Generate similar statistics as what is generated by distributional statistics calculator from dynamic asset webpage's distributional codes: https://fanwangecon.github.io/CodeDynaAsset/

ff_summ_percentiles(df = iris, bl_statsasrows = TRUE, col2varname = FALSE)

Arguments

df

dataframe input dataframe of interest

bl_statsasrows

boolean if true then rotate table

col2varname

boolean if true drop var names

Value

a dataframe with summary statistics.

Author

Fan Wang, http://fanwangecon.github.io

Examples

ff_summ_percentiles(iris)
#> Warning: `as.tibble()` was deprecated in tibble 2.0.0.
#> Please use `as_tibble()` instead.
#> The signature and semantics have changed, see `?as_tibble`.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
#> Warning: attributes are not identical across measure variables;
#> they will be dropped
#> # A tibble: 18 x 5
#>    stats   Petal.Length Petal.Width Sepal.Length Sepal.Width
#>    <chr>   <chr>        <chr>       <chr>        <chr>      
#>  1 n       150          150         150          150        
#>  2 unique  43           22          35           23         
#>  3 NAobs   0            0           0            0          
#>  4 ZEROobs 0            0           0            0          
#>  5 mean    3.758000     1.199333    5.843333     3.057333   
#>  6 sd      1.7652982    0.7622377   0.8280661    0.4358663  
#>  7 cv      0.4697441    0.6355511   0.1417113    0.1425642  
#>  8 min     1.0          0.1         4.3          2.0        
#>  9 p01     1.149        0.100       4.400        2.200      
#> 10 p05     1.300        0.200       4.600        2.345      
#> 11 p10     1.4          0.2         4.8          2.5        
#> 12 p25     1.6          0.3         5.1          2.8        
#> 13 p50     4.35         1.30        5.80         3.00       
#> 14 p75     5.1          1.8         6.4          3.3        
#> 15 p90     5.80         2.20        6.90         3.61       
#> 16 p95     6.100        2.300       7.255        3.800      
#> 17 p99     6.700        2.500       7.700        4.151      
#> 18 max     6.9          2.5         7.9          4.4        
ff_summ_percentiles(iris, FALSE)
#> Warning: attributes are not identical across measure variables;
#> they will be dropped
#> # A tibble: 4 x 19
#>   var           n unique NAobs ZEROobs  mean    sd    cv   min   p01   p05   p10
#>   <chr>     <dbl>  <dbl> <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Petal.Le~   150     43     0       0  3.76 1.77  0.470   1    1.15  1.3    1.4
#> 2 Petal.Wi~   150     22     0       0  1.20 0.762 0.636   0.1  0.1   0.2    0.2
#> 3 Sepal.Le~   150     35     0       0  5.84 0.828 0.142   4.3  4.4   4.6    4.8
#> 4 Sepal.Wi~   150     23     0       0  3.06 0.436 0.143   2    2.2   2.34   2.5
#> # ... with 7 more variables: p25 <dbl>, p50 <dbl>, p75 <dbl>, p90 <dbl>,
#> #   p95 <dbl>, p99 <dbl>, max <dbl>