Supose epsilon follows the normal distribution. Draw it_eps number of normal shocks that best approximates the normal distribution. Outputs a number of statistics to check to quality of approximation

ff_dist_integrate_normal(fl_eps_mean = 0, fl_eps_sd = 1, it_eps = 10)

Arguments

fl_eps_mean

float mean of the normal distribution

fl_eps_sd

float sd of the normal distribution

it_eps

integer number of discretized points to return

Value

a list of normal draw arrays and checks

  • ar_eps_val - An array of shock draws as Discrete Random Variable

  • ar_eps_prb - The probability mass for each discrete point

  • fl_cdf_total_approx - Approximated aggregate probability

  • fl_mean_approx - Approximated mean given draws array

  • fl_sd_approx - Approximated standard deviation given draws array

Author

Fan Wang, http://fanwangecon.github.io

Examples

ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=3)
#> $ar_eps_val
#> [1]  10.41311  60.00000 109.58689
#> 
#> $ar_eps_prb
#> [1] 0.04575206 0.98911528 0.04575206
#> 
#> $fl_cdf_total_approx
#> [1] 1.080619
#> 
#> $fl_mean_approx
#> [1] 64.83716
#> 
#> $fl_sd_approx
#> [1] 15.82025
#> 
ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=5)
#> $ar_eps_val
#> [1]   0.4957362  30.2478681  60.0000000  89.7521319 119.5042638
#> 
#> $ar_eps_prb
#> [1] 0.0070996 0.1962714 0.5934692 0.1962714 0.0070996
#> 
#> $fl_cdf_total_approx
#> [1] 1.000211
#> 
#> $fl_mean_approx
#> [1] 60.01267
#> 
#> $fl_sd_approx
#> [1] 19.94369
#> 
ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=7)
#> $ar_eps_val
#> [1]  -3.754568  17.496954  38.748477  60.000000  81.251523 102.503046 123.754568
#> 
#> $ar_eps_prb
#> [1] 0.002634535 0.044317380 0.241043882 0.423906548 0.241043882 0.044317380
#> [7] 0.002634535
#> 
#> $fl_cdf_total_approx
#> [1] 0.9998981
#> 
#> $fl_mean_approx
#> [1] 59.99389
#> 
#> $fl_sd_approx
#> [1] 19.9815
#> 
ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=9)
#> $ar_eps_val
#> [1]  -6.115849  10.413114  26.942076  43.471038  60.000000  76.528962  93.057924
#> [8] 109.586886 126.115849
#> 
#> $ar_eps_prb
#> [1] 0.001396636 0.015250686 0.084113380 0.234320623 0.329705093 0.234320623
#> [7] 0.084113380 0.015250686 0.001396636
#> 
#> $fl_cdf_total_approx
#> [1] 0.9998677
#> 
#> $fl_mean_approx
#> [1] 59.99206
#> 
#> $fl_sd_approx
#> [1] 19.97717
#> 
ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=11)
#> $ar_eps_val
#>  [1]  -7.618482   5.905215  19.428911  32.952607  46.476304  60.000000
#>  [7]  73.523696  87.047393 100.571089 114.094785 127.618482
#> 
#> $ar_eps_prb
#>  [1] 0.0008888774 0.0069568074 0.0344673097 0.1081020936 0.2146298569
#>  [6] 0.2697587123 0.2146298569 0.1081020936 0.0344673097 0.0069568074
#> [11] 0.0008888774
#> 
#> $fl_cdf_total_approx
#> [1] 0.9998486
#> 
#> $fl_mean_approx
#> [1] 59.99092
#> 
#> $fl_sd_approx
#> [1] 19.9746
#> 
ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=13)
#> $ar_eps_val
#>  [1]  -8.658766   2.784362  14.227489  25.670617  37.113745  48.556872
#>  [7]  60.000000  71.443128  82.886255  94.329383 105.772511 117.215638
#> [13] 128.658766
#> 
#> $ar_eps_prb
#>  [1] 0.0006299853 0.0038130799 0.0166360231 0.0523180089 0.1185989893
#>  [6] 0.1937933439 0.2282573719 0.1937933439 0.1185989893 0.0523180089
#> [11] 0.0166360231 0.0038130799 0.0006299853
#> 
#> $fl_cdf_total_approx
#> [1] 0.9998362
#> 
#> $fl_mean_approx
#> [1] 59.99017
#> 
#> $fl_sd_approx
#> [1] 19.97299
#> 
ff_dist_integrate_normal(fl_eps_mean=60, fl_eps_sd = 20, it_eps=15)
#> $ar_eps_val
#>  [1]  -9.4216411   0.4957362  10.4131135  20.3304908  30.2478681  40.1652454
#>  [7]  50.0826227  60.0000000  69.9173773  79.8347546  89.7521319  99.6695092
#> [13] 109.5868865 119.5042638 129.4216411
#> 
#> $ar_eps_prb
#>  [1] 0.0004786276 0.0023665335 0.0091504114 0.0276682494 0.0654238116
#>  [6] 0.1209770806 0.1749377169 0.1978230557 0.1749377169 0.1209770806
#> [11] 0.0654238116 0.0276682494 0.0091504114 0.0023665335 0.0004786276
#> 
#> $fl_cdf_total_approx
#> [1] 0.9998279
#> 
#> $fl_mean_approx
#> [1] 59.98968
#> 
#> $fl_sd_approx
#> [1] 19.97194
#>