Given a dataset with Y, x1, xothers. Regress with log linear and linear structures to obtain A and alpha that the linear and log linear optimal allocation problems understand. dtgch = data guatemala cebu height. There discrete groups, allowing for alpha to differ. *ffv_opt_dtgch_cbem4.Rmd* tests the code here and generates rda file that is saved in data folder.

ffy_opt_dtgch_cbem4()

Value

a list with two tibble with guatemala and cebu dataset only some columns and A and alpha lin loglin

  • df_raw - Dataframe from Guat/Cebu subsetted Ceb only, 4 categories

  • df_esti - A dataframe with 5 columns, lin and loglin A, alpha and beta.

Author

Fan Wang, http://fanwangecon.github.io

Examples

ls_opti_alpha_A <- ffy_opt_dtgch_cbem4()
head(ls_opti_alpha_A$df_raw, 10)
#> # A tibble: 10 x 17
#>    S.country vil.id indi.id sex    svymthRound momEdu wealthIdx   hgt    wgt
#>    <chr>      <dbl>   <dbl> <chr>        <dbl>  <dbl>     <dbl> <dbl>  <dbl>
#>  1 Cebu           1       2 Female          24    7.1       7.3  79.2 10776.
#>  2 Cebu           1       3 Female          24    9.4      10.3  76.7 10296.
#>  3 Cebu           1       4 Female          24   13.9      13.3  78.1  7604.
#>  4 Cebu           1       5 Male            24   11.3       9.3  84.1 11787.
#>  5 Cebu           1       6 Female          24    7.3       7.3  76.9  7991.
#>  6 Cebu           1       7 Male            24   10.4       8.3  79.6 12583.
#>  7 Cebu           1       8 Female          24   13.5       9.3  81.5  8358.
#>  8 Cebu           1       9 Female          24   10.4      17.3  74.7  8195.
#>  9 Cebu           1      10 Male            24   10.5       6.3  77.1  9442.
#> 10 Cebu           1      11 Male            24    1.9       6.3  72.1  6627.
#> # ... with 8 more variables: hgt0 <dbl>, wgt0 <dbl>, prot <dbl>, cal <dbl>,
#> #   p.A.prot <dbl>, p.A.nProt <dbl>, momEduRound <fct>, hgt0med <fct>
head(ls_opti_alpha_A$df_esti, 10)
#> # A tibble: 10 x 9
#>    S.country vil.id indi.id svymthRound alpha_lin alpha_log A_lin A_log     beta
#>    <chr>      <dbl>   <dbl>       <dbl>     <dbl>     <dbl> <dbl> <dbl>    <dbl>
#>  1 Cebu           1       2          24    0.0101   0.00669  78.4  4.34 0.000959
#>  2 Cebu           1       3          24    0.0323   0.00925  79.9  4.36 0.000959
#>  3 Cebu           1       4          24    0.0323   0.00925  78.9  4.35 0.000959
#>  4 Cebu           1       5          24    0.0662   0.0139   80.6  4.37 0.000959
#>  5 Cebu           1       6          24    0.0101   0.00669  77.8  4.34 0.000959
#>  6 Cebu           1       7          24    0.0662   0.0139   79.6  4.36 0.000959
#>  7 Cebu           1       8          24    0.0101   0.00669  77.8  4.34 0.000959
#>  8 Cebu           1       9          24    0.0101   0.00669  78.0  4.34 0.000959
#>  9 Cebu           1      10          24    0.0662   0.0139   80.0  4.36 0.000959
#> 10 Cebu           1      11          24    0.0602   0.0121   77.7  4.33 0.000959