IV Loop over RHS
Go to the RMD, R, PDF, or HTML version of this file. Go back to fan’s REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).
Regression with a Variety of Outcome Variables and Right Hand Side Variables. There are M outcome variables, and there are N alternative right hand side variables. Regress each M outcome variable and each N alternative right hand side variable, with some common sets of controls and perhaps shared instruments. The output file is a M by N matrix of coefficients, with proper variable names and row names. The matrix stores coefficients for this key endogenous variable.
- Dependency: R4Econ/linreg/ivreg/ivregdfrow.R
Construct Program
The program relies on double lapply. lapply is used for convenience, not speed.
ff_reg_mbyn <- function(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = FALSE,
stats_ends = 'value', time = FALSE) {
# regf.iv() function is from C:\Users\fan\R4Econ\linreg\ivreg\ivregdfrow.R
if (time) {
start_time <- Sys.time()
}
if (return_all) {
df.reg.out.all <-
bind_rows(lapply(list.vars.x,
function(x) (
bind_rows(
lapply(list.vars.y, regf.iv,
vars.x=x, vars.c=vars.c, vars.z=vars.z, df=df))
)))
} else {
df.reg.out.all <-
(lapply(list.vars.x,
function(x) (
bind_rows(
lapply(list.vars.y, regf.iv,
vars.x=x, vars.c=vars.c, vars.z=vars.z, df=df)) %>%
select(vars_var.y, starts_with(x)) %>%
select(vars_var.y, ends_with(stats_ends))
))) %>% reduce(full_join)
}
if (time) {
end_time <- Sys.time()
print(paste0('Estimation for all ys and xs took (seconds):',
end_time - start_time))
}
return(df.reg.out.all)
}
Prepare Data
# Library
library(tidyverse)
library(AER)
# Load Sample Data
setwd('C:/Users/fan/R4Econ/_data/')
df <- read_csv('height_weight.csv')
# Source Dependency
source('C:/Users/fan/R4Econ/linreg/ivreg/ivregdfrow.R')
# Setting
options(repr.matrix.max.rows=50, repr.matrix.max.cols=50)
Parameters.
var.y1 <- c('hgt')
var.y2 <- c('wgt')
var.y3 <- c('vil.id')
list.vars.y <- c(var.y1, var.y2, var.y3)
var.x1 <- c('prot')
var.x2 <- c('cal')
var.x3 <- c('wealthIdx')
var.x4 <- c('p.A.prot')
var.x5 <- c('p.A.nProt')
list.vars.x <- c(var.x1, var.x2, var.x3, var.x4, var.x5)
vars.z <- c('indi.id')
vars.c <- c('sex', 'wgt0', 'hgt0', 'svymthRound')
Program Testing
Test Program OLS Z-Stat
vars.z <- NULL
suppressWarnings(suppressMessages(
ff_reg_mbyn(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = FALSE,
stats_ends = 'value'))) %>%
kable() %>%
kable_styling_fc_wide()
vars_var.y
|
prot_tvalue
|
cal_tvalue
|
wealthIdx_tvalue
|
p.A.prot_tvalue
|
p.A.nProt_tvalue
|
hgt
|
18.8756010031786
|
23.4421863484661
|
13.508899618216
|
3.83682180045518
|
32.5448257554855
|
wgt
|
16.3591125056062
|
17.3686031309332
|
14.1390521528113
|
1.36958319982295
|
12.0961557911467
|
vil.id
|
-14.9385580468907
|
-19.6150110809452
|
34.0972558327347
|
8.45943342783186
|
17.7801422421419
|
Test Program IV T-stat
vars.z <- c('indi.id')
suppressWarnings(suppressMessages(
ff_reg_mbyn(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = FALSE,
stats_ends = 'value'))) %>%
kable() %>%
kable_styling_fc_wide()
vars_var.y
|
prot_zvalue
|
cal_zvalue
|
wealthIdx_zvalue
|
p.A.prot_zvalue
|
p.A.nProt_zvalue
|
hgt
|
8.87674929300964
|
12.0739764947235
|
4.62589553677969
|
26.6373587567312
|
32.1162192385744
|
wgt
|
5.60385871756365
|
6.1225187008946
|
5.17869536991717
|
11.9295584469998
|
12.3509307017263
|
vil.id
|
-9.22106223347162
|
-13.0586007975839
|
-51.5866689219593
|
-29.9627476577329
|
-38.3528894620707
|
Test Program OLS Coefficient
vars.z <- NULL
suppressWarnings(suppressMessages(
ff_reg_mbyn(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = FALSE,
stats_ends = 'Estimate'))) %>%
kable() %>%
kable_styling_fc_wide()
vars_var.y
|
prot_Estimate
|
cal_Estimate
|
wealthIdx_Estimate
|
p.A.prot_Estimate
|
p.A.nProt_Estimate
|
hgt
|
0.049431093806755
|
0.00243408846205622
|
0.21045655488185
|
3.86952250259526e-05
|
0.00542428867316449
|
wgt
|
16.5557424523585
|
0.699072500364623
|
106.678721085969
|
0.00521731297924587
|
0.779514232050632
|
vil.id
|
-0.0758835879205584
|
-0.00395676177098486
|
0.451733304543324
|
0.000149388430455142
|
0.00526237555581024
|
Test Program IV coefficient
vars.z <- c('indi.id')
suppressWarnings(suppressMessages(
ff_reg_mbyn(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = FALSE,
stats_ends = 'Estimate'))) %>%
kable() %>%
kable_styling_fc_wide()
vars_var.y
|
prot_Estimate
|
cal_Estimate
|
wealthIdx_Estimate
|
p.A.prot_Estimate
|
p.A.nProt_Estimate
|
hgt
|
0.859205733632614
|
0.0238724384575419
|
0.144503490136948
|
0.00148073028434642
|
0.0141317656200726
|
wgt
|
98.9428234201406
|
2.71948246216953
|
69.1816142883022
|
0.221916473012486
|
2.11856940494335
|
vil.id
|
-6.02451379136132
|
-0.168054407187466
|
-1.91414470908345
|
-0.00520794333267238
|
-0.0494468877742109
|
Test Program OLS Return All
vars.z <- NULL
t(suppressWarnings(suppressMessages(
ff_reg_mbyn(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = TRUE,
stats_ends = 'Estimate')))) %>%
kable() %>%
kable_styling_fc_wide()
X.Intercept._Estimate
|
27.3528514188608
|
99.873884728925
|
31.4646660224049
|
27.9038445914729
|
219.626705179399
|
30.5103987898551
|
35.7840188807906
|
-2662.74787734003
|
29.2381039651127
|
23.9948407749744
|
-547.959546430028
|
22.3367814226238
|
24.4904444950827
|
-476.703973630552
|
22.7781908464511
|
X.Intercept._Pr…t..
|
5.68247182214952e-231
|
0.75529705553815
|
6.78164655340399e-84
|
8.24252673989353e-242
|
0.493216914827181
|
1.62608789535248e-79
|
2.26726906489443e-145
|
7.13318862990131e-05
|
1.53578035267873e-124
|
2.11912344053336e-165
|
0.0941551350855875
|
3.04337266226599e-49
|
2.34941965806705e-181
|
0.143844033032183
|
9.58029450711211e-52
|
X.Intercept._Std.Error
|
0.831272666092284
|
320.450650378664
|
1.61328519718754
|
0.828072565159449
|
320.522532223672
|
1.60831193651104
|
1.38461348429899
|
670.301542938561
|
1.22602177264147
|
0.86658104216672
|
327.343126852912
|
1.5098937308759
|
0.843371070670838
|
326.132837036936
|
1.5004526558957
|
X.Intercept._tvalue
|
32.9047886867776
|
0.31166697465244
|
19.503474077155
|
33.6973421962119
|
0.685214557790078
|
18.9704485163756
|
25.8440491058106
|
-3.97246270039407
|
23.8479483950102
|
27.6890903532576
|
-1.6739607509042
|
14.7936116071335
|
29.0387533397398
|
-1.46168652614567
|
15.1808794212527
|
adj.r.squared_v
|
0.814249026159781
|
0.60716936506893
|
0.0373247512680971
|
0.81608922805658
|
0.607863678511207
|
0.0453498711076042
|
0.935014931990565
|
0.92193683733695
|
0.059543122812776
|
0.814690803458616
|
0.617300597776144
|
0.0261131074199838
|
0.824542352656376
|
0.620250730454724
|
0.0385437355117917
|
df1_v
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
df2_v
|
18957
|
18962
|
18999
|
18957
|
18962
|
18999
|
25092
|
25102
|
30013
|
18587
|
18591
|
18845
|
18587
|
18591
|
18845
|
df3_v
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
6
|
hgt0_Estimate
|
0.60391817340617
|
56.3852027199184
|
-0.296844389234445
|
0.589847843438394
|
52.9707041800704
|
-0.273219210757899
|
0.439374451256039
|
47.176969664749
|
-0.35908163982046
|
0.687269209411865
|
72.105560623359
|
-0.108789161111504
|
0.622395388389206
|
62.7336220289257
|
-0.157811627494693
|
hgt0_Pr…t..
|
1.14533314566771e-183
|
1.52417506966835e-12
|
1.40290395213743e-13
|
7.79174951119325e-177
|
3.05720143843395e-11
|
8.49149153665126e-12
|
2.71000479249152e-36
|
0.00520266507060071
|
2.41020063623865e-31
|
1.31914432912869e-220
|
4.78613024244006e-19
|
0.0034801146146182
|
1.11511327164938e-190
|
8.38546282719268e-15
|
2.13723119924676e-05
|
hgt0_Std.Error
|
0.0206657538633713
|
7.96735224000553
|
0.0401060913799595
|
0.0205836398278421
|
7.96822145797115
|
0.0399777363511633
|
0.0348701896610764
|
16.8823489375743
|
0.0307984635553859
|
0.0213841849324282
|
8.07744906400683
|
0.0372288594891345
|
0.0208846437570215
|
8.07589192978212
|
0.0371223237183417
|
hgt0_tvalue
|
29.2231378249683
|
7.0770314931977
|
-7.40147890309685
|
28.6561486875877
|
6.64774497790599
|
-6.83428417151858
|
12.6002885423502
|
2.79445531182864
|
-11.659076407325
|
32.1391351404584
|
8.92677379355593
|
-2.92217281443323
|
29.8015803204665
|
7.76801157994423
|
-4.25112470577158
|
prot_Estimate
|
0.049431093806755
|
16.5557424523585
|
-0.0758835879205584
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
prot_Pr…t..
|
9.54769322304645e-79
|
9.61203373222183e-60
|
3.56396093562335e-50
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
prot_Std.Error
|
0.00261878251179557
|
1.01201959743751
|
0.00507971302734622
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
prot_tvalue
|
18.8756010031786
|
16.3591125056062
|
-14.9385580468907
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
r.squared_v
|
0.814298005954592
|
0.607272921412825
|
0.0375780335372857
|
0.816137722617266
|
0.60796705182314
|
0.0456010419476623
|
0.93502787877066
|
0.921952383432195
|
0.0596997716363463
|
0.814740639193486
|
0.617403496088206
|
0.0263714328556815
|
0.824589538985803
|
0.620352835549783
|
0.0387987636986586
|
sexMale_Estimate
|
0.935177182449406
|
415.163616765357
|
-0.254089999175318
|
0.893484662055608
|
405.534891838028
|
-0.181389489610951
|
1.80682463132073
|
999.926876716707
|
-0.33436777751525
|
0.932686930233136
|
397.141948675354
|
-0.445232370681998
|
0.96466980500711
|
401.59056368102
|
-0.423829627017582
|
sexMale_Pr…t..
|
2.36432111724607e-51
|
2.48252880290814e-67
|
0.0343768259467621
|
2.08765935335877e-47
|
2.51355675686752e-64
|
0.129768754080748
|
1.26527362032354e-66
|
2.64630894140004e-86
|
0.000311174554787706
|
7.90489020586094e-47
|
6.19449742677662e-59
|
7.93666802281971e-05
|
1.24556615236597e-52
|
1.18469030741261e-60
|
0.00015644693636154
|
sexMale_Std.Error
|
0.0618482294097262
|
23.8518341439675
|
0.120093045309631
|
0.0616078355613525
|
23.8567507583516
|
0.11972270545355
|
0.104475287357902
|
50.5879876531386
|
0.0927193334338799
|
0.0647209948973267
|
24.4473730956481
|
0.112797805327952
|
0.0629827627260302
|
24.3549086073387
|
0.112083516545945
|
sexMale_tvalue
|
15.1205166481668
|
17.4059409544552
|
-2.11577613441484
|
14.5027763743757
|
16.9987478993157
|
-1.51508010885476
|
17.2942776901016
|
19.7660931597596
|
-3.60623577771614
|
14.4108867873979
|
16.2447698213453
|
-3.94717228218682
|
15.316409812052
|
16.4891016491029
|
-3.78137339083082
|
sigma_v
|
4.21029844914315
|
1623.77111076428
|
8.18491760066961
|
4.18939119979502
|
1622.33549880859
|
8.15073036560541
|
8.18607049768594
|
3964.45339913597
|
7.93450742809862
|
4.35662621773428
|
1645.77655955938
|
7.6435668370875
|
4.23923961592693
|
1639.42085007515
|
7.59462918474114
|
svymthRound_Estimate
|
0.87166589100565
|
189.04290688382
|
-0.0154759587993917
|
0.851989049736817
|
185.318286001897
|
0.0201471237605442
|
0.432815253441723
|
189.877994795061
|
0.00215144302579706
|
0.91961467696139
|
205.597385664745
|
-0.0509574460702806
|
0.921894094780682
|
205.945143306004
|
-0.0557204455206461
|
svymthRound_Pr…t..
|
0
|
0
|
0.0397984032097113
|
0
|
0
|
0.0117151185126433
|
0
|
0
|
0.000447277200167272
|
0
|
0
|
1.37139389802397e-18
|
0
|
0
|
7.79141497751766e-23
|
svymthRound_Std.Error
|
0.00387681209575621
|
1.4955473831309
|
0.00752730297891317
|
0.00411253488213795
|
1.59266949679221
|
0.00799217807522278
|
0.000728323735328998
|
0.352701518968252
|
0.000612792699568233
|
0.00331108017589107
|
1.25083486490652
|
0.00578476859618168
|
0.00317113547025635
|
1.22639878616071
|
0.00565696328562864
|
svymthRound_tvalue
|
224.840892330022
|
126.403823119306
|
-2.05597660181154
|
207.168832400006
|
116.357025971267
|
2.52085521254888
|
594.262183761197
|
538.353209678558
|
3.51088227277012
|
277.738571133786
|
164.368128386085
|
-8.80889965139067
|
290.714194782148
|
167.926734460268
|
-9.84988636256528
|
vars_var.y
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
vars_vars.c
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
vars_vars.x
|
prot
|
prot
|
prot
|
cal
|
cal
|
cal
|
wealthIdx
|
wealthIdx
|
wealthIdx
|
p.A.prot
|
p.A.prot
|
p.A.prot
|
p.A.nProt
|
p.A.nProt
|
p.A.nProt
|
wgt0_Estimate
|
-0.000146104685986986
|
0.637023553461055
|
-0.000903390591533867
|
-0.000116898230009949
|
0.649394003614758
|
-0.000941137072743919
|
0.00122231975126219
|
1.32870822160235
|
-0.000845938526704796
|
-0.000489534836079617
|
0.580023505722658
|
-0.00156196911156061
|
3.23596154259101e-05
|
0.65551206304675
|
-0.00115432723977403
|
wgt0_Pr…t..
|
0.136011583497549
|
2.96480083692757e-63
|
2.05763549729273e-06
|
0.230228828649018
|
7.43034302413852e-66
|
6.66901196231733e-07
|
1.22269348058816e-13
|
6.75367630221077e-62
|
4.32675510884621e-09
|
7.77000489086602e-07
|
7.42419220783427e-54
|
1.40362012201826e-19
|
0.740027016459552
|
4.09082062947785e-67
|
2.75472781728448e-11
|
wgt0_Std.Error
|
9.79994437486573e-05
|
0.0378027371614794
|
0.000190221503167431
|
9.74307633896921e-05
|
0.037739875283113
|
0.000189270503626621
|
0.000164767846917989
|
0.0798131859486402
|
0.000144040382619518
|
9.90410500454311e-05
|
0.0374185042114355
|
0.000172365145002826
|
9.75208524392668e-05
|
0.0377202854835204
|
0.000173241059789276
|
wgt0_tvalue
|
-1.49087260496811
|
16.8512547316329
|
-4.74915073475531
|
-1.19980821193398
|
17.2071051836606
|
-4.97244448929308
|
7.41843614592224
|
16.6477281392748
|
-5.872926128913
|
-4.94274682926991
|
15.5009805428138
|
-9.0619777654873
|
0.331822524275644
|
17.3782370584956
|
-6.66312732777158
|
cal_Estimate
|
NA
|
NA
|
NA
|
0.00243408846205622
|
0.699072500364623
|
-0.00395676177098486
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
cal_Pr…t..
|
NA
|
NA
|
NA
|
8.01672708877986e-120
|
4.71331900885298e-67
|
7.94646124029527e-85
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
cal_Std.Error
|
NA
|
NA
|
NA
|
0.000103833679413418
|
0.0402492068645167
|
0.000201721108117477
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
cal_tvalue
|
NA
|
NA
|
NA
|
23.4421863484661
|
17.3686031309332
|
-19.6150110809452
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_Estimate
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.21045655488185
|
106.678721085969
|
0.451733304543324
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_Pr…t..
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
1.93494257274268e-41
|
3.2548345535026e-45
|
4.82890644822007e-250
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_Std.Error
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.0155791042075745
|
7.54496977117083
|
0.0132483771350785
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_tvalue
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
13.508899618216
|
14.1390521528113
|
34.0972558327347
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
p.A.prot_Estimate
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
3.86952250259526e-05
|
0.00521731297924587
|
0.000149388430455142
|
NA
|
NA
|
NA
|
p.A.prot_Pr…t..
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.000125048896903791
|
0.170833589209346
|
2.88060045451681e-17
|
NA
|
NA
|
NA
|
p.A.prot_Std.Error
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
1.00852286184785e-05
|
0.00380941660201464
|
1.76593895713687e-05
|
NA
|
NA
|
NA
|
p.A.prot_tvalue
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
3.83682180045518
|
1.36958319982295
|
8.45943342783186
|
NA
|
NA
|
NA
|
p.A.nProt_Estimate
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.00542428867316449
|
0.779514232050632
|
0.00526237555581024
|
p.A.nProt_Pr…t..
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
5.25341325077391e-226
|
1.47950939943836e-33
|
3.7685780281174e-70
|
p.A.nProt_Std.Error
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.000166671307872964
|
0.06444313759758
|
0.000295969260771016
|
p.A.nProt_tvalue
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
32.5448257554855
|
12.0961557911467
|
17.7801422421419
|
Test Program IV Return All
vars.z <- c('indi.id')
t(suppressWarnings(suppressMessages(
ff_reg_mbyn(list.vars.y, list.vars.x,
vars.c, vars.z, df,
return_all = TRUE,
stats_ends = 'Estimate')))) %>%
kable() %>%
kable_styling_fc_wide()
X.Intercept._Estimate
|
40.2173991882938
|
1408.1626637032
|
-64.490636067872
|
39.6732302990235
|
1325.54736576331
|
-59.8304089440729
|
35.5561817357046
|
-2791.221534909
|
21.8005242861645
|
24.3009261707644
|
-499.067024090554
|
21.4632286881661
|
25.299209739617
|
-352.278518334717
|
17.9359211844992
|
X.Intercept._Pr…z..
|
3.69748206920405e-59
|
0.00217397545504963
|
0.000109756271656929
|
1.30030240177373e-103
|
0.00138952700443324
|
3.75547414421179e-07
|
2.01357089467444e-142
|
1.95034793045284e-05
|
1.17899313785408e-34
|
1.97968607369592e-84
|
0.155922992163314
|
1.84405333738942e-09
|
1.29388565624566e-157
|
0.287184942021997
|
1.13855583530306e-12
|
X.Intercept._Std.Error
|
2.47963650430699
|
459.377029874119
|
16.673099250727
|
1.83545587849039
|
414.645900526211
|
11.7754321198995
|
1.39936229104453
|
653.605248808641
|
1.77547715237629
|
1.2481331128579
|
351.723712333143
|
3.57067054655531
|
0.945826571474308
|
330.990098562619
|
2.52170174723203
|
X.Intercept._zvalue
|
16.2190704639323
|
3.06537456626657
|
-3.86794531107106
|
21.6149190857443
|
3.19681772828602
|
-5.08095230263053
|
25.4088465605032
|
-4.27050048939585
|
12.2786847788984
|
19.4698193008609
|
-1.41891776582254
|
6.01097984491234
|
26.748254386829
|
-1.0643173915611
|
7.11262590993832
|
hgt0_Estimate
|
0.403139725681418
|
35.5765914326678
|
1.20995060148712
|
0.357976348180876
|
31.0172706497394
|
1.5037447089682
|
0.460434521499963
|
59.1545587745268
|
0.412512139031067
|
0.515794899569023
|
46.2591615803265
|
0.520812513246773
|
0.510868687340428
|
45.5654716961559
|
0.534362107844268
|
hgt0_Pr…z..
|
1.25009876641748e-13
|
0.000445802636381424
|
0.00097112649404847
|
2.82141265004339e-17
|
0.0013100303315764
|
3.70002169470828e-08
|
2.98739737280869e-37
|
0.000542570320022534
|
3.02226357947691e-20
|
8.57492956381676e-59
|
2.8561488738123e-07
|
1.10039023747789e-08
|
3.24936430168307e-102
|
6.3454545304127e-08
|
3.42500501176006e-17
|
hgt0_Std.Error
|
0.0543948312973965
|
10.1318250572006
|
0.366789440587685
|
0.0423453726223874
|
9.65135595900306
|
0.273179527952317
|
0.0361031059207763
|
17.1025823111635
|
0.0447499166716409
|
0.0319035514861838
|
9.01263684093548
|
0.0911390672920558
|
0.0237991645877977
|
8.42434865398195
|
0.063380058773461
|
hgt0_zvalue
|
7.41136089709158
|
3.51137048180512
|
3.29876072644971
|
8.45373003027063
|
3.21377335801252
|
5.50460248701607
|
12.7533216258548
|
3.45880859967647
|
9.21816552325528
|
16.1673191711084
|
5.13270005180026
|
5.71448149208973
|
21.4658243761363
|
5.40878275196011
|
8.4310762436216
|
prot_Estimate
|
0.859205733632614
|
98.9428234201406
|
-6.02451379136132
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
prot_Pr…z..
|
6.88427338202428e-19
|
2.09631602352917e-08
|
2.94171378745816e-20
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
prot_Std.Error
|
0.0967928354481331
|
17.6561952052848
|
0.653342710289155
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
prot_zvalue
|
8.87674929300964
|
5.60385871756365
|
-9.22106223347162
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
Sargan_df1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
sexMale_Estimate
|
0.154043421788007
|
333.799680049259
|
5.41175429817609
|
0.106307556057668
|
330.452608866758
|
5.83118942788808
|
1.80283907885782
|
997.747599807148
|
-0.452827875182598
|
1.02741625216018
|
411.365911332896
|
-0.789122421167432
|
1.02009164592608
|
409.820707458838
|
-0.746032636368145
|
sexMale_Pr…z..
|
0.38807812932888
|
5.06413216642981e-24
|
5.80077629932476e-06
|
0.423490075745117
|
2.52735690930834e-27
|
6.12283824664132e-12
|
1.1689328480129e-65
|
2.02347084785411e-89
|
0.000647195788038449
|
1.69796551008584e-27
|
2.05327249429949e-54
|
0.00428270841484855
|
1.70848440093529e-51
|
2.36314216739034e-62
|
6.57521045473888e-05
|
sexMale_Std.Error
|
0.178475271469781
|
33.0216035385405
|
1.19371921154418
|
0.132821186086547
|
30.5174257711927
|
0.847955715223327
|
0.105343525210948
|
49.7632792630648
|
0.132754263303719
|
0.0945646985181925
|
26.4822313532216
|
0.276250047248363
|
0.0675715533063635
|
24.5920104216267
|
0.18692145837209
|
sexMale_zvalue
|
0.86310792817082
|
10.1085242471545
|
4.53352366774387
|
0.800381017440976
|
10.8283251459136
|
6.87676174970095
|
17.113904962338
|
20.0498764266063
|
-3.41102322376347
|
10.8646912458831
|
15.5336574870174
|
-2.85655126226267
|
15.0964658352764
|
16.6647907361992
|
-3.99115565898846
|
svymthRound_Estimate
|
0.20990165085783
|
121.78985943172
|
4.84745570027424
|
0.322893837128574
|
135.494858749214
|
4.07024693316581
|
0.433164820953121
|
190.07735139541
|
0.0137438264666969
|
1.00582859923509
|
218.549980922774
|
-0.369567838754916
|
0.929266902426869
|
207.078222946319
|
-0.0985678389223824
|
svymthRound_Pr…z..
|
0.00846239710392287
|
5.96047652813855e-17
|
2.07373887977152e-19
|
9.66146445882893e-11
|
4.48931446042076e-34
|
5.64723572160763e-36
|
0
|
0
|
1.57416908709431e-66
|
0
|
0
|
2.42696379701225e-102
|
0
|
0
|
1.84569897952709e-27
|
svymthRound_Std.Error
|
0.0797183179471441
|
14.5577085129475
|
0.538050140685815
|
0.0498896912188091
|
11.133488331472
|
0.325043349284718
|
0.00120472816008751
|
0.739269879490032
|
0.000797655931686456
|
0.00746867714609297
|
1.9315711781906
|
0.0172056989832505
|
0.00539330635998817
|
1.46167854745858
|
0.00907867488118012
|
svymthRound_zvalue
|
2.63304164291327
|
8.36600480930094
|
9.00930105527994
|
6.47215545416802
|
12.1700274626596
|
12.5221664806331
|
359.553993426746
|
257.11496798237
|
17.2302692435808
|
134.672925279848
|
113.146221785884
|
-21.4793853545086
|
172.300040161061
|
141.671520941705
|
-10.8570733297996
|
vars_var.y
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
hgt
|
wgt
|
vil.id
|
vars_vars.c
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
sex+wgt0+hgt0+svymthRound
|
vars_vars.x
|
prot
|
prot
|
prot
|
cal
|
cal
|
cal
|
wealthIdx
|
wealthIdx
|
wealthIdx
|
p.A.prot
|
p.A.prot
|
p.A.prot
|
p.A.nProt
|
p.A.nProt
|
p.A.nProt
|
vars_vars.z
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
indi.id
|
Weakinstruments_df1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
Weakinstruments_df2
|
18957
|
18962
|
18999
|
18957
|
18962
|
18999
|
25092
|
25102
|
30013
|
18587
|
18591
|
18845
|
18587
|
18591
|
18845
|
Weakinstruments_p.value
|
1.42153759923994e-19
|
4.45734829676713e-19
|
5.72345606957941e-20
|
1.77770827184424e-37
|
4.03760292920738e-37
|
5.47447735093002e-38
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
Weakinstruments_statistic
|
82.0931934821266
|
79.8251182827386
|
83.8989817367586
|
164.392129625299
|
162.747072038429
|
166.75260665498
|
7029.47383089383
|
7038.38467113128
|
12942.6315513372
|
1710.98122418591
|
1715.15052113399
|
1725.71954882902
|
5097.88462603711
|
5110.7741807338
|
5136.55662964887
|
wgt0_Estimate
|
-0.00163274724538111
|
0.492582112313709
|
0.00999798623641602
|
-0.000658938519302931
|
0.601258436431587
|
0.00326074237566435
|
0.00112485055604169
|
1.27282038539707
|
-0.00512158791392237
|
0.000716628918444932
|
0.761704518610475
|
-0.00601345031606092
|
0.000922100117259348
|
0.792700893714085
|
-0.00668277875606482
|
wgt0_Pr…z..
|
4.88365163639597e-08
|
2.33136555228405e-20
|
7.95432753711715e-07
|
0.00032843149807424
|
2.0921134733036e-48
|
0.00667886646012294
|
2.26123807446765e-11
|
6.67525280062144e-56
|
6.51923753120087e-127
|
2.43477572076212e-06
|
8.2201479288098e-69
|
5.19751747217521e-44
|
1.68237436753105e-15
|
4.81415543564975e-82
|
2.54848840100353e-105
|
wgt0_Std.Error
|
0.00029928487659495
|
0.0532753838702833
|
0.00202532507408065
|
0.000183457551985601
|
0.0411255751282477
|
0.00120214094164169
|
0.000168187467853553
|
0.08080475140115
|
0.000213715312589078
|
0.000152036990658929
|
0.0434474820359048
|
0.00043218241369976
|
0.00011580150512068
|
0.0413159097814445
|
0.000306609919182859
|
wgt0_zvalue
|
-5.45549532591606
|
9.24596082710666
|
4.93648469787221
|
-3.59177647456371
|
14.6200614716414
|
2.71244598924594
|
6.68807593334564
|
15.7518012657231
|
-23.9645341827701
|
4.71351685756907
|
17.531614789115
|
-13.9141485757875
|
7.96276452796019
|
19.1863351892132
|
-21.7957030675165
|
Wu.Hausman_df1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
Wu.Hausman_df2
|
18956
|
18961
|
18998
|
18956
|
18961
|
18998
|
25091
|
25101
|
30012
|
18586
|
18590
|
18844
|
18586
|
18590
|
18844
|
Wu.Hausman_p.value
|
1.53929570343279e-118
|
3.13415891402799e-08
|
0
|
2.88592507054107e-108
|
7.6495944085204e-07
|
0
|
0.0221987672063003
|
0.0099360023036833
|
0
|
1.80909125272768e-238
|
2.14946499922491e-35
|
0
|
3.15182965429765e-108
|
1.7681125741529e-17
|
0
|
Wu.Hausman_statistic
|
543.467268879953
|
30.6481856102772
|
5652.51924792859
|
494.955883488045
|
24.4605456760994
|
5583.56513052781
|
5.23078768861684
|
6.6473469952822
|
25949.7118056025
|
1119.87022468742
|
154.793296861581
|
4826.92242730041
|
494.903094649183
|
72.530787010352
|
7607.83405438193
|
cal_Estimate
|
NA
|
NA
|
NA
|
0.0238724384575419
|
2.71948246216953
|
-0.168054407187466
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
cal_Pr…z..
|
NA
|
NA
|
NA
|
1.44956616452661e-33
|
9.21076021290446e-10
|
5.67614501764414e-39
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
cal_Std.Error
|
NA
|
NA
|
NA
|
0.00197718112735887
|
0.444177077282291
|
0.0128692506794877
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
cal_zvalue
|
NA
|
NA
|
NA
|
12.0739764947235
|
6.1225187008946
|
-13.0586007975839
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_Estimate
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.144503490136948
|
69.1816142883022
|
-1.91414470908345
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_Pr…z..
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
3.72983264926432e-06
|
2.23442991281176e-07
|
0
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_Std.Error
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.0312379492766376
|
13.358888551386
|
0.0371054140359243
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
wealthIdx_zvalue
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
4.62589553677969
|
5.17869536991717
|
-51.5866689219593
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
p.A.prot_Estimate
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.00148073028434642
|
0.221916473012486
|
-0.00520794333267238
|
NA
|
NA
|
NA
|
p.A.prot_Pr…z..
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
2.50759287066563e-156
|
8.30126393398654e-33
|
3.00201194005694e-197
|
NA
|
NA
|
NA
|
p.A.prot_Std.Error
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
5.55884799941827e-05
|
0.0186022369560791
|
0.000173813943639721
|
NA
|
NA
|
NA
|
p.A.prot_zvalue
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
26.6373587567312
|
11.9295584469998
|
-29.9627476577329
|
NA
|
NA
|
NA
|
p.A.nProt_Estimate
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.0141317656200726
|
2.11856940494335
|
-0.0494468877742109
|
p.A.nProt_Pr…z..
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
2.61782083774363e-226
|
4.81511329043196e-35
|
0
|
p.A.nProt_Std.Error
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
0.000440019589949091
|
0.17153115470458
|
0.00128926108222202
|
p.A.nProt_zvalue
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
NA
|
32.1162192385744
|
12.3509307017263
|
-38.3528894620707
|
Program Line by Line
Set Up Parameters
vars.z <- c('indi.id')
vars.z <- NULL
vars.c <- c('sex', 'wgt0', 'hgt0', 'svymthRound')
Lapply
df.reg.out <- as_tibble(
bind_rows(lapply(list.vars.y, regf.iv,
vars.x=var.x1, vars.c=vars.c, vars.z=vars.z, df=df)))
Nested Lapply Test
lapply(list.vars.y, function(y) (mean(df[[var.x1]], na.rm=TRUE) +
mean(df[[y]], na.rm=TRUE)))
## [[1]]
## [1] 98.3272
##
## [[2]]
## [1] 13626.51
##
## [[3]]
## [1] 26.11226
lapplytwice <- lapply(
list.vars.x, function(x) (
lapply(list.vars.y, function(y) (mean(df[[x]], na.rm=TRUE) +
mean(df[[y]], na.rm=TRUE)))))
# lapplytwice
Nested Lapply All
df.reg.out.all <- bind_rows(
lapply(list.vars.x,
function(x) (
bind_rows(
lapply(list.vars.y, regf.iv,
vars.x=x, vars.c=vars.c, vars.z=vars.z, df=df))
)))
# df.reg.out.all %>%
# kable() %>%
# kable_styling_fc_wide()
Nested Lapply Select
df.reg.out.all <-
(lapply(list.vars.x,
function(x) (
bind_rows(lapply(list.vars.y, regf.iv,
vars.x=x, vars.c=vars.c, vars.z=vars.z, df=df)) %>%
select(vars_var.y, starts_with(x)) %>%
select(vars_var.y, ends_with('value'))
))) %>% reduce(full_join)
df.reg.out.all %>%
kable() %>%
kable_styling_fc_wide()
vars_var.y
|
prot_tvalue
|
cal_tvalue
|
wealthIdx_tvalue
|
p.A.prot_tvalue
|
p.A.nProt_tvalue
|
hgt
|
18.8756010031786
|
23.4421863484661
|
13.508899618216
|
3.83682180045518
|
32.5448257554855
|
wgt
|
16.3591125056062
|
17.3686031309332
|
14.1390521528113
|
1.36958319982295
|
12.0961557911467
|
vil.id
|
-14.9385580468907
|
-19.6150110809452
|
34.0972558327347
|
8.45943342783186
|
17.7801422421419
|