Go to the RMD, R, PDF, or HTML version of this file. Go back to fan’s REconTools research support package, R4Econ examples page, PkgTestR packaging guide, or Stat4Econ course page.
We will construct three country-specific fake GDP time-series (converted from the attitude dataset). Then we will randomly select a subset of months and shade these months. This will generate a “recession” plot, where recession periods are shaded.
One of the assumption will be that we have data at discrete intervals, and the shaded areas will take mid-points.
First, we repeat the basic time-series data construction found in R4Econ.fs_ggline_basic.
# Load data, and treat index as "year", pretend data to be country-data
df_gdp <- as_tibble(attitude) %>%
rowid_to_column(var = "year") %>%
select(year, rating, complaints, learning) %>%
rename(stats_usa = rating, stats_uk = learning) %>%
pivot_longer(
cols = starts_with("stats_"),
names_to = c("country"),
names_pattern = paste0("stats_(.*)"),
values_to = "gdp"
)
# Print
kable(df_gdp[1:10, ]) %>% kable_styling_fc()
year | complaints | country | gdp |
---|---|---|---|
1 | 51 | usa | 43 |
1 | 51 | uk | 39 |
2 | 64 | usa | 63 |
2 | 64 | uk | 54 |
3 | 70 | usa | 71 |
3 | 70 | uk | 69 |
4 | 63 | usa | 61 |
4 | 63 | uk | 47 |
5 | 78 | usa | 81 |
5 | 78 | uk | 66 |
Second, we select a subset of period to shade. We generate a random subset of non-overlapping consecutive numbers following what is outlined in R4Econ.fs_ary_generate.
# Number of random starting index
it_start_idx <- min(df_gdp$year)
it_end_idx <- max(df_gdp$year)
it_startdraws_max <- 6
it_duramax <- 2
it_backward_win <- 0.3
it_forward_win <- 0.3
# Random seed
set.seed(1234)
# Draw random index between min and max
ar_it_start_idx <- sort(sample(
seq(it_start_idx, it_end_idx),
it_startdraws_max,
replace = FALSE
))
# Draw random durations, replace = TRUE because can repeat
ar_it_duration <- sample(it_duramax, it_startdraws_max, replace = TRUE)
# Check space between starts
ar_it_startgap <- diff(ar_it_start_idx)
ar_it_dura_lenm1 <- ar_it_duration[1:(length(ar_it_duration) - 1)]
# Adjust durations
ar_it_dura_bd <- pmin(ar_it_startgap - 2, ar_it_dura_lenm1)
ar_it_duration[1:(length(ar_it_duration) - 1)] <- ar_it_dura_bd
# Drop consecutive starts
ar_bl_dura_nonneg <- which(ar_it_duration >= 0)
ar_it_start_idx <- ar_it_start_idx[ar_bl_dura_nonneg]
ar_it_duration <- ar_it_duration[ar_bl_dura_nonneg]
# Print
print(glue::glue(
"random starts + duration: ",
"{ar_it_start_idx} + {ar_it_duration}"
))
## random starts + duration: 5 + 1
## random starts + duration: 12 + 1
## random starts + duration: 16 + 1
## random starts + duration: 22 + 2
## random starts + duration: 26 + 0
## random starts + duration: 28 + 2
Third, convert integers to half-point mid-distance, unless exceed lower or upper bounds, and build start and end points. We also construct back and forward window around
# Offset by half of an integer
ar_fl_start_time <- ar_it_start_idx - 0.5
ar_fl_end_time <- ar_it_start_idx + ar_it_duration + 0.5
# Bound by min and max
ar_fl_end_time <- pmin(ar_fl_end_time, it_end_idx)
ar_fl_start_time <- pmax(ar_fl_start_time, it_start_idx)
# Backward window
ar_fl_end_time_win_backward <- ar_fl_start_time
ar_fl_start_time_win_backward <- pmax(
ar_fl_start_time - it_backward_win, it_start_idx
)
# Forward window
ar_fl_end_time_win_forward <- pmin(
ar_fl_end_time + it_forward_win, it_end_idx
)
ar_fl_start_time_win_forward <- ar_fl_end_time
# Print
print(glue::glue(
"random start-time vs end-time: ",
"{ar_fl_start_time} + {ar_fl_end_time}"
))
## random start-time vs end-time: 4.5 + 6.5
## random start-time vs end-time: 11.5 + 13.5
## random start-time vs end-time: 15.5 + 17.5
## random start-time vs end-time: 21.5 + 24.5
## random start-time vs end-time: 25.5 + 26.5
## random start-time vs end-time: 27.5 + 30
Fourth, we construct a dataframe with variables as start and end of each non-overlapping recessions. We have a main window, and a lower and upper window bounds as well.
# Variable names
# w1 = backward, w2 = main, w3 = forward, use w1, w2, w3 to facilate legend fill sorting
ar_st_varnames <- c(
"recess_id",
"year_start_w2", "year_end_w2",
"year_start_w1", "year_end_w1",
"year_start_w3", "year_end_w3"
)
# Recession index file
df_recession <- as_tibble(cbind(
ar_fl_start_time, ar_fl_end_time,
ar_fl_start_time_win_backward, ar_fl_end_time_win_backward,
ar_fl_start_time_win_forward, ar_fl_end_time_win_forward
)) %>%
rowid_to_column() %>%
rename_all(~ c(ar_st_varnames))
# Reshape from Wide to Long
df_recession <- df_recession %>%
pivot_longer(
cols = starts_with("year"),
names_to = c("time", "window"),
names_pattern = "year_(.*)_(.*)",
values_to = "year"
) %>%
pivot_wider(
id_cols = c("recess_id", "window"),
names_from = time,
names_prefix = "year_",
values_from = year
)
Fifth, visualize time-series with shaded areas for “recessions”. Note that we are considering here “recessions” that are not country-specific.
# basic chart with two lines
pl_lines_basic <- ggplot() +
geom_line(data = df_gdp, aes(
x = year, y = gdp,
color = country, linetype = country
), size = 1) +
geom_rect(data = df_recession %>%
filter(window == "w2"), aes(
xmin = year_start, xmax = year_end,
ymin = -Inf, ymax = Inf
), alpha = 0.6, fill = "gray") +
labs(
x = paste0("Years"),
y = paste0("Ratings"),
title = paste(
"Main Title for this Figure over Countries (Shaded Recessions)",
sep = " "
),
subtitle = paste(
"Subtitle for ratings changes across",
"countries",
sep = " "
),
caption = paste(
"Caption for our figure here ",
"This is the next line ",
"Another line",
sep = ""
)
) +
theme_light() +
facet_wrap(~country, ncol = 1)
# print figure
print(pl_lines_basic)
Sixth, we generate a more customized visualization with customized: (1) colors and shapes for lines as well as for windows; (2) x- and y-axis limits, labels, and breaks; (3) customized legend position.
# Window color
st_win_leg_title <- "Window"
st_win_color <- "gray"
st_win_label <- "Recession"
# basic chart with two lines
pl_lines <- ggplot() +
geom_line(data = df_gdp, aes(
x = year, y = gdp,
color = country, linetype = country
), size = 1) +
geom_rect(data = df_recession %>%
filter(window == "w2"), aes(
xmin = year_start, xmax = year_end,
ymin = -Inf, ymax = Inf,
fill = st_win_color
), alpha = 0.6) +
theme_light()
# Titles
st_x <- "Years"
st_y <- "GDP"
st_subtitle <- "GDP changes across countries (shaded recessions)"
pl_lines <- pl_lines +
labs(
x = st_x,
y = st_y,
subtitle = st_subtitle
)
# Figure improvements
# set shapes and colors
st_line_leg_title <- "Country"
ar_st_labels <- c(
bquote("UK"),
bquote("USA")
)
ar_st_colours <- c("#026aa3", "red")
ar_st_linetypes <- c("solid", "longdash")
pl_lines <- pl_lines +
scale_colour_manual(values = ar_st_colours, labels = ar_st_labels) +
scale_shape_discrete(labels = ar_st_labels) +
scale_linetype_manual(values = ar_st_linetypes, labels = ar_st_labels) +
scale_fill_manual(values = c(st_win_color), labels = c(st_win_label)) +
labs(
fill = st_win_leg_title,
colour = st_line_leg_title, linetype = st_line_leg_title
) +
theme(legend.key.width = unit(2.5, "line"))
# Axis
x_breaks <- seq(1, 30, length.out = 30)
x_labels <- paste0("Year ", x_breaks + 1990)
x_min <- 1
x_max <- 30
y_breaks <- seq(30, 90, length.out = 6)
y_labels <- paste0("y=", y_breaks)
y_min <- 30
y_max <- 90
pl_lines <- pl_lines +
scale_x_continuous(
labels = x_labels, breaks = x_breaks,
limits = c(x_min, x_max)
) +
theme(axis.text.x = element_text(
# Adjust x-label angle
angle = 90,
# Adjust x-label distance to x-axis (up vs down)
hjust = 0.4,
# Adjust x-label left vs right wwith respect ot break point
vjust = 0.5
)) +
scale_y_continuous(
labels = y_labels, breaks = y_breaks,
limits = c(y_min, y_max)
)
# print figure
print(pl_lines)
Finally, we generate a figure with three fill colors for the three windows, main, backward, and forward windows. We reuse various parameters used in the prior block.
# Window color
st_win_leg_title <- "Window"
# basic chart with two lines
pl_lines <- ggplot() +
geom_line(data = df_gdp, aes(
x = year, y = gdp,
color = country, linetype = country
), size = 1) +
geom_rect(data = df_recession, aes(
xmin = year_start, xmax = year_end,
ymin = -Inf, ymax = Inf,
fill = window
), alpha = 0.4) +
theme_light()
# Titles
st_x <- "Years"
st_y <- "GDP"
st_subtitle <- "GDP changes across countries (shaded recessions, with pre and post)"
pl_lines <- pl_lines +
labs(
x = st_x,
y = st_y,
subtitle = st_subtitle
)
# Figure improvements
# fill label and colors
ar_st_win_color <- c("darkgreen", "black", "darkgreen")
ar_st_win_label <- c("Backward", "Recession", "Forward")
# set shapes and colors
st_line_leg_title <- "Country"
ar_st_labels <- c(
bquote("UK"),
bquote("USA")
)
ar_st_colours <- c("#026aa3", "red")
ar_st_linetypes <- c("solid", "longdash")
pl_lines <- pl_lines +
scale_colour_manual(values = ar_st_colours, labels = ar_st_labels) +
scale_shape_discrete(labels = ar_st_labels) +
scale_linetype_manual(values = ar_st_linetypes, labels = ar_st_labels) +
scale_fill_manual(values = c(ar_st_win_color), labels = c(ar_st_win_label)) +
labs(
fill = st_win_leg_title,
colour = st_line_leg_title, linetype = st_line_leg_title
) +
theme(legend.key.width = unit(2.5, "line"))
# Axis
x_breaks <- seq(1, 30, length.out = 30)
x_labels <- paste0("Year ", x_breaks + 1990)
x_min <- 1
x_max <- 30
y_breaks <- seq(30, 90, length.out = 6)
y_labels <- paste0("y=", y_breaks)
y_min <- 30
y_max <- 90
pl_lines <- pl_lines +
scale_x_continuous(
labels = x_labels, breaks = x_breaks,
limits = c(x_min, x_max)
) +
theme(axis.text.x = element_text(
# Adjust x-label angle
angle = 90,
# Adjust x-label distance to x-axis (up vs down)
hjust = 0.4,
# Adjust x-label left vs right wwith respect ot break point
vjust = 0.5
)) +
scale_y_continuous(
labels = y_labels, breaks = y_breaks,
limits = c(y_min, y_max)
)
# print figure
print(pl_lines)