Go to the RMD, R, PDF, or HTML version of this file. Go back to fan’s REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).
See the ff_opti_bisect_pmap_multi function from Fan’s REconTools Package, which provides a resuable function based on the algorithm worked out here.
The bisection specific code does not need to do much.
This is how I implement the bisection algorithm, when we know the bounding minimum and maximum to be below and above zero already.
Generate New columns of a and b as we iteratre, do not need to store p, p is temporary. Evaluate the function below which we have already tested, but now, in the dataframe before generating all permutations, tb_states_choices, now the fl_N element will be changing with each iteration, it will be row specific. fl_N are first min and max, then each subsequent ps.
Prepare Input Data:
# Parameters
fl_rho = 0.20
svr_id_var = 'INDI_ID'
# P fixed parameters, nN is N dimensional, nP is P dimensional
ar_nN_A = seq(-2, 2, length.out = 4)
ar_nN_alpha = seq(0.1, 0.9, length.out = 4)
# Choice Grid for nutritional feasible choices for each
fl_N_agg = 100
fl_N_min = 0
# Mesh Expand
tb_states_choices <- as_tibble(cbind(ar_nN_A, ar_nN_alpha)) %>%
rowid_to_column(var=svr_id_var)
# Convert Matrix to Tibble
ar_st_col_names = c(svr_id_var,'fl_A', 'fl_alpha')
tb_states_choices <- tb_states_choices %>% rename_all(~c(ar_st_col_names))
Prepare Function:
# Define Implicit Function
ffi_nonlin_dplyrdo <- function(fl_A, fl_alpha, fl_N, ar_A, ar_alpha, fl_N_agg, fl_rho){
ar_p1_s1 = exp((fl_A - ar_A)*fl_rho)
ar_p1_s2 = (fl_alpha/ar_alpha)
ar_p1_s3 = (1/(ar_alpha*fl_rho - 1))
ar_p1 = (ar_p1_s1*ar_p1_s2)^ar_p1_s3
ar_p2 = fl_N^((fl_alpha*fl_rho-1)/(ar_alpha*fl_rho-1))
ar_overall = ar_p1*ar_p2
fl_overall = fl_N_agg - sum(ar_overall)
return(fl_overall)
}
Initialize the matrix with \(a_0\) and \(b_0\), the initial min and max points:
# common prefix to make reshaping easier
st_bisec_prefix <- 'bisec_'
svr_a_lst <- paste0(st_bisec_prefix, 'a_0')
svr_b_lst <- paste0(st_bisec_prefix, 'b_0')
svr_fa_lst <- paste0(st_bisec_prefix, 'fa_0')
svr_fb_lst <- paste0(st_bisec_prefix, 'fb_0')
# Add initial a and b
tb_states_choices_bisec <- tb_states_choices %>%
mutate(!!sym(svr_a_lst) := fl_N_min, !!sym(svr_b_lst) := fl_N_agg)
# Evaluate function f(a_0) and f(b_0)
tb_states_choices_bisec <- tb_states_choices_bisec %>%
rowwise() %>%
mutate(!!sym(svr_fa_lst) := ffi_nonlin_dplyrdo(fl_A, fl_alpha, !!sym(svr_a_lst),
ar_nN_A, ar_nN_alpha,
fl_N_agg, fl_rho),
!!sym(svr_fb_lst) := ffi_nonlin_dplyrdo(fl_A, fl_alpha, !!sym(svr_b_lst),
ar_nN_A, ar_nN_alpha,
fl_N_agg, fl_rho))
# Summarize
dim(tb_states_choices_bisec)
## [1] 4 7
# summary(tb_states_choices_bisec)
Implement the DPLYR based Concurrent bisection algorithm.
# fl_tol = float tolerance criteria
# it_tol = number of interations to allow at most
fl_tol <- 10^-2
it_tol <- 100
# fl_p_dist2zr = distance to zero to initalize
fl_p_dist2zr <- 1000
it_cur <- 0
while (it_cur <= it_tol && fl_p_dist2zr >= fl_tol ) {
it_cur <- it_cur + 1
# New Variables
svr_a_cur <- paste0(st_bisec_prefix, 'a_', it_cur)
svr_b_cur <- paste0(st_bisec_prefix, 'b_', it_cur)
svr_fa_cur <- paste0(st_bisec_prefix, 'fa_', it_cur)
svr_fb_cur <- paste0(st_bisec_prefix, 'fb_', it_cur)
# Evaluate function f(a_0) and f(b_0)
# 1. generate p
# 2. generate f_p
# 3. generate f_p*f_a
tb_states_choices_bisec <- tb_states_choices_bisec %>%
rowwise() %>%
mutate(p = ((!!sym(svr_a_lst) + !!sym(svr_b_lst))/2)) %>%
mutate(f_p = ffi_nonlin_dplyrdo(fl_A, fl_alpha, p,
ar_nN_A, ar_nN_alpha,
fl_N_agg, fl_rho)) %>%
mutate(f_p_t_f_a = f_p*!!sym(svr_fa_lst))
# fl_p_dist2zr = sum(abs(p))
fl_p_dist2zr <- mean(abs(tb_states_choices_bisec %>% pull(f_p)))
# Update a and b
tb_states_choices_bisec <- tb_states_choices_bisec %>%
mutate(!!sym(svr_a_cur) :=
case_when(f_p_t_f_a < 0 ~ !!sym(svr_a_lst),
TRUE ~ p)) %>%
mutate(!!sym(svr_b_cur) :=
case_when(f_p_t_f_a < 0 ~ p,
TRUE ~ !!sym(svr_b_lst)))
# Update f(a) and f(b)
tb_states_choices_bisec <- tb_states_choices_bisec %>%
mutate(!!sym(svr_fa_cur) :=
case_when(f_p_t_f_a < 0 ~ !!sym(svr_fa_lst),
TRUE ~ f_p)) %>%
mutate(!!sym(svr_fb_cur) :=
case_when(f_p_t_f_a < 0 ~ f_p,
TRUE ~ !!sym(svr_fb_lst)))
# Save from last
svr_a_lst <- svr_a_cur
svr_b_lst <- svr_b_cur
svr_fa_lst <- svr_fa_cur
svr_fb_lst <- svr_fb_cur
# Summar current round
print(paste0('it_cur:', it_cur, ', fl_p_dist2zr:', fl_p_dist2zr))
summary(tb_states_choices_bisec %>%
select(one_of(svr_a_cur, svr_b_cur, svr_fa_cur, svr_fb_cur)))
}
## [1] "it_cur:1, fl_p_dist2zr:1597.93916362849"
## [1] "it_cur:2, fl_p_dist2zr:676.06602535902"
## [1] "it_cur:3, fl_p_dist2zr:286.850590132782"
## [1] "it_cur:4, fl_p_dist2zr:117.225493866655"
## [1] "it_cur:5, fl_p_dist2zr:37.570593471664"
## [1] "it_cur:6, fl_p_dist2zr:4.60826664896022"
## [1] "it_cur:7, fl_p_dist2zr:14.4217689135683"
## [1] "it_cur:8, fl_p_dist2zr:8.38950830086659"
## [1] "it_cur:9, fl_p_dist2zr:3.93347761455868"
## [1] "it_cur:10, fl_p_dist2zr:1.88261338941038"
## [1] "it_cur:11, fl_p_dist2zr:0.744478952222305"
## [1] "it_cur:12, fl_p_dist2zr:0.187061801237917"
## [1] "it_cur:13, fl_p_dist2zr:0.117844913432613"
## [1] "it_cur:14, fl_p_dist2zr:0.0275365951418891"
## [1] "it_cur:15, fl_p_dist2zr:0.0515488156908255"
## [1] "it_cur:16, fl_p_dist2zr:0.0191152349149135"
## [1] "it_cur:17, fl_p_dist2zr:0.00385372194545752"
To view results easily, how iterations improved to help us find the roots, convert table from wide to long. Pivot twice. This allows us to easily graph out how bisection is working out iterationby iteration.
Here, we will first show what the raw table looks like, the wide only table, and then show the long version, and finally the version that is medium wide.
Show what the tb_states_choices_bisec looks like.
Variables are formatted like: bisec_xx_yy, where yy is the iteration indicator, and xx is either a, b, fa, or fb.
kable(head(t(tb_states_choices_bisec), 25)) %>%
kable_styling_fc()
INDI_ID | 1.000000e+00 | 2.0000000 | 3.0000000 | 4.0000000 |
fl_A | -2.000000e+00 | -0.6666667 | 0.6666667 | 2.0000000 |
fl_alpha | 1.000000e-01 | 0.3666667 | 0.6333333 | 0.9000000 |
bisec_a_0 | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 |
bisec_b_0 | 1.000000e+02 | 100.0000000 | 100.0000000 | 100.0000000 |
bisec_fa_0 | 1.000000e+02 | 100.0000000 | 100.0000000 | 100.0000000 |
bisec_fb_0 | -1.288028e+04 | -1394.7069782 | -323.9421599 | -51.9716069 |
p | 1.544952e+00 | 8.5838318 | 24.8359680 | 65.0367737 |
f_p | -7.637200e-03 | -0.0052211 | -0.0016162 | -0.0009405 |
f_p_t_f_a | -3.800000e-04 | -0.0000237 | -0.0000025 | -0.0000002 |
bisec_a_1 | 0.000000e+00 | 0.0000000 | 0.0000000 | 50.0000000 |
bisec_b_1 | 5.000000e+01 | 50.0000000 | 50.0000000 | 100.0000000 |
bisec_fa_1 | 1.000000e+02 | 100.0000000 | 100.0000000 | 22.5557704 |
bisec_fb_1 | -5.666956e+03 | -595.7345364 | -106.5105843 | -51.9716069 |
bisec_a_2 | 0.000000e+00 | 0.0000000 | 0.0000000 | 50.0000000 |
bisec_b_2 | 2.500000e+01 | 25.0000000 | 25.0000000 | 75.0000000 |
bisec_fa_2 | 1.000000e+02 | 100.0000000 | 100.0000000 | 22.5557704 |
bisec_fb_2 | -2.464562e+03 | -224.1460032 | -0.6857375 | -14.8701831 |
bisec_a_3 | 0.000000e+00 | 0.0000000 | 12.5000000 | 62.5000000 |
bisec_b_3 | 1.250000e+01 | 12.5000000 | 25.0000000 | 75.0000000 |
bisec_fa_3 | 1.000000e+02 | 100.0000000 | 50.8640414 | 3.7940196 |
bisec_fb_3 | -1.041574e+03 | -51.1700464 | -0.6857375 | -14.8701831 |
bisec_a_4 | 0.000000e+00 | 6.2500000 | 18.7500000 | 62.5000000 |
bisec_b_4 | 6.250000e+00 | 12.5000000 | 25.0000000 | 68.7500000 |
bisec_fa_4 | 1.000000e+02 | 29.4271641 | 25.2510409 | 3.7940196 |
# str(tb_states_choices_bisec)
We want to treat the iteration count information that is the suffix of variable names as a variable by itself. Additionally, we want to treat the a,b,fa,fb as a variable. Structuring the data very long like this allows for easy graphing and other types of analysis. Rather than dealing with many many variables, we have only 3 core variables that store bisection iteration information.
Here we use the very nice pivot_longer function. Note that to achieve this, we put a common prefix in front of the variables we wanted to convert to long. THis is helpful, because we can easily identify which variables need to be reshaped.
# New variables
svr_bisect_iter <- 'biseciter'
svr_abfafb_long_name <- 'varname'
svr_number_col <- 'value'
svr_id_bisect_iter <- paste0(svr_id_var, '_bisect_ier')
# Pivot wide to very long
tb_states_choices_bisec_long <- tb_states_choices_bisec %>%
pivot_longer(
cols = starts_with(st_bisec_prefix),
names_to = c(svr_abfafb_long_name, svr_bisect_iter),
names_pattern = paste0(st_bisec_prefix, "(.*)_(.*)"),
values_to = svr_number_col
)
# Print
# summary(tb_states_choices_bisec_long)
kable(head(tb_states_choices_bisec_long %>%
select(-one_of('p','f_p','f_p_t_f_a')), 15)) %>%
kable_styling_fc()
INDI_ID | fl_A | fl_alpha | varname | biseciter | value |
---|---|---|---|---|---|
1 | -2 | 0.1 | a | 0 | 0.000 |
1 | -2 | 0.1 | b | 0 | 100.000 |
1 | -2 | 0.1 | fa | 0 | 100.000 |
1 | -2 | 0.1 | fb | 0 | -12880.284 |
1 | -2 | 0.1 | a | 1 | 0.000 |
1 | -2 | 0.1 | b | 1 | 50.000 |
1 | -2 | 0.1 | fa | 1 | 100.000 |
1 | -2 | 0.1 | fb | 1 | -5666.956 |
1 | -2 | 0.1 | a | 2 | 0.000 |
1 | -2 | 0.1 | b | 2 | 25.000 |
1 | -2 | 0.1 | fa | 2 | 100.000 |
1 | -2 | 0.1 | fb | 2 | -2464.562 |
1 | -2 | 0.1 | a | 3 | 0.000 |
1 | -2 | 0.1 | b | 3 | 12.500 |
1 | -2 | 0.1 | fa | 3 | 100.000 |
kable(tail(tb_states_choices_bisec_long %>%
select(-one_of('p','f_p','f_p_t_f_a')), 15)) %>%
kable_styling_fc()
INDI_ID | fl_A | fl_alpha | varname | biseciter | value |
---|---|---|---|---|---|
4 | 2 | 0.9 | b | 14 | 65.0390625 |
4 | 2 | 0.9 | fa | 14 | 0.0047633 |
4 | 2 | 0.9 | fb | 14 | -0.0043628 |
4 | 2 | 0.9 | a | 15 | 65.0360107 |
4 | 2 | 0.9 | b | 15 | 65.0390625 |
4 | 2 | 0.9 | fa | 15 | 0.0002003 |
4 | 2 | 0.9 | fb | 15 | -0.0043628 |
4 | 2 | 0.9 | a | 16 | 65.0360107 |
4 | 2 | 0.9 | b | 16 | 65.0375366 |
4 | 2 | 0.9 | fa | 16 | 0.0002003 |
4 | 2 | 0.9 | fb | 16 | -0.0020812 |
4 | 2 | 0.9 | a | 17 | 65.0360107 |
4 | 2 | 0.9 | b | 17 | 65.0367737 |
4 | 2 | 0.9 | fa | 17 | 0.0002003 |
4 | 2 | 0.9 | fb | 17 | -0.0009405 |
But the previous results are too long, with the a, b, fa, and fb all in one column as different categories, they are really not different categories, they are in fact different types of variables. So we want to spread those four categories of this variable into four columns, each one representing the a, b, fa, and fb values. The rows would then be uniquly identified by the iteration counter and individual ID.
# Pivot wide to very long to a little wide
tb_states_choices_bisec_wider <- tb_states_choices_bisec_long %>%
pivot_wider(
names_from = !!sym(svr_abfafb_long_name),
values_from = svr_number_col
)
# Print
# summary(tb_states_choices_bisec_wider)
kable(head(tb_states_choices_bisec_wider %>%
select(-one_of('p','f_p','f_p_t_f_a')), 10)) %>%
kable_styling_fc_wide()
INDI_ID | fl_A | fl_alpha | biseciter | a | b | fa | fb |
---|---|---|---|---|---|---|---|
1 | -2 | 0.1 | 0 | 0.000000 | 100.0000 | 100.00000 | -12880.283918 |
1 | -2 | 0.1 | 1 | 0.000000 | 50.0000 | 100.00000 | -5666.955763 |
1 | -2 | 0.1 | 2 | 0.000000 | 25.0000 | 100.00000 | -2464.562178 |
1 | -2 | 0.1 | 3 | 0.000000 | 12.5000 | 100.00000 | -1041.574253 |
1 | -2 | 0.1 | 4 | 0.000000 | 6.2500 | 100.00000 | -408.674764 |
1 | -2 | 0.1 | 5 | 0.000000 | 3.1250 | 100.00000 | -126.904283 |
1 | -2 | 0.1 | 6 | 0.000000 | 1.5625 | 100.00000 | -1.328965 |
1 | -2 | 0.1 | 7 | 0.781250 | 1.5625 | 54.69612 | -1.328965 |
1 | -2 | 0.1 | 8 | 1.171875 | 1.5625 | 27.46061 | -1.328965 |
1 | -2 | 0.1 | 9 | 1.367188 | 1.5625 | 13.23495 | -1.328965 |
kable(head(tb_states_choices_bisec_wider %>%
select(-one_of('p','f_p','f_p_t_f_a')), 10)) %>%
kable_styling_fc_wide()
INDI_ID | fl_A | fl_alpha | biseciter | a | b | fa | fb |
---|---|---|---|---|---|---|---|
1 | -2 | 0.1 | 0 | 0.000000 | 100.0000 | 100.00000 | -12880.283918 |
1 | -2 | 0.1 | 1 | 0.000000 | 50.0000 | 100.00000 | -5666.955763 |
1 | -2 | 0.1 | 2 | 0.000000 | 25.0000 | 100.00000 | -2464.562178 |
1 | -2 | 0.1 | 3 | 0.000000 | 12.5000 | 100.00000 | -1041.574253 |
1 | -2 | 0.1 | 4 | 0.000000 | 6.2500 | 100.00000 | -408.674764 |
1 | -2 | 0.1 | 5 | 0.000000 | 3.1250 | 100.00000 | -126.904283 |
1 | -2 | 0.1 | 6 | 0.000000 | 1.5625 | 100.00000 | -1.328965 |
1 | -2 | 0.1 | 7 | 0.781250 | 1.5625 | 54.69612 | -1.328965 |
1 | -2 | 0.1 | 8 | 1.171875 | 1.5625 | 27.46061 | -1.328965 |
1 | -2 | 0.1 | 9 | 1.367188 | 1.5625 | 13.23495 | -1.328965 |
Actually we want to graph based on the long results, not the wider. Wider easier to view in table.
# Graph results
lineplot <- tb_states_choices_bisec_long %>%
mutate(!!sym(svr_bisect_iter) := as.numeric(!!sym(svr_bisect_iter))) %>%
filter(!!sym(svr_abfafb_long_name) %in% c('a', 'b')) %>%
ggplot(aes(x=!!sym(svr_bisect_iter), y=!!sym(svr_number_col),
colour=!!sym(svr_abfafb_long_name),
linetype=!!sym(svr_abfafb_long_name),
shape=!!sym(svr_abfafb_long_name))) +
facet_wrap( ~ INDI_ID) +
geom_line() +
geom_point() +
labs(title = 'Bisection Iteration over individuals Until Convergence',
x = 'Bisection Iteration',
y = 'a (left side point) and b (right side point) values',
caption = 'DPLYR concurrent bisection nonlinear multple individuals') +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
print(lineplot)