This is a static copy of a profile report

Home

Function details for ff_ipwkz_vf_vecThis is a static copy of a profile report

Home

ff_ipwkz_vf_vec (Calls: 1, Time: 2.155 s)
Generated 06-Jul-2019 16:10:58 using performance time.
function in file C:\Users\fan\CodeDynaAsset\m_ipwkz\solve\ff_ipwkz_vf_vec.m
Copy to new window for comparing multiple runs

Parents (calling functions)
No parent
Lines where the most time was spent

Line NumberCodeCallsTotal Time% TimeTime Plot
264
mt_utility = f_grid_interpolan...
15750.387 s18.0%
209
mt_val_wkb_interpolated = f_gr...
1050.339 s15.7%
251
mt_w_kstar_interp_z = f_interp...
15750.273 s12.7%
261
mt_c = f_cons(ar_coh_z', mt_w_...
15750.240 s11.1%
225
ff_ipwkz_evf(mt_val_wkb_interp...
1050.236 s10.9%
All other lines  0.680 s31.6%
Totals  2.155 s100% 
Children (called functions)

Function NameFunction TypeCallsTotal Time% TimeTime Plot
ff_ipwkz_evffunction1050.225 s10.4%
...coh,bprime,kprime)(coh-kprime-bprime)anonymous function15750.185 s8.6%
linspacefunction15750.014 s0.7%
meanfunction1050.009 s0.4%
Self time (built-ins, overhead, etc.)  1.721 s79.9%
Totals  2.155 s100% 
Code Analyzer results
No Code Analyzer messages.
Coverage results
Show coverage for parent directory
Total lines in function376
Non-code lines (comments, blank lines)209
Code lines (lines that can run)167
Code lines that did run62
Code lines that did not run105
Coverage (did run/can run)37.13 %
Function listing
time 
Calls 
 line
   7 
function result_map = ff_ipwkz_vf_vec(varargin)
   8 
%% FF_IPWKZ_VF_VEC solve infinite horizon exo shock + endo asset problem
   9 
% This program solves the infinite horizon dynamic savings and risky
  10 
% capital asset problem with some shock. This is the two step solution
  11 
% with interpolation and with percentage asset grids version of
  12 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf_vec.html
  13 
% ff_iwkz_vf_vec>. See that file for more descriptions. This is the
  14 
% vectorized version of the program.
  15 
%
  16 
% @param param_map container parameter container
  17 
%
  18 
% @param support_map container support container
  19 
%
  20 
% @param armt_map container container with states, choices and shocks
  21 
% grids that are inputs for grid based solution algorithm
  22 
%
  23 
% @param func_map container container with function handles for
  24 
% consumption cash-on-hand etc.
  25 
%
  26 
% @return result_map container contains policy function matrix, value
  27 
% function matrix, iteration results, and policy function, value function
  28 
% and iteration results tables. 
  29 
%
  30 
% keys included in result_map:
  31 
%
  32 
% * mt_val matrix states_n by shock_n matrix of converged value function grid
  33 
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
  34 
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
  35 
% difference between iteration
  36 
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
  37 
% function difference between iterations
  38 
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
  39 
% proportion of grid points at which policy function changed between
  40 
% current and last iteration for each element of shock
  41 
%
  42 
% @example
  43 
%
  44 
% @include
  45 
%
  46 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkz/paramfunc/ff_ipwkz_evf.m ff_ipwkz_evf>
  47 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkz/paramfunc/ffs_ipwkz_set_default_param.m ffs_ipwkz_set_default_param>
  48 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkz/paramfunc/ffs_ipwkz_get_funcgrid.m ffs_ipwkz_get_funcgrid>
  49 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_akz/solvepost/ff_akz_vf_post.m ff_akz_vf_post>
  50 
%
  51 

  52 
%% Default
  53 
% * it_param_set = 1: quick test
  54 
% * it_param_set = 2: benchmark run
  55 
% * it_param_set = 3: benchmark profile
  56 
% * it_param_set = 4: press publish button
  57 

  58 
it_param_set = 3;
  59 
bl_input_override = true;
  60 
[param_map, support_map] = ffs_ipwkz_set_default_param(it_param_set);
  61 

  62 
% parameters can be set inside ffs_ipwkz_set_default_param or updated here
  63 
% param_map('it_w_perc_n') = 50;
  64 
% param_map('it_ak_perc_n') = param_map('it_w_perc_n');
  65 
% param_map('it_z_n') = 15;
  66 
% param_map('fl_coh_interp_grid_gap') = 0.025;
  67 
% param_map('it_c_interp_grid_gap') = 0.001;
  68 
% param_map('fl_w_interp_grid_gap') = 0.25;
  69 
% param_map('it_w_perc_n') = 100;
  70 
% param_map('it_ak_perc_n') = param_map('it_w_perc_n');
  71 
% param_map('it_z_n') = 11;
  72 
% param_map('fl_coh_interp_grid_gap') = 0.1;
  73 
% param_map('it_c_interp_grid_gap') = 10^-4;
  74 
% param_map('fl_w_interp_grid_gap') = 0.1;
  75 

  76 
% get armt and func map
  77 
[armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
  78 
default_params = {param_map support_map armt_map func_map};
  79 

  80 
%% Parse Parameters 1
  81 

  82 
% if varargin only has param_map and support_map,
  83 
params_len = length(varargin);
  84 
[default_params{1:params_len}] = varargin{:};
  85 
param_map = [param_map; default_params{1}];
  86 
support_map = [support_map; default_params{2}];
  87 
if params_len >= 1 && params_len <= 2
  88 
    % If override param_map, re-generate armt and func if they are not
  89 
    % provided
  90 
    bl_input_override = true;
  91 
    [armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map, bl_input_override);
  92 
else
  93 
    % Override all
  94 
    armt_map = [armt_map; default_params{3}];
  95 
    func_map = [func_map; default_params{4}];
  96 
end
  97 

  98 
% append function name
  99 
st_func_name = 'ff_ipwkz_vf_vec';
 100 
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
 101 
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
 102 
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
 103 

 104 
%% Parse Parameters 2
 105 

 106 
% armt_map
 107 
params_group = values(armt_map, {'ar_w_level', 'ar_z'});
 108 
[ar_w_level, ar_z] = params_group{:};
 109 
params_group = values(armt_map, {'ar_interp_c_grid', 'ar_interp_coh_grid', ...
 110 
    'mt_interp_coh_grid_mesh_z', 'mt_z_mesh_coh_interp_grid',...
 111 
    'mt_w_by_interp_coh_interp_grid'});
 112 
[ar_interp_c_grid, ar_interp_coh_grid, ...
 113 
    mt_interp_coh_grid_mesh_z, mt_z_mesh_coh_interp_grid, ...
 114 
    mt_w_by_interp_coh_interp_grid] = params_group{:};
 115 
params_group = values(armt_map, {'mt_coh_wkb', 'mt_z_mesh_coh_wkb'});
 116 
[mt_coh_wkb, mt_z_mesh_coh_wkb] = params_group{:};
 117 

 118 
% func_map
 119 
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons'});
 120 
[f_util_log, f_util_crra, f_cons] = params_group{:};
 121 

 122 
% param_map
 123 
params_group = values(param_map, {'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'});
 124 
[it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:};
 125 
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
 126 
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
 127 

 128 
% support_map
 129 
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
 130 
    'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
 131 
    'bl_time', 'bl_graph_evf', 'bl_display', 'it_display_every', 'bl_post'});
 132 
[bl_profile, st_profile_path, ...
 133 
    st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
 134 
    bl_time, bl_graph_evf, bl_display, it_display_every, bl_post] = params_group{:};
 135 

 136 
%% Initialize Output Matrixes
 137 

 138 
mt_val_cur = zeros(length(ar_interp_coh_grid),length(ar_z));
 139 
mt_val = mt_val_cur - 1;
 140 
mt_pol_a = zeros(length(ar_interp_coh_grid),length(ar_z));
 141 
mt_pol_a_cur = mt_pol_a - 1;
 142 
mt_pol_k = zeros(length(ar_interp_coh_grid),length(ar_z));
 143 
mt_pol_k_cur = mt_pol_k - 1;
 144 
mt_pol_idx = zeros(length(ar_interp_coh_grid),length(ar_z));
 145 

 146 
%% Initialize Convergence Conditions
 147 

 148 
bl_vfi_continue = true;
 149 
it_iter = 0;
 150 
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
 151 
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
 152 
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
 153 

 154 
%% Pre-calculate u(c)
 155 
% Interpolation, see
 156 
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
 157 
% fs_u_c_partrepeat_main> for why interpolate over u(c)
 158 

 159 
% Evaluate
 160 
if (fl_crra == 1)
 161 
    ar_interp_u_of_c_grid = f_util_log(ar_interp_c_grid);
 162 
    fl_u_neg_c = f_util_log(fl_c_min);
 163 
else
 164 
    ar_interp_u_of_c_grid = f_util_crra(ar_interp_c_grid);
 165 
    fl_u_neg_c = f_util_crra(fl_c_min);
 166 
end
 167 
ar_interp_u_of_c_grid(ar_interp_c_grid <= fl_c_min) = fl_u_neg_c;
 168 

 169 
% Get Interpolant
 170 
f_grid_interpolant_spln = griddedInterpolant(ar_interp_c_grid, ar_interp_u_of_c_grid, 'spline', 'nearest');
 171 

 172 
%% Iterate Value Function
 173 
% Loop solution with 4 nested loops
 174 
%
 175 
% # loop 1: over exogenous states
 176 
% # loop 2: over endogenous states
 177 
% # loop 3: over choices
 178 
% # loop 4: add future utility, integration--loop over future shocks
 179 
%
 180 

 181 
% Start Profile
 182 
if (bl_profile)
 183 
    close all;
 184 
    profile off;
 185 
    profile on;
< 0.001 
      1 
 186
end 
 187 

 188 
% Start Timer
< 0.001 
      1 
 189
if (bl_time) 
< 0.001 
      1 
 190
    tic; 
< 0.001 
      1 
 191
end 
 192 

 193 
% Value Function Iteration
< 0.001 
      1 
 194
while bl_vfi_continue 
< 0.001 
    105 
 195
    it_iter = it_iter + 1; 
 196 
    
 197 
    
 198 
    %% Interpolate (1) reacahble v(coh(k(w,z),b(w,z),z),z) given v(coh, z)
 199 
    % v(coh,z) solved on ar_interp_coh_grid, ar_z grids, see
 200 
    % ffs_ipwkz_get_funcgrid.m. Generate interpolant based on that, Then
 201 
    % interpolate for the coh reachable levels given the k(w,z) percentage
 202 
    % choice grids in the second stage of the problem
 203 

 204 
    % Generate Interpolant for v(coh,z)
  0.038 
    105 
 205
    f_grid_interpolant_value = griddedInterpolant(... 
    105 
 206
        mt_z_mesh_coh_interp_grid', mt_interp_coh_grid_mesh_z', mt_val_cur', 'linear', 'nearest'); 
 207 
    
 208 
    % Interpoalte for v(coh(k(w,z),b(w,z),z),z)
  0.339 
    105 
 209
    mt_val_wkb_interpolated = f_grid_interpolant_value(mt_z_mesh_coh_wkb, mt_coh_wkb); 
 210 
    
 211 
    %% Solve Second Stage Problem k*(w,z)
 212 
    % This is the key difference between this function and
 213 
    % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
 214 
    % ffs_akz_set_functions> which solves the two stages jointly    
 215 
    % Interpolation first, because solution coh grid is not the same as all
 216 
    % points reachable by k and b choices given w. 
 217 
    
  0.008 
    105 
 218
    support_map('bl_graph_evf') = false; 
< 0.001 
    105 
 219
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 220
        support_map('bl_graph_evf') = bl_graph_evf; 
< 0.001 
      1 
 221
    end 
 222 
    
< 0.001 
    105 
 223
    bl_input_override = true; 
  0.236 
    105 
 224
    [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, ~] = ... 
    105 
 225
        ff_ipwkz_evf(mt_val_wkb_interpolated, param_map, support_map, armt_map, bl_input_override);        
 226 
    
 227 
    %% Solve First Stage Problem w*(z) given k*(w,z)
 228 
       
 229 
    % loop 1: over exogenous states
< 0.001 
    105 
 230
    for it_z_i = 1:length(ar_z) 
 231 

 232 
        % State Array fixed        
  0.002 
   1575 
 233
        ar_coh_z = mt_interp_coh_grid_mesh_z(:,it_z_i); 
 234 

 235 
        % Get 2nd Stage Arrays
  0.002 
   1575 
 236
        ar_ev_condi_z_max_z = mt_ev_condi_z_max(:, it_z_i);         
  0.002 
   1575 
 237
        ar_w_level_kstar_z = mt_ev_condi_z_max_kp(:, it_z_i); 
 238 

 239 
        % Interpolate (2) k*(ar_w_perc) from k*(ar_w_level,z)
 240 
        % There are two w=k'+b' arrays. ar_w_level is the level even grid based
 241 
        % on which we solve the 2nd stage problem in ff_ipwkz_evf.m. Here for
 242 
        % each coh level, we have a different vector of w levels, but the same
 243 
        % vector of percentage ws. So we need to interpolate to get the optimal
 244 
        % k* and b* choices at each percentage level of w. 
  0.063 
   1575 
 245
        f_interpolante_w_level_kstar_z = griddedInterpolant(ar_w_level, ar_w_level_kstar_z', 'linear', 'nearest'); 
 246 
        
 247 
        % Interpolant for (3) EV(k*(ar_w_perc),Z)
  0.031 
   1575 
 248
        f_interpolante_ev_condi_z_max_z = griddedInterpolant(ar_w_level, ar_ev_condi_z_max_z', 'linear', 'nearest'); 
 249 
        
 250 
        % Interpolat (2) and (3) 
  0.273 
   1575 
 251
        mt_w_kstar_interp_z = f_interpolante_w_level_kstar_z(mt_w_by_interp_coh_interp_grid); 
  0.021 
   1575 
 252
        mt_w_astar_interp_z = mt_w_by_interp_coh_interp_grid - mt_w_kstar_interp_z; 
  0.204 
   1575 
 253
        mt_ev_condi_z_max_interp_z = f_interpolante_ev_condi_z_max_z(mt_w_by_interp_coh_interp_grid); 
 254 
        
 255 
        % Consumption
 256 
        % Note that compared to
 257 
        % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
 258 
        % ffs_akz_set_functions> the mt_c here is much smaller the same
 259 
        % number of columns (states) as in the ffs_akz_set_functions file,
 260 
        % but the number of rows equal to ar_w length.
  0.240 
   1575 
 261
        mt_c = f_cons(ar_coh_z', mt_w_astar_interp_z, mt_w_kstar_interp_z); 
 262 
        
 263 
        % Interpolate for (4) EVAL current utility: N by N, f_util defined earlier
  0.387 
   1575 
 264
        mt_utility = f_grid_interpolant_spln(mt_c); 
 265 
                
 266 
        % EVAL add on future utility, N by N + N by N
 267 
        % previously mt_ev_condi_z_max_interp_z was N by 1, not N by N
  0.026 
   1575 
 268
        mt_utility = mt_utility + fl_beta*mt_ev_condi_z_max_interp_z; 
 269 

 270 
        % Optimization: remember matlab is column major, rows must be
 271 
        % choices, columns must be states
 272 
        % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR>
  0.073 
   1575 
 273
        [ar_opti_val1_z, ar_opti_idx_z] = max(mt_utility); 
  0.010 
   1575 
 274
        mt_val(:,it_z_i) = ar_opti_val1_z; 
 275 
        
 276 
        % Generate Linear Opti Index
  0.006 
   1575 
 277
        [it_choies_n, it_states_n] = size(mt_utility); 
  0.021 
   1575 
 278
        ar_add_grid = linspace(0, it_choies_n*(it_states_n-1), it_states_n); 
  0.002 
   1575 
 279
        ar_opti_linear_idx_z = ar_opti_idx_z + ar_add_grid; 
 280 

 281 
        % Store Optimal
  0.014 
   1575 
 282
        mt_pol_a(:,it_z_i) = mt_w_astar_interp_z(ar_opti_linear_idx_z); 
  0.011 
   1575 
 283
        mt_pol_k(:,it_z_i) = mt_w_kstar_interp_z(ar_opti_linear_idx_z);         
< 0.001 
   1575 
 284
        if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
     15 
 285
            mt_pol_idx(:,it_z_i) = ar_opti_linear_idx_z; 
< 0.001 
     15 
 286
        end 
 287 

  0.001 
   1575 
 288
    end 
 289 
    
 290 
    %% Check Tolerance and Continuation
 291 
    
 292 
    % Difference across iterations
  0.038 
    105 
 293
    ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); 
  0.062 
    105 
 294
    ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur); 
  0.007 
    105 
 295
    ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/(length(ar_interp_coh_grid)); 
  0.005 
    105 
 296
    ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/(length(ar_interp_coh_grid));     
  0.013 
    105 
 297
    mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]); 
 298 
    
 299 
    % Update
  0.005 
    105 
 300
    mt_val_cur = mt_val; 
  0.003 
    105 
 301
    mt_pol_a_cur = mt_pol_a; 
  0.003 
    105 
 302
    mt_pol_k_cur = mt_pol_k; 
 303 
    
 304 
    % Print Iteration Results
< 0.001 
    105 
 305
    if (bl_display && (rem(it_iter, it_display_every)==0)) 
 306 
        fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
 307 
            it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
 308 
        tb_valpol_iter = array2table([mean(mt_val_cur,1);...
 309 
                                      mean(mt_pol_a_cur,1); ...
 310 
                                      mean(mt_pol_k_cur,1); ...
 311 
                                      mt_val_cur(length(ar_interp_coh_grid),:); ...
 312 
                                      mt_pol_a_cur(length(ar_interp_coh_grid),:); ...
 313 
                                      mt_pol_k_cur(length(ar_interp_coh_grid),:)]);
 314 
        tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
 315 
        tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'};
 316 
        disp('mval = mean(mt_val_cur,1), average value over a')
 317 
        disp('map  = mean(mt_pol_a_cur,1), average choice over a')
 318 
        disp('mkp  = mean(mt_pol_k_cur,1), average choice over k')
 319 
        disp('Hval = mt_val_cur(it_ameshk_n,:), highest a state val')
 320 
        disp('Hap = mt_pol_a_cur(it_ameshk_n,:), highest a state choice')
 321 
        disp('mak = mt_pol_k_cur(it_ameshk_n,:), highest k state choice')                
 322 
        disp(tb_valpol_iter);
 323 
    end
 324 
    
 325 
    % Continuation Conditions:
 326 
    % 1. if value function convergence criteria reached
 327 
    % 2. if policy function variation over iterations is less than
 328 
    % threshold
< 0.001 
    105 
 329
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 330
        bl_vfi_continue = false; 
  0.001 
    104 
 331
    elseif ((it_iter == it_maxiter_val) || ... 
    104 
 332
            (ar_val_diff_norm(it_iter) < fl_tol_val) || ... 
    104 
 333
            (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) 
 334 
        % Fix to max, run again to save results if needed
< 0.001 
      1 
 335
        it_iter_last = it_iter; 
< 0.001 
      1 
 336
        it_iter = it_maxiter_val;         
< 0.001 
      1 
 337
    end 
 338 
    
< 0.001 
    105 
 339
end 
 340 

 341 
% End Timer
< 0.001 
      1 
 342
if (bl_time) 
< 0.001 
      1 
 343
    toc; 
< 0.001 
      1 
 344
end 
 345 

 346 
% End Profile
< 0.001 
      1 
 347
if (bl_profile) 
  0.004 
      1 
 348
    profile off 
 349 
    profile viewer
 350 
    st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
 351 
    profsave(profile('info'), strcat(st_profile_path, st_file_name));
 352 
end
 353 

 354 
%% Process Optimal Choices
 355 

 356 
result_map = containers.Map('KeyType','char', 'ValueType','any');
 357 
result_map('mt_val') = mt_val;
 358 
result_map('mt_pol_idx') = mt_pol_idx;
 359 

 360 
result_map('cl_mt_pol_coh') = {mt_interp_coh_grid_mesh_z, zeros(1)};
 361 
result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
 362 
result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)};
 363 
result_map('cl_mt_pol_c') = {f_cons(mt_interp_coh_grid_mesh_z, mt_pol_a, mt_pol_k), zeros(1)};
 364 
result_map('ar_st_pol_names') = ["cl_mt_pol_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"];
 365 

 366 
if (bl_post)
 367 
    bl_input_override = true;
 368 
    result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
 369 
    result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
 370 
    result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
 371 

 372 
    % graphing based on coh_wkb, but that does not match optimal choice
 373 
    % matrixes for graphs.
 374 
    armt_map('mt_coh_wkb') = mt_interp_coh_grid_mesh_z;
 375 
    armt_map('it_ameshk_n') = length(ar_interp_coh_grid);
 376 
    armt_map('ar_a_meshk') = mt_interp_coh_grid_mesh_z(:,1);
 377 
    armt_map('ar_k_mesha') = zeros(size(mt_interp_coh_grid_mesh_z(:,1)) + 0);
 378 

 379 
    result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
 380 
end
 381 

 382 
end

Other subfunctions in this file are not included in this listing.