 13.951 14.183 14.511 14.955 15.503 coh88:k=44.4362,b=0 14.008 14.239 14.563 15.003 15.547 coh89:k=44.9419,b=0 14.064 14.293 14.615 15.051 15.591 coh90:k=45.4476,b=0 14.12 14.347 14.666 15.099 15.634 coh91:k=45.9532,b=0 14.176 14.401 14.717 15.146 15.677 coh92:k=46.4589,b=0 14.23 14.453 14.767 15.193 15.719 coh93:k=46.9645,b=0 14.284 14.506 14.817 15.239 15.761 coh94:k=47.4702,b=0 14.338 14.557 14.866 15.285 15.802 coh95:k=47.9759,b=0 14.39 14.608 14.915 15.33 15.843 coh96:k=48.4815,b=0 14.443 14.659 14.963 15.375 15.883 coh97:k=48.9872,b=0 14.494 14.709 15.01 15.419 15.923 coh98:k=49.4929,b=0 14.545 14.758 15.057 15.463 15.963 coh99:k=49.9985,b=0 14.596 14.807 15.104 15.506 16.002 coh100:k=50.5042,b=0 14.646 14.855 15.15 15.549 16.041 coh101:k=51.0098,b=0 14.695 14.903 15.196 15.591 16.079 coh102:k=51.5155,b=0 14.744 14.951 15.241 15.633 16.117 coh103:k=52.0212,b=0 14.793 14.998 15.285 15.675 16.154 coh104:k=52.5268,b=0 14.841 15.044 15.33 15.716 16.19 coh105:k=53.0325,b=0 14.888 15.09 15.373 15.757 16.226 coh106:k=53.5381,b=0 14.935 15.135 15.417 15.797 16.261 coh107:k=54.0438,b=0 14.982 15.181 15.46 15.837 16.294 coh108:k=54.5495,b=0 15.028 15.225 15.502 15.876 16.326 coh109:k=55.0551,b=0 15.073 15.269 15.544 15.915 16.356 coh110:k=55.5608,b=0 15.118 15.313 15.586 15.954 16.383 coh111:k=56.0665,b=0 15.163 15.356 15.627 15.991 16.405 coh112:k=56.5721,b=0 15.186 15.378 15.648 16.011 16.417 coh113:k=57.0778,b=0 15.189 15.382 15.652 16.014 16.421 tb_pol_a: optimal safe savings choice for each state space point z1_0_33942 z2_0_5596 z3_0_92263 z4_1_5212 z5_2_508 __________ __________ __________ __________ __________ coh1:k=0.443648,b=0 0.00019723 0.00019723 0.00024642 0.00024642 0.00024642 coh2:k=0.94931,b=0 0.00052729 0.00052729 0.00052729 0.00052729 0.00052729 coh3:k=1.45497,b=0 0.00080816 0.00080816 0.00064682 0.00064682 0.00064682 coh4:k=1.96063,b=0 0.001089 0.001089 0.001089 0.001089 0.001089 coh5:k=2.4663,b=0 0.074767 0.0013699 0.0013699 0.0013699 0.0013699 coh6:k=2.97196,b=0 0.26726 0.0019803 0.0019803 0.0016508 0.0016508 coh7:k=3.47762,b=0 0.5747 0.0023173 0.0023173 0.0019316 0.0019316 coh8:k=3.98328,b=0 0.90808 0.0026542 0.0026542 0.0026542 0.0022125 coh9:k=4.48894,b=0 1.2584 0.0029911 0.0029911 0.0029911 0.0029911 coh10:k=4.99461,b=0 1.5966 0.17314 0.0033281 0.0033281 0.0033281 coh11:k=5.50027,b=0 2.5282 0.42901 0.003665 0.003665 0.003665 coh12:k=6.00593,b=0 2.9068 0.7862 0.004002 0.004002 0.004002 coh13:k=6.51159,b=0 3.3059 1.8651 0.0043389 0.0043389 0.0043389 coh14:k=7.01725,b=0 3.6505 2.1857 0.005454 0.0046758 0.0046758 coh15:k=7.52291,b=0 4.0782 2.6013 0.005847 0.005847 0.0050128 coh16:k=8.02858,b=0 4.502 3.0243 0.14873 0.00624 0.0053497 coh17:k=8.53424,b=0 4.8893 3.4033 0.48873 0.006633 0.0056866 coh18:k=9.0399,b=0 5.2899 3.7158 0.9614 0.007026 0.007026 coh19:k=9.54556,b=0 5.5983 4.149 1.278 0.007419 0.007419 coh20:k=10.0512,b=0 5.9719 4.5399 1.6708 0.007812 0.007812 coh21:k=10.5569,b=0 6.4016 4.8976 2.0996 0.008205 0.008205 coh22:k=11.0625,b=0 6.8383 5.2667 2.4692 0.0085981 0.0085981 coh23:k=11.5682,b=0 7.1508 5.6513 2.8698 0.0089911 0.0089911 coh24:k=12.0739,b=0 7.5769 6.0478 3.2943 0.0093841 0.0093841 coh25:k=12.5795,b=0 7.9751 6.4558 3.668 0.0097771 0.0097771 coh26:k=13.0852,b=0 8.3252 6.8753 4.0049 0.01017 0.01017 coh27:k=13.5909,b=0 8.8139 7.3079 4.4936 0.010563 0.010563 coh28:k=14.0965,b=0 9.16 7.7548 4.8539 0.010956 0.010956 coh29:k=14.6022,b=0 9.4886 8.1017 5.2082 0.12285 0.011349 coh30:k=15.1078,b=0 9.8787 8.4438 5.5739 0.37407 0.011742 coh31:k=15.6135,b=0 10.393 8.9099 5.9511 0.76783 0.012135 coh32:k=16.1192,b=0 10.729 9.1985 6.3437 1.1925 0.012528 coh33:k=16.6248,b=0 12.946 9.6432 6.7484 1.4849 0.012921 coh34:k=17.1305,b=0 13.339 10.047 7.1644 1.8415 0.013314 coh35:k=17.6362,b=0 13.737 10.384 7.592 2.2875 0.013707 coh36:k=18.1418,b=0 14.424 10.904 8.0326 2.5761 0.0141 coh37:k=18.6475,b=0 14.858 13.171 8.4876 3.0868 0.014493 coh38:k=19.1531,b=0 15.261 13.766 8.8075 3.4965 0.014886 coh39:k=19.6588,b=0 15.664 14.241 9.1207 3.8303 0.015279 coh40:k=20.1645,b=0 16.067 14.608 9.5917 4.1755 0.015672 coh41:k=20.6701,b=0 16.47 15.106 9.8323 4.5361 0.016065 coh42:k=21.1758,b=0 16.872 15.723 10.272 4.9088 0.016458 coh43:k=21.6814,b=0 17.326 16.099 10.784 5.293 0.016851 coh44:k=22.1871,b=0 18.08 16.474 13.665 5.6885 0.017244 coh45:k=22.6928,b=0 18.492 16.85 13.976 6.0972 0.017637 coh46:k=23.1984,b=0 18.904 17.225 14.622 6.5202 0.01803 coh47:k=23.7041,b=0 19.316 17.601 15.028 6.7726 0.018423 coh48:k=24.2098,b=0 19.728 18.229 15.349 7.0173 0.018816 coh49:k=24.7154,b=0 20.14 18.799 15.669 10.066 0.6777 coh50:k=25.2211,b=0 20.552 19.183 16.152 10.677 1.097 coh64:k=32.3003,b=0 26.905 25.152 22.231 16.972 7.5083 coh65:k=32.806,b=0 27.326 25.546 22.989 17.649 7.7435 coh66:k=33.3117,b=0 27.747 26.29 23.529 18.106 8.2132 coh67:k=33.8173,b=0 28.168 26.945 23.886 18.381 8.5939 coh68:k=34.323,b=0 28.59 27.348 24.244 18.656 8.9455 coh69:k=34.8287,b=0 29.011 27.751 24.601 19.087 9.637 coh70:k=35.3343,b=0 29.432 28.154 24.958 19.845 10.258 coh71:k=35.84,b=0 29.853 28.557 25.33 20.129 10.42 coh72:k=36.3456,b=0 30.274 28.96 26.273 20.413 11.152 coh73:k=36.8513,b=0 30.696 29.362 26.696 21.233 11.365 coh74:k=37.357,b=0 31.117 29.765 27.062 21.657 11.99 coh75:k=37.8626,b=0 31.538 30.168 27.429 21.95 12.361 coh76:k=38.3683,b=0 31.959 30.571 27.795 22.243 12.855 coh77:k=38.874,b=0 32.38 30.974 28.161 22.79 13.395 coh78:k=39.3796,b=0 32.98 31.377 28.528 23.541 13.569 coh79:k=39.8853,b=0 33.944 31.78 28.994 23.844 13.843 coh80:k=40.3909,b=0 34.375 32.202 29.991 24.146 14.648 coh81:k=40.8966,b=0 34.805 33.263 30.366 24.448 14.831 coh82:k=41.4023,b=0 35.235 33.737 30.742 25.354 15.619 coh83:k=41.9079,b=0 35.666 34.149 31.117 25.811 15.956 coh84:k=42.4136,b=0 36.096 34.562 31.493 26.122 16.149 coh85:k=42.9192,b=0 36.526 34.974 31.868 26.434 16.71 coh86:k=43.4249,b=0 36.957 35.386 32.244 26.745 17.319 coh87:k=43.9306,b=0 37.387 35.798 32.619 27.057 17.521 coh88:k=44.4362,b=0 37.817 36.21 32.995 27.481 17.836 coh89:k=44.9419,b=0 38.248 36.622 33.37 28.492 18.737 coh90:k=45.4476,b=0 38.678 37.034 33.746 28.813 18.948 coh91:k=45.9532,b=0 39.108 37.446 34.793 29.134 19.159 coh92:k=46.4589,b=0 39.539 37.858 35.337 29.454 19.957 coh93:k=46.9645,b=0 39.969 38.27 35.721 29.775 20.43 coh94:k=47.4702,b=0 40.399 38.682 36.106 30.505 20.65 coh95:k=47.9759,b=0 40.83 39.094 36.491 31.284 21.188 coh96:k=48.4815,b=0 41.26 39.506 36.875 31.613 21.967 coh97:k=48.9872,b=0 41.69 39.918 37.26 31.943 22.196 coh98:k=49.4929,b=0 42.121 40.33 37.644 32.273 22.425 coh99:k=49.9985,b=0 42.551 40.742 38.029 32.603 22.654 coh100:k=50.5042,b=0 42.981 41.154 38.414 32.932 23.625 coh101:k=51.0098,b=0 43.412 41.566 38.798 33.262 24.035 coh102:k=51.5155,b=0 43.842 41.978 39.183 34.142 24.273 coh103:k=52.0212,b=0 44.272 42.842 39.567 34.863 24.963 coh104:k=52.5268,b=0 44.703 43.753 40.303 35.201 25.7 coh105:k=53.0325,b=0 45.133 44.174 41.296 35.54 25.948 coh106:k=53.5381,b=0 45.563 44.595 41.69 35.879 26.336 coh107:k=54.0438,b=0 45.994 45.016 42.083 36.218 27.453 coh108:k=54.5495,b=0 46.424 45.437 42.477 36.557 28.588 coh109:k=55.0551,b=0 46.854 45.859 42.871 36.896 28.929 coh110:k=55.5608,b=0 47.285 46.28 43.265 37.942 31.316 coh111:k=56.0665,b=0 47.715 46.701 43.659 38.588 34.307 coh112:k=56.5721,b=0 48.156 47.137 44.082 38.99 35.935 coh113:k=57.0778,b=0 48.605 47.586 44.531 39.439 36.384 tb_pol_k: optimal risky investment choice for each state space point z1_0_33942 z2_0_5596 z3_0_92263 z4_1_5212 z5_2_508 __________ _________ __________ _________ ________ coh1:k=0.443648,b=0 0.19703 0.19703 0.24618 0.24618 0.24618 coh2:k=0.94931,b=0 0.52676 0.52676 0.52676 0.52676 0.52676 coh3:k=1.45497,b=0 0.80735 0.80735 0.64617 0.64617 0.64617 coh4:k=1.96063,b=0 1.0879 1.0879 1.0879 1.0879 1.0879 coh5:k=2.4663,b=0 1.5686 1.3685 1.3685 1.3685 1.3685 coh6:k=2.97196,b=0 1.7131 1.9783 1.9783 1.6491 1.6491 coh7:k=3.47762,b=0 1.7426 2.3149 2.3149 1.9297 1.9297 coh8:k=3.98328,b=0 1.7461 2.6515 2.6515 2.6515 2.2103 coh9:k=4.48894,b=0 1.7327 2.9881 2.9881 2.9881 2.9881 coh10:k=4.99461,b=0 1.7315 3.1549 3.3247 3.3247 3.3247 coh11:k=5.50027,b=0 1.7467 3.236 3.6613 3.6613 3.6613 coh12:k=6.00593,b=0 1.7612 3.2158 3.9979 3.9979 3.9979 coh13:k=6.51159,b=0 1.755 3.1958 4.3346 4.3346 4.3346 coh14:k=7.01725,b=0 1.8035 3.2682 5.4485 4.6712 4.6712 coh15:k=7.52291,b=0 1.7688 3.2457 5.8411 5.8411 5.0078 coh16:k=8.02858,b=0 1.738 3.2156 6.0913 6.2337 5.3444 coh17:k=8.53424,b=0 1.7437 3.2297 6.1443 6.6264 5.681 coh18:k=9.0399,b=0 1.7361 3.3102 6.0646 7.019 7.019 coh19:k=9.54556,b=0 1.8207 3.27 6.141 7.4116 7.4116 coh20:k=10.0512,b=0 1.8401 3.2721 6.1412 7.8042 7.8042 coh21:k=10.5569,b=0 1.8035 3.3075 6.1054 8.1968 8.1968 coh22:k=11.0625,b=0 1.7598 3.3314 6.1288 8.5895 8.5895 coh23:k=11.5682,b=0 1.8402 3.3398 6.1212 8.9821 8.9821 coh24:k=12.0739,b=0 1.8072 3.3363 6.0897 9.3747 9.3747 coh25:k=12.5795,b=0 1.802 3.3213 6.1091 9.7673 9.7673 coh26:k=13.0852,b=0 1.8449 3.2948 6.1652 10.16 10.16 coh27:k=13.5909,b=0 1.7492 3.2552 6.0695 10.553 10.553 coh28:k=14.0965,b=0 1.7961 3.2013 6.1022 10.945 10.945 coh29:k=14.6022,b=0 1.8606 3.2475 6.1409 11.226 11.338 coh30:k=15.1078,b=0 1.8634 3.2983 6.1682 11.368 11.73 coh31:k=15.6135,b=0 1.7423 3.2252 6.1841 11.367 12.123 coh32:k=16.1192,b=0 1.7987 3.3297 6.1845 11.336 12.516 coh33:k=16.6248,b=0 1.8191 3.278 6.1728 11.436 12.908 coh34:k=17.1305,b=0 1.8744 3.2674 6.1498 11.473 13.301 coh35:k=17.6362,b=0 1.9256 3.3235 6.1153 11.42 13.694 coh36:k=18.1418,b=0 1.6883 3.1958 6.0676 11.524 14.086 coh37:k=18.6475,b=0 1.7031 3.3896 6.0057 11.406 14.479 coh38:k=19.1531,b=0 1.7493 3.2437 6.0788 11.39 14.871 coh39:k=19.6588,b=0 1.7954 3.2178 6.1586 11.449 15.264 coh40:k=20.1645,b=0 1.8416 3.3006 6.0805 11.497 15.657 coh41:k=20.6701,b=0 1.8878 3.2511 6.233 11.529 16.049 coh42:k=21.1758,b=0 1.934 3.0831 6.1861 11.549 16.442 coh43:k=21.6814,b=0 1.9296 3.1567 6.0669 11.558 16.834 coh44:k=22.1871,b=0 1.625 3.2304 6.0397 11.556 17.227 coh45:k=22.6928,b=0 1.6621 3.304 6.1773 11.54 17.62 coh46:k=23.1984,b=0 1.6991 3.3776 5.9803 11.51 18.012 coh47:k=23.7041,b=0 1.7361 3.4512 6.0238 11.651 18.405 coh48:k=24.2098,b=0 1.7732 3.2719 6.1523 11.799 18.798 coh49:k=24.7154,b=0 1.8102 3.1514 6.2808 11.884 21.272 coh50:k=25.2211,b=0 1.8472 3.2159 6.2472 11.722 21.302 coh64:k=32.3003,b=0 1.7815 3.5343 6.4556 11.714 21.178 coh65:k=32.806,b=0 1.8094 3.5896 6.1461 11.487 21.392 coh66:k=33.3117,b=0 1.8373 3.2946 6.0552 11.478 21.371 coh67:k=33.8173,b=0 1.8651 3.0886 6.1471 11.652 21.44 coh68:k=34.323,b=0 1.893 3.1347 6.239 11.827 21.537 coh69:k=34.8287,b=0 1.9209 3.1809 6.3309 11.845 21.295 coh70:k=35.3343,b=0 1.9488 3.2271 6.4228 11.536 21.123 coh71:k=35.84,b=0 1.9767 3.2733 6.4995 11.701 21.41 coh72:k=36.3456,b=0 2.0046 3.3195 6.006 11.866 21.127 coh73:k=36.8513,b=0 2.0325 3.3656 6.032 11.495 21.363 coh74:k=37.357,b=0 2.0604 3.4118 6.1147 11.521 21.188 coh75:k=37.8626,b=0 2.0883 3.458 6.1975 11.677 21.265 coh76:k=38.3683,b=0 2.1161 3.5042 6.2803 11.832 21.221 coh77:k=38.874,b=0 2.144 3.5504 6.3631 11.734 21.13 coh78:k=39.3796,b=0 1.9937 3.5966 6.4458 11.432 21.404 coh79:k=39.8853,b=0 1.4783 3.6427 6.4288 11.579 21.58 coh80:k=40.3909,b=0 1.4971 3.6698 5.8808 11.726 21.224 coh81:k=40.8966,b=0 1.5158 3.0574 5.9544 11.872 21.489 coh82:k=41.4023,b=0 1.5346 3.0324 6.028 11.415 21.151 coh83:k=41.9079,b=0 1.5533 3.0694 6.1016 11.408 21.263 coh84:k=42.4136,b=0 1.5721 3.1065 6.1752 11.546 21.519 coh85:k=42.9192,b=0 1.5908 3.1435 6.2489 11.683 21.407 coh86:k=43.4249,b=0 1.6095 3.1805 6.3225 11.821 21.247 coh87:k=43.9306,b=0 1.6283 3.2176 6.3961 11.959 21.494 coh88:k=44.4362,b=0 1.647 3.2546 6.4697 11.983 21.628 coh89:k=44.9419,b=0 1.6658 3.2916 6.5434 11.421 21.176 coh90:k=45.4476,b=0 1.6845 3.3287 6.617 11.549 21.414 coh91:k=45.9532,b=0 1.7033 3.3657 6.0183 11.678 21.653 coh92:k=46.4589,b=0 1.722 3.4027 5.9239 11.806 21.304 coh93:k=46.9645,b=0 1.7407 3.4398 5.9883 11.935 21.28 coh94:k=47.4702,b=0 1.7595 3.4768 6.0528 11.653 21.509 coh95:k=47.9759,b=0 1.7782 3.5138 6.1173 11.324 21.42 coh96:k=48.4815,b=0 1.797 3.5509 6.1818 11.443 21.09 coh97:k=48.9872,b=0 1.8157 3.5879 6.2462 11.563 21.31 coh98:k=49.4929,b=0 1.8345 3.625 6.3107 11.682 21.53 coh99:k=49.9985,b=0 1.8532 3.662 6.3752 11.802 21.75 coh100:k=50.5042,b=0 1.8719 3.699 6.4397 11.921 21.229 coh101:k=51.0098,b=0 1.8907 3.7361 6.5041 12.04 21.267 coh102:k=51.5155,b=0 1.9094 3.7731 6.5686 11.609 21.478 coh103:k=52.0212,b=0 1.9282 3.3586 6.6331 11.338 21.237 coh104:k=52.5268,b=0 1.9469 2.897 6.3471 11.448 20.95 coh105:k=53.0325,b=0 1.9657 2.9249 5.8028 11.558 21.151 coh106:k=53.5381,b=0 1.9844 2.9528 5.8581 11.669 21.211 coh107:k=54.0438,b=0 2.0031 2.9807 5.9134 11.779 20.544 coh108:k=54.5495,b=0 2.0219 3.0086 5.9687 11.889 19.858 coh109:k=55.0551,b=0 2.0406 3.0365 6.0241 11.999 19.966 coh110:k=55.5608,b=0 2.0594 3.0644 6.0794 11.402 18.028 coh111:k=56.0665,b=0 2.0781 3.0923 6.1347 11.206 15.486 coh112:k=56.5721,b=0 2.0867 3.1051 6.1602 11.252 14.307 coh113:k=57.0778,b=0 2.0867 3.1051 6.1602 11.252 14.307 tb_pol_w: risky + safe investment choices (first stage choice, choose within risky vs safe) z1_0_33942 z2_0_5596 z3_0_92263 z4_1_5212 z5_2_508 __________ _________ __________ _________ ________ coh1:k=0.443648,b=0 0.19723 0.19723 0.24642 0.24642 0.24642 coh2:k=0.94931,b=0 0.52729 0.52729 0.52729 0.52729 0.52729 coh3:k=1.45497,b=0 0.80816 0.80816 0.64682 0.64682 0.64682 coh4:k=1.96063,b=0 1.089 1.089 1.089 1.089 1.089 coh5:k=2.4663,b=0 1.6434 1.3699 1.3699 1.3699 1.3699 coh6:k=2.97196,b=0 1.9803 1.9803 1.9803 1.6508 1.6508 coh7:k=3.47762,b=0 2.3173 2.3173 2.3173 1.9316 1.9316 coh8:k=3.98328,b=0 2.6542 2.6542 2.6542 2.6542 2.2125 coh9:k=4.48894,b=0 2.9911 2.9911 2.9911 2.9911 2.9911 coh10:k=4.99461,b=0 3.3281 3.3281 3.3281 3.3281 3.3281 coh11:k=5.50027,b=0 4.2749 3.665 3.665 3.665 3.665 coh12:k=6.00593,b=0 4.6679 4.002 4.002 4.002 4.002 coh13:k=6.51159,b=0 5.061 5.061 4.3389 4.3389 4.3389 coh14:k=7.01725,b=0 5.454 5.454 5.454 4.6758 4.6758 coh15:k=7.52291,b=0 5.847 5.847 5.847 5.847 5.0128 coh16:k=8.02858,b=0 6.24 6.24 6.24 6.24 5.3497 coh17:k=8.53424,b=0 6.633 6.633 6.633 6.633 5.6866 coh18:k=9.0399,b=0 7.026 7.026 7.026 7.026 7.026 coh19:k=9.54556,b=0 7.419 7.419 7.419 7.419 7.419 coh20:k=10.0512,b=0 7.812 7.812 7.812 7.812 7.812 coh21:k=10.5569,b=0 8.205 8.205 8.205 8.205 8.205 coh22:k=11.0625,b=0 8.5981 8.5981 8.5981 8.5981 8.5981 coh23:k=11.5682,b=0 8.9911 8.9911 8.9911 8.9911 8.9911 coh24:k=12.0739,b=0 9.3841 9.3841 9.3841 9.3841 9.3841 coh25:k=12.5795,b=0 9.7771 9.7771 9.7771 9.7771 9.7771 coh26:k=13.0852,b=0 10.17 10.17 10.17 10.17 10.17 coh27:k=13.5909,b=0 10.563 10.563 10.563 10.563 10.563 coh28:k=14.0965,b=0 10.956 10.956 10.956 10.956 10.956 coh29:k=14.6022,b=0 11.349 11.349 11.349 11.349 11.349 coh30:k=15.1078,b=0 11.742 11.742 11.742 11.742 11.742 coh31:k=15.6135,b=0 12.135 12.135 12.135 12.135 12.135 coh32:k=16.1192,b=0 12.528 12.528 12.528 12.528 12.528 coh33:k=16.6248,b=0 14.765 12.921 12.921 12.921 12.921 coh34:k=17.1305,b=0 15.214 13.314 13.314 13.314 13.314 coh35:k=17.6362,b=0 15.663 13.707 13.707 13.707 13.707 coh36:k=18.1418,b=0 16.112 14.1 14.1 14.1 14.1 coh37:k=18.6475,b=0 16.561 16.561 14.493 14.493 14.493 coh38:k=19.1531,b=0 17.01 17.01 14.886 14.886 14.886 coh39:k=19.6588,b=0 17.459 17.459 15.279 15.279 15.279 coh40:k=20.1645,b=0 17.908 17.908 15.672 15.672 15.672 coh41:k=20.6701,b=0 18.357 18.357 16.065 16.065 16.065 coh42:k=21.1758,b=0 18.806 18.806 16.458 16.458 16.458 coh43:k=21.6814,b=0 19.256 19.256 16.851 16.851 16.851 coh44:k=22.1871,b=0 19.705 19.705 19.705 17.244 17.244 coh45:k=22.6928,b=0 20.154 20.154 20.154 17.637 17.637 coh46:k=23.1984,b=0 20.603 20.603 20.603 18.03 18.03 coh47:k=23.7041,b=0 21.052 21.052 21.052 18.423 18.423 coh48:k=24.2098,b=0 21.501 21.501 21.501 18.816 18.816 coh49:k=24.7154,b=0 21.95 21.95 21.95 21.95 21.95 coh50:k=25.2211,b=0 22.399 22.399 22.399 22.399 22.399 coh64:k=32.3003,b=0 28.686 28.686 28.686 28.686 28.686 coh65:k=32.806,b=0 29.135 29.135 29.135 29.135 29.135 coh66:k=33.3117,b=0 29.584 29.584 29.584 29.584 29.584 coh67:k=33.8173,b=0 30.034 30.034 30.034 30.034 30.034 coh68:k=34.323,b=0 30.483 30.483 30.483 30.483 30.483 coh69:k=34.8287,b=0 30.932 30.932 30.932 30.932 30.932 coh70:k=35.3343,b=0 31.381 31.381 31.381 31.381 31.381 coh71:k=35.84,b=0 31.83 31.83 31.83 31.83 31.83 coh72:k=36.3456,b=0 32.279 32.279 32.279 32.279 32.279 coh73:k=36.8513,b=0 32.728 32.728 32.728 32.728 32.728 coh74:k=37.357,b=0 33.177 33.177 33.177 33.177 33.177 coh75:k=37.8626,b=0 33.626 33.626 33.626 33.626 33.626 coh76:k=38.3683,b=0 34.075 34.075 34.075 34.075 34.075 coh77:k=38.874,b=0 34.524 34.524 34.524 34.524 34.524 coh78:k=39.3796,b=0 34.973 34.973 34.973 34.973 34.973 coh79:k=39.8853,b=0 35.423 35.423 35.423 35.423 35.423 coh80:k=40.3909,b=0 35.872 35.872 35.872 35.872 35.872 coh81:k=40.8966,b=0 36.321 36.321 36.321 36.321 36.321 coh82:k=41.4023,b=0 36.77 36.77 36.77 36.77 36.77 coh83:k=41.9079,b=0 37.219 37.219 37.219 37.219 37.219 coh84:k=42.4136,b=0 37.668 37.668 37.668 37.668 37.668 coh85:k=42.9192,b=0 38.117 38.117 38.117 38.117 38.117 coh86:k=43.4249,b=0 38.566 38.566 38.566 38.566 38.566 coh87:k=43.9306,b=0 39.015 39.015 39.015 39.015 39.015 coh88:k=44.4362,b=0 39.464 39.464 39.464 39.464 39.464 coh89:k=44.9419,b=0 39.913 39.913 39.913 39.913 39.913 coh90:k=45.4476,b=0 40.362 40.362 40.362 40.362 40.362 coh91:k=45.9532,b=0 40.812 40.812 40.812 40.812 40.812 coh92:k=46.4589,b=0 41.261 41.261 41.261 41.261 41.261 coh93:k=46.9645,b=0 41.71 41.71 41.71 41.71 41.71 coh94:k=47.4702,b=0 42.159 42.159 42.159 42.159 42.159 coh95:k=47.9759,b=0 42.608 42.608 42.608 42.608 42.608 coh96:k=48.4815,b=0 43.057 43.057 43.057 43.057 43.057 coh97:k=48.9872,b=0 43.506 43.506 43.506 43.506 43.506 coh98:k=49.4929,b=0 43.955 43.955 43.955 43.955 43.955 coh99:k=49.9985,b=0 44.404 44.404 44.404 44.404 44.404 coh100:k=50.5042,b=0 44.853 44.853 44.853 44.853 44.853 coh101:k=51.0098,b=0 45.302 45.302 45.302 45.302 45.302 coh102:k=51.5155,b=0 45.751 45.751 45.751 45.751 45.751 coh103:k=52.0212,b=0 46.201 46.201 46.201 46.201 46.201 coh104:k=52.5268,b=0 46.65 46.65 46.65 46.65 46.65 coh105:k=53.0325,b=0 47.099 47.099 47.099 47.099 47.099 coh106:k=53.5381,b=0 47.548 47.548 47.548 47.548 47.548 coh107:k=54.0438,b=0 47.997 47.997 47.997 47.997 47.997 coh108:k=54.5495,b=0 48.446 48.446 48.446 48.446 48.446 coh109:k=55.0551,b=0 48.895 48.895 48.895 48.895 48.895 coh110:k=55.5608,b=0 49.344 49.344 49.344 49.344 49.344 coh111:k=56.0665,b=0 49.793 49.793 49.793 49.793 49.793 coh112:k=56.5721,b=0 50.242 50.242 50.242 50.242 50.242 coh113:k=57.0778,b=0 50.691 50.691 50.691 50.691 50.691
end
ans = Map with properties: Count: 15 KeyType: char ValueType: any