Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • 1 Find Closest Neighbor on Grid
    • 1.1 Closest Neighbor on Grid

1 Find Closest Neighbor on Grid

Go to the RMD, R, PDF, or HTML version of this file. Go back to fan’s REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

Using the pivot_wider function in tidyr to reshape panel or other data structures

1.1 Closest Neighbor on Grid

There is a dataframe that provides V(coh,a,cev) levels. There is another dataframe with ˆV(coh,a), for each coh,a, find the cev that such that the difference between ˆV(coh,a) and V(coh,a,cev) is minimized.

V and ˆV information are stored in a dataframe in the csv folder in the current directory. In fact, we have one V surface, but multiple ˆV files, so we want to do the find closest neighbor exercise for each one of the several ˆV files.

The structure is as follows: (1) Load in the V file, where coh,a,cev are all variable attributes. (2) Merge with one ˆV file. (3) Take the difference between the V and ˆV columns, and take the absolute value of the difference. (4) Group by coh,a, and sort to get the smallest absolute difference among the cev possibilities, and slice out the row for the smallest. (5) Now We have V(coh,a,cev⋆(coh,a)). (6) Do this for each of the several ˆV files. (7) Stack the results from 1 through 6 together, generate a column that identifies which simulation/exercise/counterfactual each of the ˆV file comes from. (8) Visualize by plotting as subplot different a, coh is x-axis, different ˆV outcome are different lines, and cev⋆(coh,a,ˆV) is the y-axis outcome.

First, load the CEV file.

# folder
spt_root <- c('C:/Users/fan/R4Econ/panel/join/_file/csv')
# cev surface file, the V file
snm_cev_surface <- 'e_19E1NEp99r99_ITG_PE_cev_subsettest.csv'
mt_cev_surface <- read.csv(file = file.path(spt_root, snm_cev_surface))
tb_cev_surface <- as_tibble(mt_cev_surface) %>%
  rename(EjVcev = EjV)

Second, loop over the V hat files, join V with V hat:

ls_tb_cev_surfhat = vector(mode = "list", length = 4)
for (it_simu_counter in c(1,2,3,4)) {

    # conditionally change file names
    if (it_simu_counter == 1) {
        st_counter <- '19E1NEp99r99'
    } else if (it_simu_counter == 2) {
        st_counter <- '19E1NEp02r99'
    } else if (it_simu_counter == 3) {
        st_counter <- '19E1NEp02per02ger99'
    } else if (it_simu_counter == 4) {
        st_counter <- '19E1NEp02r02'
    }
    snm_v_hat <- paste0('e_', st_counter, '_ITG_PE_subsettest.csv')
    
    # Overall path to files
    mt_v_hat <- read.csv(file = file.path(spt_root, snm_v_hat))
    tb_v_hat <- as_tibble(mt_v_hat) %>%
      select(prod_type_lvl, statesid, EjV)
    
    # Merge file using key 
    tb_cev_surfhat <- tb_cev_surface %>%
      left_join(tb_v_hat, by=(c('prod_type_lvl'='prod_type_lvl', 
                                'statesid'='statesid'))) %>%
      arrange(statesid, prod_type_lvl, cev_lvl) %>%
      mutate(counter_policy = st_counter)
    
    # Store to list
    ls_tb_cev_surfhat[[it_simu_counter]] <- tb_cev_surfhat
}

# Display
kable(ls_tb_cev_surfhat[[1]][seq(1, 40, 5),]) %>% kable_styling_fc_wide()
X cev_st cev_lvl prod_type_st prod_type_lvl statesid cash_tt EjVcev EjV counter_policy
1 cev-2000 -0.2000 A0 0 526 32.84747 -1.0479929 -0.7957419 19E1NEp99r99
1501 cev-947 -0.0947 A0 0 526 32.84747 -0.9079859 -0.7957419 19E1NEp99r99
3001 cev105 0.0105 A0 0 526 32.84747 -0.7880156 -0.7957419 19E1NEp99r99
4501 cev1157 0.1157 A0 0 526 32.84747 -0.6803586 -0.7957419 19E1NEp99r99
51 cev-2000 -0.2000 A2504 2504 526 32.90371 -1.0002921 -0.7504785 19E1NEp99r99
1551 cev-947 -0.0947 A2504 2504 526 32.90371 -0.8613743 -0.7504785 19E1NEp99r99
3051 cev105 0.0105 A2504 2504 526 32.90371 -0.7423281 -0.7504785 19E1NEp99r99
4551 cev1157 0.1157 A2504 2504 526 32.90371 -0.6354620 -0.7504785 19E1NEp99r99

Third, sort each file, and keep only the best match rows that minimize the absolute distance between EjV and EjVcev.

ls_tb_cev_matched = vector(mode = "list", length = 4)
for (it_simu_counter in c(1,2,3,4)) {

    # Load merged file
    tb_cev_surfhat <- ls_tb_cev_surfhat[[it_simu_counter]]

    # Difference Column
    tb_cev_surfhat <- tb_cev_surfhat %>% 
      mutate(EjVcev_gap = abs(EjVcev - EjV))
    
    # Group by, Arrange and Slice, get lowest gap
    tb_cev_matched <- tb_cev_surfhat %>% 
      arrange(statesid, prod_type_lvl, EjVcev_gap) %>%
      group_by(statesid, prod_type_lvl) %>%
      slice_head(n=1)

    # Store to list
    ls_tb_cev_matched[[it_simu_counter]] <- tb_cev_matched
}

# Display
kable(ls_tb_cev_matched[[2]][seq(1, 30, 1),]) %>% kable_styling_fc_wide()
X cev_st cev_lvl prod_type_st prod_type_lvl statesid cash_tt EjVcev EjV counter_policy EjVcev_gap
3001 cev105 0.0105 A0 0 526 32.847471 -0.7880156 -0.7928034 19E1NEp02r99 0.0047878
3051 cev105 0.0105 A2504 2504 526 32.903714 -0.7423281 -0.7480617 19E1NEp02r99 0.0057336
3101 cev105 0.0105 A4145 4145 526 32.948970 -0.7082006 -0.7145418 19E1NEp02r99 0.0063412
3151 cev105 0.0105 A5633 5633 526 32.996952 -0.6753576 -0.6818996 19E1NEp02r99 0.0065420
3201 cev105 0.0105 A7274 7274 526 33.058832 -0.6368297 -0.6431710 19E1NEp02r99 0.0063413
3251 cev105 0.0105 A9779 9779 526 33.175241 -0.5711706 -0.5774648 19E1NEp02r99 0.0062942
3002 cev105 0.0105 A0 0 555 53.346587 -0.2985944 -0.3041922 19E1NEp02r99 0.0055978
3052 cev105 0.0105 A2504 2504 555 53.815772 -0.2617572 -0.2680026 19E1NEp02r99 0.0062454
3102 cev105 0.0105 A4145 4145 555 54.193302 -0.2340822 -0.2406142 19E1NEp02r99 0.0065320
3152 cev105 0.0105 A5633 5633 555 54.593579 -0.2067964 -0.2134634 19E1NEp02r99 0.0066670
3202 cev105 0.0105 A7274 7274 555 55.109790 -0.1740126 -0.1806320 19E1NEp02r99 0.0066194
3252 cev105 0.0105 A9779 9779 555 56.080888 -0.1169470 -0.1236111 19E1NEp02r99 0.0066641
3603 cev526 0.0526 A0 0 905 1.533025 -5.2530406 -5.2486887 19E1NEp02r99 0.0043519
3353 cev315 0.0315 A2504 2504 905 1.714498 -4.5517474 -4.5408560 19E1NEp02r99 0.0108913
3403 cev315 0.0315 A4145 4145 905 1.860521 -4.1039608 -4.1072736 19E1NEp02r99 0.0033128
3453 cev315 0.0315 A5633 5633 905 2.015341 -3.7465733 -3.7611842 19E1NEp02r99 0.0146109
3503 cev315 0.0315 A7274 7274 905 2.215003 -3.4101025 -3.4235413 19E1NEp02r99 0.0134388
3553 cev315 0.0315 A9779 9779 905 2.590608 -2.9413469 -2.9535570 19E1NEp02r99 0.0122101
3004 cev105 0.0105 A0 0 953 20.125381 -1.3249909 -1.3290865 19E1NEp02r99 0.0040957
3054 cev105 0.0105 A2504 2504 953 20.306854 -1.2476021 -1.2531860 19E1NEp02r99 0.0055839
3104 cev105 0.0105 A4145 4145 953 20.452876 -1.1916003 -1.1975215 19E1NEp02r99 0.0059211
3154 cev105 0.0105 A5633 5633 953 20.607697 -1.1383665 -1.1444048 19E1NEp02r99 0.0060383
3204 cev105 0.0105 A7274 7274 953 20.807359 -1.0766095 -1.0823344 19E1NEp02r99 0.0057250
3254 cev105 0.0105 A9779 9779 953 21.182964 -0.9729832 -0.9781408 19E1NEp02r99 0.0051576
3005 cev105 0.0105 A0 0 1017 63.774766 -0.1284542 -0.1342653 19E1NEp02r99 0.0058110
3055 cev105 0.0105 A2504 2504 1017 64.298911 -0.0967695 -0.1031112 19E1NEp02r99 0.0063417
3105 cev105 0.0105 A4145 4145 1017 64.720664 -0.0728485 -0.0793940 19E1NEp02r99 0.0065454
3155 cev105 0.0105 A5633 5633 1017 65.167829 -0.0490898 -0.0557238 19E1NEp02r99 0.0066341
3205 cev105 0.0105 A7274 7274 1017 65.744507 -0.0203378 -0.0269149 19E1NEp02r99 0.0065772
3255 cev105 0.0105 A9779 9779 1017 66.829359 0.0299397 0.0233507 19E1NEp02r99 0.0065890

Fourth, row_bind results together.

# Single dataframe with all results
tb_cev_matched_all_counter <- do.call(bind_rows, ls_tb_cev_matched)
# check size
print(dim(tb_cev_matched_all_counter))
## [1] 1200   11

Fifth, visualize results

# select four from the productivity types
ar_prod_type_lvl_unique <- unique(tb_cev_matched_all_counter %>% pull(prod_type_lvl))
ar_prod_type_lvl_selected <- ar_prod_type_lvl_unique[round(seq(1, length(ar_prod_type_lvl_unique), length.out=4))]
# graph
lineplot <- tb_cev_matched_all_counter %>%
    filter(prod_type_lvl %in% ar_prod_type_lvl_selected) %>%
    group_by(prod_type_st, cash_tt) %>%
    ggplot(aes(x=cash_tt, y=cev_lvl,
               colour=counter_policy, linetype=counter_policy, shape=counter_policy)) +
        facet_wrap( ~ prod_type_st) +
        geom_line() +
        geom_point() +
        labs(title = 'Visualizing the positions of matched values',
             x = 'Resource Levels',
             y = 'CEV',
             caption = paste0('https://fanwangecon.github.io/',
                              'R4Econ/panel/join/htmlpdfr/fs_join_compare.html')) 
print(lineplot)