This is a static copy of a profile report

Home

Function details for ff_ipwkz_vfThis is a static copy of a profile report

Home

ff_ipwkz_vf (Calls: 1, Time: 12.457 s)
Generated 06-Jul-2019 16:11:08 using performance time.
function in file C:\Users\fan\CodeDynaAsset\m_ipwkz\solve\ff_ipwkz_vf.m
Copy to new window for comparing multiple runs

Parents (calling functions)
No parent
Lines where the most time was spent

Line NumberCodeCallsTotal Time% TimeTime Plot
277
fl_ev_condi_z_max_interp_z = f...
4237503.863 s31.0%
280
ar_val_cur(it_cohp_k) = f_grid...
4237503.573 s28.7%
266
fl_w_kstar_interp_z = f_interp...
4237503.559 s28.6%
274
fl_c = f_cons(fl_coh, fl_w_ast...
4237501.019 s8.2%
290
it_max_lin_idx = find(ar_val_c...
423750.052 s0.4%
All other lines  0.390 s3.1%
Totals  12.457 s100% 
Children (called functions)

Function NameFunction TypeCallsTotal Time% TimeTime Plot
...coh,bprime,kprime)(coh-kprime-bprime)anonymous function4237500.522 s4.2%
ff_ipwkz_evffunction750.041 s0.3%
meanfunction750.006 s0.0%
Self time (built-ins, overhead, etc.)  11.888 s95.4%
Totals  12.457 s100% 
Code Analyzer results
No Code Analyzer messages.
Coverage results
Show coverage for parent directory
Total lines in function384
Non-code lines (comments, blank lines)209
Code lines (lines that can run)175
Code lines that did run66
Code lines that did not run109
Coverage (did run/can run)37.71 %
Function listing
time 
Calls 
 line
   7 
function result_map = ff_ipwkz_vf(varargin)
   8 
%% FF_IPWKZ_VF solve infinite horizon exo shock + endo asset problem
   9 
% This program solves the infinite horizon dynamic savings and risky
  10 
% capital asset problem. This is the two step solution
  11 
% with interpolation and with percentage asset grids version of
  12 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_akz_vf.html
  13 
% ff_akz_vf>. See
  14 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_wkz_vf.html
  15 
% ff_wkz_vf> for details about the second stage. See
  16 
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/solve/html/ff_iwkz_vf.html
  17 
% ff_iwkz_vf> for details about interpolation over u(c) and value(coh,z).
  18 
% The new ingredient here is the use of percentage choice grid rather than
  19 
% level choice grid. This is the looped code.
  20 
%
  21 
% @param param_map container parameter container
  22 
%
  23 
% @param support_map container support container
  24 
%
  25 
% @param armt_map container container with states, choices and shocks
  26 
% grids that are inputs for grid based solution algorithm
  27 
%
  28 
% @param func_map container container with function handles for
  29 
% consumption cash-on-hand etc.
  30 
%
  31 
% @return result_map container contains policy function matrix, value
  32 
% function matrix, iteration results, and policy function, value function
  33 
% and iteration results tables.
  34 
%
  35 
% keys included in result_map:
  36 
%
  37 
% * mt_val matrix states_n by shock_n matrix of converged value function grid
  38 
% * mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
  39 
% * ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function
  40 
% difference between iteration
  41 
% * ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy
  42 
% function difference between iterations
  43 
% * mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the
  44 
% proportion of grid points at which policy function changed between
  45 
% current and last iteration for each element of shock
  46 
%
  47 
% @example
  48 
%
  49 
% @include
  50 
%
  51 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkz/paramfunc/ff_ipwkz_evf.m ff_ipwkz_evf>
  52 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkz/paramfunc/ffs_ipwkz_set_default_param.m ffs_ipwkz_set_default_param>
  53 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkz/paramfunc/ffs_ipwkz_get_funcgrid.m ffs_ipwkz_get_funcgrid>
  54 
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_akz/solvepost/ff_akz_vf_post.m ff_akz_vf_post>
  55 
%
  56 

  57 
%% Default
  58 
% * it_param_set = 1: quick test
  59 
% * it_param_set = 2: benchmark run
  60 
% * it_param_set = 3: benchmark profile
  61 
% * it_param_set = 4: press publish button
  62 

  63 
it_param_set = 3;
  64 
bl_input_override = true;
  65 
[param_map, support_map] = ffs_ipwkz_set_default_param(it_param_set);
  66 

  67 
% parameters can be set inside ffs_ipwkz_set_default_param or updated here
  68 
param_map('it_w_perc_n') = 10;
  69 
% param_map('it_ak_perc_n') = param_map('it_w_perc_n');
  70 
param_map('it_z_n') = 5;
  71 
% param_map('fl_coh_interp_grid_gap') = 0.025;
  72 
% param_map('it_c_interp_grid_gap') = 0.001;
  73 
% param_map('fl_w_interp_grid_gap') = 0.25;
  74 
% param_map('it_w_perc_n') = 100;
  75 
% param_map('it_ak_perc_n') = param_map('it_w_perc_n');
  76 
% param_map('it_z_n') = 11;
  77 
param_map('fl_coh_interp_grid_gap') = 0.5;
  78 
% param_map('it_c_interp_grid_gap') = 10^-4;
  79 
param_map('fl_w_interp_grid_gap') = 0.5;
  80 

  81 
% get armt and func map
  82 
[armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override
  83 
default_params = {param_map support_map armt_map func_map};
  84 

  85 
%% Parse Parameters 1
  86 

  87 
% if varargin only has param_map and support_map,
  88 
params_len = length(varargin);
  89 
[default_params{1:params_len}] = varargin{:};
  90 
param_map = [param_map; default_params{1}];
  91 
support_map = [support_map; default_params{2}];
  92 
if params_len >= 1 && params_len <= 2
  93 
    % If override param_map, re-generate armt and func if they are not
  94 
    % provided
  95 
    bl_input_override = true;
  96 
    [armt_map, func_map] = ffs_ipwkz_get_funcgrid(param_map, support_map, bl_input_override);
  97 
else
  98 
    % Override all
  99 
    armt_map = [armt_map; default_params{3}];
 100 
    func_map = [func_map; default_params{4}];
 101 
end
 102 

 103 
% append function name
 104 
st_func_name = 'ff_ipwkz_vf';
 105 
support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')];
 106 
support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')];
 107 
support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
 108 

 109 
%% Parse Parameters 2
 110 

 111 
% armt_map
 112 
params_group = values(armt_map, {'ar_w_perc', 'ar_w_level', 'ar_z'});
 113 
[ar_w_perc, ar_w_level, ar_z] = params_group{:};
 114 
params_group = values(armt_map, {'ar_interp_c_grid', 'ar_interp_coh_grid', ...
 115 
    'mt_interp_coh_grid_mesh_z', 'mt_z_mesh_coh_interp_grid',...
 116 
    'mt_w_by_interp_coh_interp_grid'});
 117 
[ar_interp_c_grid, ar_interp_coh_grid, ...
 118 
    mt_interp_coh_grid_mesh_z, mt_z_mesh_coh_interp_grid, ...
 119 
    mt_w_by_interp_coh_interp_grid] = params_group{:};
 120 
params_group = values(armt_map, {'mt_coh_wkb', 'mt_z_mesh_coh_wkb'});
 121 
[mt_coh_wkb, mt_z_mesh_coh_wkb] = params_group{:};
 122 

 123 
% func_map
 124 
params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons'});
 125 
[f_util_log, f_util_crra, f_cons] = params_group{:};
 126 

 127 
% param_map
 128 
params_group = values(param_map, {'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min'});
 129 
[it_z_n, fl_crra, fl_beta, fl_c_min] = params_group{:};
 130 
params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'});
 131 
[it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:};
 132 

 133 
% support_map
 134 
params_group = values(support_map, {'bl_profile', 'st_profile_path', ...
 135 
    'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',...
 136 
    'bl_time', 'bl_graph_evf', 'bl_display', 'it_display_every', 'bl_post'});
 137 
[bl_profile, st_profile_path, ...
 138 
    st_profile_prefix, st_profile_name_main, st_profile_suffix, ...
 139 
    bl_time, bl_graph_evf, bl_display, it_display_every, bl_post] = params_group{:};
 140 

 141 
%% Initialize Output Matrixes
 142 

 143 
mt_val_cur = zeros(length(ar_interp_coh_grid),length(ar_z));
 144 
mt_val = mt_val_cur - 1;
 145 
mt_pol_a = zeros(length(ar_interp_coh_grid),length(ar_z));
 146 
mt_pol_a_cur = mt_pol_a - 1;
 147 
mt_pol_k = zeros(length(ar_interp_coh_grid),length(ar_z));
 148 
mt_pol_k_cur = mt_pol_k - 1;
 149 

 150 
%% Initialize Convergence Conditions
 151 

 152 
bl_vfi_continue = true;
 153 
it_iter = 0;
 154 
ar_val_diff_norm = zeros([it_maxiter_val, 1]);
 155 
ar_pol_diff_norm = zeros([it_maxiter_val, 1]);
 156 
mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
 157 

 158 
%% Pre-calculate u(c)
 159 
% Interpolation, see
 160 
% <https://fanwangecon.github.io/M4Econ/support/speed/partupdate/fs_u_c_partrepeat_main.html
 161 
% fs_u_c_partrepeat_main> for why interpolate over u(c)
 162 

 163 
% Evaluate
 164 
if (fl_crra == 1)
 165 
    ar_interp_u_of_c_grid = f_util_log(ar_interp_c_grid);
 166 
    fl_u_neg_c = f_util_log(fl_c_min);
 167 
else
 168 
    ar_interp_u_of_c_grid = f_util_crra(ar_interp_c_grid);
 169 
    fl_u_neg_c = f_util_crra(fl_c_min);
 170 
end
 171 
ar_interp_u_of_c_grid(ar_interp_c_grid <= fl_c_min) = fl_u_neg_c;
 172 

 173 
% Get Interpolant
 174 
f_grid_interpolant_spln = griddedInterpolant(ar_interp_c_grid, ar_interp_u_of_c_grid, 'spline');
 175 

 176 
%% Iterate Value Function
 177 
% Loop solution with 4 nested loops
 178 
%
 179 
% # loop 1: over exogenous states
 180 
% # loop 2: over endogenous states
 181 
% # loop 3: over choices
 182 
% # loop 4: add future utility, integration--loop over future shocks
 183 
%
 184 

 185 
% Start Profile
 186 
if (bl_profile)
 187 
    close all;
 188 
    profile off;
 189 
    profile on;
< 0.001 
      1 
 190
end 
 191 

 192 
% Start Timer
< 0.001 
      1 
 193
if (bl_time) 
< 0.001 
      1 
 194
    tic; 
< 0.001 
      1 
 195
end 
 196 

 197 
% Value Function Iteration
< 0.001 
      1 
 198
while bl_vfi_continue 
< 0.001 
     75 
 199
    it_iter = it_iter + 1; 
 200 

 201 
    %% Interpolate (1) reacahble v(coh(k(w,z),b(w,z),z),z) given v(coh, z)
 202 
    % v(coh,z) solved on ar_interp_coh_grid, ar_z grids, see
 203 
    % ffs_ipwkz_get_funcgrid.m. Generate interpolant based on that, Then
 204 
    % interpolate for the coh reachable levels given the k(w,z) percentage
 205 
    % choice grids in the second stage of the problem
 206 

 207 
    % Generate Interpolant for v(coh,z)
  0.007 
     75 
 208
    f_grid_interpolant_value = griddedInterpolant(... 
     75 
 209
        mt_z_mesh_coh_interp_grid', mt_interp_coh_grid_mesh_z', mt_val_cur', 'linear', 'nearest'); 
 210 

 211 
    % Interpoalte for v(coh(k(w,z),b(w,z),z),z)
  0.050 
     75 
 212
    mt_val_wkb_interpolated = f_grid_interpolant_value(mt_z_mesh_coh_wkb, mt_coh_wkb); 
 213 

 214 
    %% Solve Second Stage Problem k*(w,z)
 215 
    % This is the key difference between this function and
 216 
    % <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_set_functions.html
 217 
    % ffs_akz_set_functions> which solves the two stages jointly
 218 
    % Interpolation first, because solution coh grid is not the same as all
 219 
    % points reachable by k and b choices given w.
 220 
    
  0.008 
     75 
 221
    support_map('bl_graph_evf') = false; 
< 0.001 
     75 
 222
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 223
        support_map('bl_graph_evf') = bl_graph_evf; 
< 0.001 
      1 
 224
    end 
 225 

< 0.001 
     75 
 226
    bl_input_override = true; 
  0.045 
     75 
 227
    [mt_ev_condi_z_max, ~, mt_ev_condi_z_max_kp, ~] = ... 
     75 
 228
        ff_ipwkz_evf(mt_val_wkb_interpolated, param_map, support_map, armt_map, bl_input_override); 
 229 

 230 
    %% Solve First Stage Problem w*(z) given k*(w,z)
 231 
    % loop 1: over exogenous states
< 0.001 
     75 
 232
    for it_z_i = 1:length(ar_z) 
 233 

 234 
        % Get 2nd Stage Arrays
  0.001 
    375 
 235
        ar_ev_condi_z_max_z = mt_ev_condi_z_max(:, it_z_i); 
< 0.001 
    375 
 236
        ar_w_level_kstar_z = mt_ev_condi_z_max_kp(:, it_z_i); 
 237 

 238 
        % Interpolant (2) k*(ar_w_perc) from k*(ar_w_level,z)
 239 
        % There are two w=k'+b' arrays. ar_w_level is the level even grid based
 240 
        % on which we solve the 2nd stage problem in ff_ipwkz_evf.m. Here for
 241 
        % each coh level, we have a different vector of w levels, but the same
 242 
        % vector of percentage ws. So we need to interpolate to get the optimal
 243 
        % k* and b* choices at each percentage level of w.
  0.016 
    375 
 244
        f_interpolante_w_level_kstar_z = griddedInterpolant(ar_w_level, ar_w_level_kstar_z', 'linear', 'nearest'); 
 245 

 246 
        % Interpolant for (3) EV(k*(ar_w_perc),Z)
  0.008 
    375 
 247
        f_interpolante_ev_condi_z_max_z = griddedInterpolant(ar_w_level, ar_ev_condi_z_max_z', 'linear', 'nearest'); 
 248 

 249 
        % loop 2: over endogenous states
< 0.001 
    375 
 250
        for it_coh_interp_j = 1:length(ar_interp_coh_grid) 
 251 
            % Get cash-on-hand which include k,b,z
  0.003 
  42375 
 252
            fl_coh = mt_interp_coh_grid_mesh_z(it_coh_interp_j, it_z_i); 
 253 

 254 
            % loop 3: over choices, only w vector
 255 
            % we choose w(z), know from ff_wkz_evf k*(w,z), b*=w-k*
 256 
            % fl_w_level_perc_z is the level of w given coh and z based on
 257 
            % the w percentage grid generated in ffs_akz_get_funcgrid.m
  0.035 
  42375 
 258
            ar_val_cur = zeros(size(ar_w_perc)); 
  0.022 
  42375 
 259
            ar_w_kstar_z = zeros(size(ar_w_perc)); 
  0.021 
  42375 
 260
            ar_w_astar_z = zeros(size(ar_w_perc)); 
  0.002 
  42375 
 261
            for it_cohp_k = 1:length(ar_w_perc) 
 262 

 263 
                % Interpolate (2) to get optimal k at current percentage grid
 264 
                % level given coh and z
  0.020 
 423750 
 265
                fl_w_level_perc_z = mt_w_by_interp_coh_interp_grid(it_cohp_k, it_coh_interp_j); 
  3.559 
 423750 
 266
                fl_w_kstar_interp_z = f_interpolante_w_level_kstar_z(fl_w_level_perc_z); 
  0.017 
 423750 
 267
                fl_w_astar_interp_z = fl_w_level_perc_z - fl_w_kstar_interp_z; 
 268 

 269 
                % store optimal interpolated k and a choices given w
  0.018 
 423750 
 270
                ar_w_kstar_z(it_cohp_k) = fl_w_kstar_interp_z; 
  0.018 
 423750 
 271
                ar_w_astar_z(it_cohp_k) = fl_w_astar_interp_z; 
 272 

 273 
                % consumption
  1.019 
 423750 
 274
                fl_c = f_cons(fl_coh, fl_w_astar_interp_z, fl_w_kstar_interp_z); 
 275 

 276 
                % Interpolate (3) EV(k*(ar_w_perc),Z)
  3.863 
 423750 
 277
                fl_ev_condi_z_max_interp_z = f_interpolante_ev_condi_z_max_z(fl_w_level_perc_z); 
 278 

 279 
                % Interpolate (4) consumption
  3.573 
 423750 
 280
                ar_val_cur(it_cohp_k) = f_grid_interpolant_spln(fl_c) + fl_beta*fl_ev_condi_z_max_interp_z; 
 281 

 282 
                % Replace if negative consumption
  0.017 
 423750 
 283
                if fl_c <= 0 
 284 
                    ar_val_cur(it_cohp_k) = fl_u_neg_c;
 285 
                end
 286 

  0.019 
 423750 
 287
            end 
 288 

 289 
            % maximization over loop 3 choices for loop 1+2 states
  0.052 
  42375 
 290
            it_max_lin_idx = find(ar_val_cur == max(ar_val_cur)); 
  0.003 
  42375 
 291
            mt_val(it_coh_interp_j,it_z_i) = ar_val_cur(it_max_lin_idx(1)); 
  0.002 
  42375 
 292
            mt_pol_a(it_coh_interp_j,it_z_i) = ar_w_astar_z(it_max_lin_idx(1)); 
  0.003 
  42375 
 293
            mt_pol_k(it_coh_interp_j,it_z_i) = ar_w_kstar_z(it_max_lin_idx(1)); 
 294 

  0.002 
  42375 
 295
        end 
  0.001 
    375 
 296
    end 
 297 

 298 
    %% Check Tolerance and Continuation
 299 

 300 
    % Difference across iterations
  0.018 
     75 
 301
    ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); 
  0.012 
     75 
 302
    ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur) + norm(mt_pol_k - mt_pol_k_cur); 
  0.001 
     75 
 303
    ar_pol_a_perc_change = sum((mt_pol_a ~= mt_pol_a_cur))/length(ar_interp_coh_grid); 
< 0.001 
     75 
 304
    ar_pol_k_perc_change = sum((mt_pol_k ~= mt_pol_k_cur))/length(ar_interp_coh_grid); 
  0.009 
     75 
 305
    mt_pol_perc_change(it_iter, :) = mean([ar_pol_a_perc_change;ar_pol_k_perc_change]); 
 306 

 307 
    % Update
< 0.001 
     75 
 308
    mt_val_cur = mt_val; 
< 0.001 
     75 
 309
    mt_pol_a_cur = mt_pol_a; 
< 0.001 
     75 
 310
    mt_pol_k_cur = mt_pol_k; 
 311 

 312 
    % Print Iteration Results
< 0.001 
     75 
 313
    if (bl_display && (rem(it_iter, it_display_every)==0)) 
 314 
        fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ...
 315 
            it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter));
 316 
        tb_valpol_iter = array2table([mean(mt_val_cur,1);...
 317 
                                      mean(mt_pol_a_cur,1); ...
 318 
                                      mean(mt_pol_k_cur,1); ...
 319 
                                      mt_val_cur(length(ar_interp_coh_grid),:); ...
 320 
                                      mt_pol_a_cur(length(ar_interp_coh_grid),:); ...
 321 
                                      mt_pol_k_cur(length(ar_interp_coh_grid),:)]);
 322 
        tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2))));
 323 
        tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'mak', 'Hval', 'Hap', 'Hak'};
 324 
        disp('mval = mean(mt_val_cur,1), average value over a')
 325 
        disp('map  = mean(mt_pol_a_cur,1), average choice over a')
 326 
        disp('mkp  = mean(mt_pol_k_cur,1), average choice over k')
 327 
        disp('Hval = mt_val_cur(ar_interp_coh_grid,:), highest a state val')
 328 
        disp('Hap = mt_pol_a_cur(ar_interp_coh_grid,:), highest a state choice')
 329 
        disp('mak = mt_pol_k_cur(ar_interp_coh_grid,:), highest k state choice')
 330 
        disp(tb_valpol_iter);
 331 
    end
 332 

 333 
    % Continuation Conditions:
 334 
    % 1. if value function convergence criteria reached
 335 
    % 2. if policy function variation over iterations is less than
 336 
    % threshold
< 0.001 
     75 
 337
    if (it_iter == (it_maxiter_val + 1)) 
< 0.001 
      1 
 338
        bl_vfi_continue = false; 
  0.001 
     74 
 339
    elseif ((it_iter == it_maxiter_val) || ... 
     74 
 340
            (ar_val_diff_norm(it_iter) < fl_tol_val) || ... 
     74 
 341
            (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) 
 342 
        % Fix to max, run again to save results if needed
< 0.001 
      1 
 343
        it_iter_last = it_iter; 
< 0.001 
      1 
 344
        it_iter = it_maxiter_val; 
< 0.001 
      1 
 345
    end 
 346 

< 0.001 
     75 
 347
end 
 348 

 349 
% End Timer
< 0.001 
      1 
 350
if (bl_time) 
< 0.001 
      1 
 351
    toc; 
< 0.001 
      1 
 352
end 
 353 

 354 
% End Profile
< 0.001 
      1 
 355
if (bl_profile) 
  0.004 
      1 
 356
    profile off 
 357 
    profile viewer
 358 
    st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix];
 359 
    profsave(profile('info'), strcat(st_profile_path, st_file_name));
 360 
end
 361 

 362 
%% Process Optimal Choices
 363 

 364 
result_map = containers.Map('KeyType','char', 'ValueType','any');
 365 
result_map('mt_val') = mt_val;
 366 

 367 
result_map('cl_mt_pol_coh') = {mt_interp_coh_grid_mesh_z, zeros(1)};
 368 
result_map('cl_mt_pol_a') = {mt_pol_a, zeros(1)};
 369 
result_map('cl_mt_pol_k') = {mt_pol_k, zeros(1)};
 370 
result_map('cl_mt_pol_c') = {f_cons(mt_interp_coh_grid_mesh_z, mt_pol_a, mt_pol_k), zeros(1)};
 371 
result_map('ar_st_pol_names') = ["cl_mt_pol_coh", "cl_mt_pol_a", "cl_mt_pol_k", "cl_mt_pol_c"];
 372 

 373 
if (bl_post)
 374 
    bl_input_override = true;
 375 
    result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last);
 376 
    result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last);
 377 
    result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :);
 378 

 379 
    % graphing based on coh_wkb, but that does not match optimal choice
 380 
    % matrixes for graphs.
 381 
    armt_map('mt_coh_wkb') = mt_interp_coh_grid_mesh_z;
 382 
    armt_map('it_ameshk_n') = length(ar_interp_coh_grid);
 383 
    armt_map('ar_a_meshk') = mt_interp_coh_grid_mesh_z(:,1);
 384 
    armt_map('ar_k_mesha') = zeros(size(mt_interp_coh_grid_mesh_z(:,1)) + 0);
 385 

 386 
    result_map = ff_akz_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override);
 387 
end
 388 

 389 

 390 
end

Other subfunctions in this file are not included in this listing.