Skip to contents
library(tibble)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(tidyr)
library(stringr)
library(readr)
library(kableExtra)
#> 
#> Attaching package: 'kableExtra'
#> The following object is masked from 'package:dplyr':
#> 
#>     group_rows

library(PrjCompPPTS)
# If resave outputs to data, only do this during development

Working through three core functions of PrjCompPPTS-Issue 7. This was developed prior to functionalizing.

Algorithm outline

Three core files

We follow the steps below, which produces three separable files, then merge together. Each file’s unit of observation are ultimately locType x loc

Step 1 file, levels and ratios, flr:

  1. Start with long file, keep all locations and location types, select a subst of years, select teachers, schools, students, youthpop so different ratios can be constructed, and levels we want kept
  2. Vars kept from long to wide
    • unit of obs: locType x loc x time
  3. RATIO/LEVELS: Compute key ratios within time periods, year level/ratio stats done:
    • Teacher over student: var_rat_t2s
    • Teacher over youthpop: var_rat_t2y
    • School over student: var_rat_s2s
    • School over youthpop: var_rat_sty

Step 2 file, percentage change, fpc, also contains levels:

  1. From levels/ratios file (keep ranks), variables are levels and ratios, convert all vars to long
    • unit of obs: locType x loc x time x var(level/change)
  2. Generate ranks, grouped by locType x loc x time x var(level/change)
  3. Select subperiods of interest, time from long to wide
    • unit of obs: locType x loc x var(level/change)
  4. Compute stats ratios over time for level and change vars
    • 1980 to 2020 change
    • 80 to 00, 00 to 20

Step 3 file, elasticity, fel:

  1. From fpc, keep percentage changes as stats vars, drop level and rank vars
  2. From percentage change file, variables are changes over time, convert all change spans to long
    • unit of obs: locType x loc x vars(level/change) x changeSpan
  3. Convert vars(level/change) to wide
    • unit of obs: locType x loc x changeSpan
  4. ELASTICITY: ratio of percentage changes across vars
  5. Convert to standard format
    • unit of obs: locType x loc x vars, and year spans as columns

Output file

We now proceed to outline the development of tables relevant for different components of the paper, corresponding to each paper section.

Global changes in youth population table:

  1. From file flr, keep levels in 1960, 80, 00, 20, country + 7 regions
  2. From fpc, changes 60t80, 80t20, 00t20, country + 7 regions
  3. From file flr, keep ranks in 1960, 20, country + 7 regions
  4. Group by region type an region, sort by country, 9 variable/column table

Global children and teachers file, two versions, pupil- and children-based separately:

  • Unit of observation: country at selected years
  • var country
  • var (3) children to teacher ratio in 1980, 2000, 2020: from fpc, select level col ratio rows
  • var (3) children to teacher ranking in 1980 vs 2020: from fpc, select level col ranks row
  • var (1) children to teacher ratio change over time 1980 to 2020: from fpc, select change col and ratio row
  • var (1) percentage change in children 1980 to 2020: from fpc, select change col and level row
  • var (1) percentage change in teachers 1980 to 2020: from fpc, select change col and level row
  • var (1) teacher-children elasticity over time: from fel, select changeSpan row

Teachers and Schools vs children and pupil in sub-regions.

Load data inputs and review

We load in the key file

ppts_code_wrk <- ppts_country_code

We load in the global population data.

ppts_wrk <- ppts_easia_weuro_world_pchg
colnames(ppts_wrk)
#> [1] "location_code"  "location_level" "variable"       "year_bins_type"
#> [5] "year_bins"      "pchg"           "pchg_interp1"   "value"         
#> [9] "value_interp1"
print(ppts_wrk %>% distinct(variable))
#> # A tibble: 5 × 1
#>   variable
#>   <fct>   
#> 1 gdp     
#> 2 student 
#> 3 teacher 
#> 4 youthpop
#> 5 school
print(ppts_wrk %>% distinct(location_level))
#> # A tibble: 4 × 1
#>   location_level
#>   <fct>         
#> 1 country       
#> 2 multicountry  
#> 3 multiprovince 
#> 4 province
print(ppts_wrk %>% distinct(year_bins_type))
#> # A tibble: 5 × 1
#>   year_bins_type
#>   <fct>         
#> 1 1920t2020i05  
#> 2 1920t2020i10  
#> 3 1920t2020i20  
#> 4 1925t2015i15  
#> 5 1940t2020i01
print(ppts_wrk %>% distinct(year_bins, year_bins_type) %>%
  arrange(year_bins_type, year_bins), n = 200)
#> # A tibble: 142 × 2
#>     year_bins year_bins_type
#>     <chr>     <fct>         
#>   1 1921-1925 1920t2020i05  
#>   2 1926-1930 1920t2020i05  
#>   3 1931-1935 1920t2020i05  
#>   4 1936-1940 1920t2020i05  
#>   5 1941-1945 1920t2020i05  
#>   6 1946-1950 1920t2020i05  
#>   7 1951-1955 1920t2020i05  
#>   8 1956-1960 1920t2020i05  
#>   9 1961-1965 1920t2020i05  
#>  10 1966-1970 1920t2020i05  
#>  11 1971-1975 1920t2020i05  
#>  12 1976-1980 1920t2020i05  
#>  13 1981-1985 1920t2020i05  
#>  14 1986-1990 1920t2020i05  
#>  15 1991-1995 1920t2020i05  
#>  16 1996-2000 1920t2020i05  
#>  17 2001-2005 1920t2020i05  
#>  18 2006-2010 1920t2020i05  
#>  19 2011-2015 1920t2020i05  
#>  20 2016-2020 1920t2020i05  
#>  21 1921-1930 1920t2020i10  
#>  22 1931-1940 1920t2020i10  
#>  23 1941-1950 1920t2020i10  
#>  24 1951-1960 1920t2020i10  
#>  25 1961-1970 1920t2020i10  
#>  26 1971-1980 1920t2020i10  
#>  27 1981-1990 1920t2020i10  
#>  28 1991-2000 1920t2020i10  
#>  29 2001-2010 1920t2020i10  
#>  30 2011-2020 1920t2020i10  
#>  31 1921-1940 1920t2020i20  
#>  32 1941-1960 1920t2020i20  
#>  33 1961-1980 1920t2020i20  
#>  34 1981-2000 1920t2020i20  
#>  35 2001-2020 1920t2020i20  
#>  36 1926-1940 1925t2015i15  
#>  37 1941-1955 1925t2015i15  
#>  38 1956-1970 1925t2015i15  
#>  39 1971-1985 1925t2015i15  
#>  40 1986-2000 1925t2015i15  
#>  41 2001-2015 1925t2015i15  
#>  42 1920      1940t2020i01  
#>  43 1921      1940t2020i01  
#>  44 1922      1940t2020i01  
#>  45 1923      1940t2020i01  
#>  46 1924      1940t2020i01  
#>  47 1925      1940t2020i01  
#>  48 1926      1940t2020i01  
#>  49 1927      1940t2020i01  
#>  50 1928      1940t2020i01  
#>  51 1929      1940t2020i01  
#>  52 1930      1940t2020i01  
#>  53 1931      1940t2020i01  
#>  54 1932      1940t2020i01  
#>  55 1933      1940t2020i01  
#>  56 1934      1940t2020i01  
#>  57 1935      1940t2020i01  
#>  58 1936      1940t2020i01  
#>  59 1937      1940t2020i01  
#>  60 1938      1940t2020i01  
#>  61 1939      1940t2020i01  
#>  62 1940      1940t2020i01  
#>  63 1941      1940t2020i01  
#>  64 1942      1940t2020i01  
#>  65 1943      1940t2020i01  
#>  66 1944      1940t2020i01  
#>  67 1945      1940t2020i01  
#>  68 1946      1940t2020i01  
#>  69 1947      1940t2020i01  
#>  70 1948      1940t2020i01  
#>  71 1949      1940t2020i01  
#>  72 1950      1940t2020i01  
#>  73 1951      1940t2020i01  
#>  74 1952      1940t2020i01  
#>  75 1953      1940t2020i01  
#>  76 1954      1940t2020i01  
#>  77 1955      1940t2020i01  
#>  78 1956      1940t2020i01  
#>  79 1957      1940t2020i01  
#>  80 1958      1940t2020i01  
#>  81 1959      1940t2020i01  
#>  82 1960      1940t2020i01  
#>  83 1961      1940t2020i01  
#>  84 1962      1940t2020i01  
#>  85 1963      1940t2020i01  
#>  86 1964      1940t2020i01  
#>  87 1965      1940t2020i01  
#>  88 1966      1940t2020i01  
#>  89 1967      1940t2020i01  
#>  90 1968      1940t2020i01  
#>  91 1969      1940t2020i01  
#>  92 1970      1940t2020i01  
#>  93 1971      1940t2020i01  
#>  94 1972      1940t2020i01  
#>  95 1973      1940t2020i01  
#>  96 1974      1940t2020i01  
#>  97 1975      1940t2020i01  
#>  98 1976      1940t2020i01  
#>  99 1977      1940t2020i01  
#> 100 1978      1940t2020i01  
#> 101 1979      1940t2020i01  
#> 102 1980      1940t2020i01  
#> 103 1981      1940t2020i01  
#> 104 1982      1940t2020i01  
#> 105 1983      1940t2020i01  
#> 106 1984      1940t2020i01  
#> 107 1985      1940t2020i01  
#> 108 1986      1940t2020i01  
#> 109 1987      1940t2020i01  
#> 110 1988      1940t2020i01  
#> 111 1989      1940t2020i01  
#> 112 1990      1940t2020i01  
#> 113 1991      1940t2020i01  
#> 114 1992      1940t2020i01  
#> 115 1993      1940t2020i01  
#> 116 1994      1940t2020i01  
#> 117 1995      1940t2020i01  
#> 118 1996      1940t2020i01  
#> 119 1997      1940t2020i01  
#> 120 1998      1940t2020i01  
#> 121 1999      1940t2020i01  
#> 122 2000      1940t2020i01  
#> 123 2001      1940t2020i01  
#> 124 2002      1940t2020i01  
#> 125 2003      1940t2020i01  
#> 126 2004      1940t2020i01  
#> 127 2005      1940t2020i01  
#> 128 2006      1940t2020i01  
#> 129 2007      1940t2020i01  
#> 130 2008      1940t2020i01  
#> 131 2009      1940t2020i01  
#> 132 2010      1940t2020i01  
#> 133 2011      1940t2020i01  
#> 134 2012      1940t2020i01  
#> 135 2013      1940t2020i01  
#> 136 2014      1940t2020i01  
#> 137 2015      1940t2020i01  
#> 138 2016      1940t2020i01  
#> 139 2017      1940t2020i01  
#> 140 2018      1940t2020i01  
#> 141 2019      1940t2020i01  
#> 142 2020      1940t2020i01

We review all unique values in variables. We get all unique “variable” values, drop enroll_ratio

ar_st_vars <- unique(ppts_wrk %>% pull(variable))
ar_year_bins_type <- unique(ppts_wrk %>% pull(year_bins_type))
print(ar_st_vars)
#> [1] gdp      student  teacher  youthpop school  
#> Levels: gdp school student teacher youthpop
print(ar_year_bins_type)
#> [1] 1920t2020i05 1920t2020i10 1920t2020i20 1925t2015i15 1940t2020i01
#> Levels: 1920t2020i05 1920t2020i10 1920t2020i20 1925t2015i15 1940t2020i01

Conduct some basic sorting and other common operations on the file.

ppts_wrk <- ppts_wrk %>%
  arrange(location_level, location_code, year_bins)
# %>%
# filter(!(location_level %in% c("province", "multiprovince")))

Implement FLR file

For the FLR file, we proceed as beolow. This is functionalized in [PrjCompPPTS::ff_ppts_lrce_flr()].

First, start with long file, keep all locations and location types, select a subst of years, select teachers, schools, students, youthpop so different ratios can be constructed, and levels we want kept

df_ysts <- ppts_wrk %>%
  filter(variable %in% c(
    "youthpop", "student",
    "teacher", "school"
  )) %>%
  filter(year_bins_type == "1940t2020i01") %>%
  mutate(year_bins = as.numeric(year_bins)) %>%
  filter(year_bins %in% c(1960, 1980, 1990, 2000, 2010, 2020))
# review years
print(unique(df_ysts %>% pull(year_bins)))
#> [1] 1960 1980 1990 2000 2010 2020

Second, vars kept from long to wide: unit of obs: locType x loc x time

df_ysts_wide <- df_ysts %>%
  pivot_wider(
    id_cols = c("location_code", "location_level", "year_bins"),
    names_from = variable,
    names_prefix = "var_lvl_",
    names_sep = "_",
    values_from = c(value_interp1)
  )
print(glue::glue("dim of youth wide file: {dim(df_ysts_wide)}"))
#> dim of youth wide file: 1616
#> dim of youth wide file: 7

Third, RATIO/LEVELS: Compute key ratios within time periods, year level/ratio stats done:

  • Teacher over student: var_rat_t2s
  • Teacher over youthpop: var_rat_t2y
  • School over student: var_rat_s2s
  • School over youthpop: var_rat_sty
df_flr <- df_ysts_wide %>%
  mutate(
    var_rat_y2t = var_lvl_youthpop / var_lvl_teacher,
    var_rat_s2t = var_lvl_student / var_lvl_teacher,
    var_rat_y2s = var_lvl_youthpop / var_lvl_school,
    var_rat_s2s = var_lvl_student / var_lvl_school
  )
print(colnames(df_flr))
#>  [1] "location_code"    "location_level"   "year_bins"        "var_lvl_youthpop"
#>  [5] "var_lvl_student"  "var_lvl_teacher"  "var_lvl_school"   "var_rat_y2t"     
#>  [9] "var_rat_s2t"      "var_rat_y2s"      "var_rat_s2s"
print(glue::glue("dim of youth wide ratio file: {dim(df_flr)}"))
#> dim of youth wide ratio file: 1616
#> dim of youth wide ratio file: 11

Review output.

kable(df_flr[1:300,], caption="FLR")
FLR
location_code location_level year_bins var_lvl_youthpop var_lvl_student var_lvl_teacher var_lvl_school var_rat_y2t var_rat_s2t var_rat_y2s var_rat_s2s
ABW country 1960 23769 NA NA NA NA NA NA NA
ABW country 1980 15934 NA NA NA NA NA NA NA
ABW country 1990 15257 NA NA NA NA NA NA NA
ABW country 2000 21062 9.263000e+03 486.0000 NA 43.33745 19.059671 NA NA
ABW country 2010 21221 9.858000e+03 586.0000 NA 36.21331 16.822526 NA NA
ABW country 2020 18558 NA NA NA NA NA NA NA
AFG country 1960 3791398 NA NA NA NA NA NA NA
AFG country 1980 6167998 9.595830e+05 19322.0360 NA 319.22091 49.662624 NA NA
AFG country 1990 5996166 6.225130e+05 15106.0000 NA 396.93936 41.209652 NA NA
AFG country 2000 10160022 7.493600e+05 32367.5553 NA 313.89525 23.151579 NA NA
AFG country 2010 14061038 5.279326e+06 118858.0000 NA 118.30115 44.417086 NA NA
AFG country 2020 16280845 7.018950e+06 137376.2272 NA 118.51283 51.092903 NA NA
AGO country 1960 2298278 NA NA NA NA NA NA NA
AGO country 1980 3846099 1.420839e+06 32700.8247 NA 117.61474 43.449638 NA NA
AGO country 1990 5635397 1.041126e+06 31504.3503 NA 178.87679 33.047055 NA NA
AGO country 2000 7738638 1.666859e+06 40080.8122 NA 193.07588 41.587457 NA NA
AGO country 2010 10987155 4.273006e+06 93734.0000 NA 117.21632 45.586511 NA NA
AGO country 2020 15248424 6.463250e+06 50712.6412 NA 300.68290 127.448500 NA NA
ALB country 1960 646025 NA NA NA NA NA NA NA
ALB country 1980 961426 2.722770e+05 NA NA NA NA NA NA
ALB country 1990 1077154 2.784460e+05 NA NA NA NA NA NA
ALB country 2000 937016 2.832490e+05 12551.0000 NA 74.65668 22.567843 NA NA
ALB country 2010 654121 2.247810e+05 11409.0000 NA 57.33377 19.702077 NA NA
ALB country 2020 489128 1.621700e+05 9668.0000 NA 50.59247 16.773893 NA NA
AND country 1980 NA 2.908487e+03 251.7682 NA NA 11.552243 NA NA
AND country 1990 NA 3.681188e+03 343.2481 NA NA 10.724568 NA NA
AND country 2000 NA 4.033574e+03 327.1314 NA NA 12.330135 NA NA
AND country 2010 NA 4.367000e+03 453.0000 NA NA 9.640177 NA NA
AND country 2020 NA 4.246000e+03 411.0000 NA NA 10.330900 NA NA
ARE country 1960 41184 NA NA NA NA NA NA NA
ARE country 1980 286609 8.047000e+04 4949.0000 NA 57.91251 16.259850 NA NA
ARE country 1990 567999 2.155320e+05 11921.0000 NA 47.64693 18.080027 NA NA
ARE country 2000 816214 2.731440e+05 16916.0000 NA 48.25100 16.147080 NA NA
ARE country 2010 1124863 3.265880e+05 19401.0000 NA 57.97964 16.833565 NA NA
ARE country 2020 1465172 4.623330e+05 24646.0000 NA 59.44867 18.758947 NA NA
ARG country 1960 6359619 NA NA NA NA NA NA NA
ARG country 1980 8485078 3.917449e+06 193640.0000 NA 43.81883 20.230577 NA NA
ARG country 1990 10041981 4.965396e+06 271035.5882 NA 37.05041 18.320089 NA NA
ARG country 2000 10494238 4.900956e+06 244412.0000 NA 42.93667 20.052027 NA NA
ARG country 2010 10619665 4.947105e+06 262899.9195 NA 40.39433 18.817446 NA NA
ARG country 2020 11087953 4.824506e+06 NA NA NA NA NA NA
ARM country 1960 724437 NA NA NA NA NA NA NA
ARM country 1980 938303 NA NA NA NA NA NA NA
ARM country 1990 1063000 2.287273e+05 12440.8129 NA 85.44458 18.385241 NA NA
ARM country 2000 792297 1.803060e+05 11747.9665 NA 67.44120 15.347848 NA NA
ARM country 2010 559945 1.018190e+05 7386.7351 NA 75.80413 13.784033 NA NA
ARM country 2020 617311 1.549050e+05 8066.0000 NA 76.53248 19.204686 NA NA
ASM country 1980 NA 6.521841e+03 358.5114 NA NA 18.191448 NA NA
ASM country 1990 NA 8.574000e+03 461.0000 NA NA 18.598699 NA NA
ATG country 1960 23267 NA NA NA NA NA NA NA
ATG country 1980 23489 9.899027e+03 400.8789 NA 58.59376 24.693311 NA NA
ATG country 1990 19252 9.782756e+03 527.8360 NA 36.47345 18.533704 NA NA
ATG country 2000 21808 1.302500e+04 695.0000 NA 31.37842 18.741007 NA NA
ATG country 2010 21426 1.125400e+04 747.0000 NA 28.68273 15.065596 NA NA
ATG country 2020 21398 1.048651e+04 798.2935 NA 26.80468 13.136154 NA NA
AUS country 1960 3101573 NA NA NA NA NA NA NA
AUS country 1980 3717172 1.718352e+06 91026.2921 NA 40.83625 18.877535 NA NA
AUS country 1990 3769581 1.583024e+06 94778.8309 NA 39.77239 16.702295 NA NA
AUS country 2000 3999611 1.905951e+06 106342.1695 NA 37.61077 17.922815 NA NA
AUS country 2010 4193157 2.015017e+06 NA NA NA NA NA NA
AUS country 2020 4956854 2.280007e+06 NA NA NA NA NA NA
AUT country 1960 1566864 5.161100e+05 21499.0000 4393.00 72.88079 24.006233 356.6729 117.48463
AUT country 1980 1549231 4.013960e+05 27525.0000 3450.00 56.28451 14.582961 449.0525 116.34667
AUT country 1990 1299884 3.719710e+05 29404.0000 3386.00 44.20773 12.650354 383.8996 109.85558
AUT country 2000 1348118 3.935860e+05 33853.0000 3360.00 39.82270 11.626326 401.2256 117.13869
AUT country 2010 1230814 3.276630e+05 32605.0000 3171.00 37.74924 10.049471 388.1470 103.33113
AUT country 2020 1285114 3.475210e+05 37296.0000 3014.00 34.45715 9.317916 426.3816 115.30226
AZE country 1960 1539915 NA NA NA NA NA NA NA
AZE country 1980 2146219 4.704598e+05 NA NA NA NA NA NA
AZE country 1990 2382349 5.035980e+05 25656.5572 NA 92.85537 19.628432 NA NA
AZE country 2000 2506956 7.001360e+05 37469.0000 NA 66.90747 18.685740 NA NA
AZE country 2010 2067587 4.815510e+05 43610.0000 NA 47.41085 11.042215 NA NA
AZE country 2020 2373427 6.512580e+05 40160.0000 NA 59.09928 16.216584 NA NA
BDI country 1960 1226079 NA NA NA NA NA NA NA
BDI country 1980 1857676 1.597290e+05 4623.0000 NA 401.83344 34.550941 NA NA
BDI country 1990 2605955 5.960880e+05 9049.0000 NA 287.98265 65.873356 NA NA
BDI country 2000 3194025 7.047850e+05 12731.0000 NA 250.88563 55.359752 NA NA
BDI country 2010 3916196 1.849861e+06 36557.0000 NA 107.12575 50.602101 NA NA
BDI country 2020 5380807 2.256960e+06 51732.6584 NA 104.01180 43.627372 NA NA
BEL country 1960 2152022 NA NA NA NA NA NA NA
BEL country 1980 1985822 8.617460e+05 44212.0000 NA 44.91591 19.491224 NA NA
BEL country 1990 1786760 7.228110e+05 52543.7597 NA 34.00518 13.756362 NA NA
BEL country 2000 1800715 7.737420e+05 62644.0299 NA 28.74520 12.351408 NA NA
BEL country 2010 1839474 7.317610e+05 66317.0000 NA 27.73759 11.034290 NA NA
BEL country 2020 1966443 8.249863e+05 74698.4332 NA 26.32509 11.044225 NA NA
BEN country 1960 936951 NA NA NA NA NA NA NA
BEN country 1980 1660673 3.573480e+05 6547.0000 NA 253.65404 54.581946 NA NA
BEN country 1990 2279693 4.182720e+05 13693.0000 NA 166.48601 30.546411 NA NA
BEN country 2000 3099203 9.324240e+05 17710.0000 NA 174.99735 52.649577 NA NA
BEN country 2010 4033506 1.787940e+06 38540.0000 NA 104.65765 46.391801 NA NA
BEN country 2020 5085024 2.182724e+06 57002.0000 NA 89.20782 38.292060 NA NA
BFA country 1960 1995469 NA NA NA NA NA NA NA
BFA country 1980 3109926 1.848290e+05 3490.0000 NA 891.09628 52.959599 NA NA
BFA country 1990 4163498 4.729790e+05 8572.0000 NA 485.70905 55.177205 NA NA
BFA country 2000 5429021 8.521600e+05 17435.0000 NA 311.38635 48.876398 NA NA
BFA country 2010 7213252 2.047630e+06 39077.0000 NA 184.59073 52.399877 NA NA
BFA country 2020 9274847 3.240347e+06 87304.0000 NA 106.23622 37.115676 NA NA
BGD country 1960 20191455 NA NA NA NA NA NA NA
BGD country 1980 35606527 8.240169e+06 153859.0000 NA 231.42310 53.556627 NA NA
BGD country 1990 43429145 1.193995e+07 189508.0000 NA 229.16787 63.004987 NA NA
BGD country 2000 47178540 1.464509e+07 282439.6897 NA 167.03934 51.852100 NA NA
BGD country 2010 47204866 1.698711e+07 395281.0000 NA 119.42103 42.974760 NA NA
BGD country 2020 44061889 1.760384e+07 582702.6042 NA 75.61643 30.210677 NA NA
BGR country 1960 2052880 NA NA NA NA NA NA NA
BGR country 1980 1962711 5.212790e+05 NA NA NA NA NA NA
BGR country 1990 1773939 4.788870e+05 NA NA NA NA NA NA
BGR country 2000 1279448 3.928760e+05 23344.0000 NA 54.80843 16.829849 NA NA
BGR country 2010 998134 2.603400e+05 14885.0000 NA 67.05637 17.490091 NA NA
BGR country 2020 1017877 2.511105e+05 22219.3094 NA 45.81047 11.301454 NA NA
BHR country 1960 67072 NA NA NA NA NA NA NA
BHR country 1980 124427 4.867200e+04 2479.0000 NA 50.19242 19.633723 NA NA
BHR country 1990 162120 6.400000e+04 3059.0000 NA 52.99771 20.921870 NA NA
BHR country 2000 200319 7.772000e+04 4505.6752 NA 44.45926 17.249357 NA NA
BHR country 2010 252039 9.236493e+04 7315.6874 NA 34.45185 12.625598 NA NA
BHR country 2020 311089 1.177931e+05 9112.0000 NA 34.14058 12.927248 NA NA
BHS country 1960 46429 NA NA NA NA NA NA NA
BHS country 1980 77862 3.184200e+04 1218.0000 NA 63.92611 26.142857 NA NA
BHS country 1990 83113 3.289900e+04 1671.4147 NA 49.72614 19.683326 NA NA
BHS country 2000 87348 3.390388e+04 2273.1308 NA 38.42630 14.915058 NA NA
BHS country 2010 95420 3.397700e+04 2402.0000 NA 39.72523 14.145296 NA NA
BHS country 2020 84947 2.839622e+04 1443.7632 NA 58.83721 19.668196 NA NA
BIH country 1960 1225443 NA NA NA NA NA NA NA
BIH country 1980 1201151 NA NA NA NA NA NA NA
BIH country 1990 1078368 NA NA NA NA NA NA NA
BIH country 2000 776939 NA NA NA NA NA NA NA
BIH country 2010 583133 1.752710e+05 9303.8845 NA 62.67629 18.838476 NA NA
BIH country 2020 476455 1.523330e+05 9443.0000 NA 50.45589 16.131844 NA NA
BLR country 1960 2369415 NA NA NA NA NA NA NA
BLR country 1980 2197454 7.331000e+05 NA NA NA NA NA NA
BLR country 1990 2336436 8.680000e+05 27858.2429 NA 83.86875 31.157744 NA NA
BLR country 2000 1848790 5.997320e+05 32940.0000 NA 56.12599 18.206800 NA NA
BLR country 2010 1412685 3.577960e+05 23907.0000 NA 59.09085 14.966161 NA NA
BLR country 2020 1617137 4.374147e+05 21737.7061 NA 74.39318 20.122394 NA NA
BLZ country 1960 41686 NA NA NA NA NA NA NA
BLZ country 1980 67102 2.804100e+04 NA NA NA NA NA NA
BLZ country 1990 81511 3.575400e+04 NA NA NA NA NA NA
BLZ country 2000 100758 4.478800e+04 1921.0000 NA 52.45081 23.314940 NA NA
BLZ country 2010 114838 5.265000e+04 2367.0000 NA 48.51627 22.243346 NA NA
BLZ country 2020 116103 4.944900e+04 2598.0000 NA 44.68938 19.033487 NA NA
BMU country 1980 NA 5.986000e+03 262.0000 NA NA 22.847328 NA NA
BMU country 1990 NA 5.672995e+03 378.2420 NA NA 14.998323 NA NA
BMU country 2000 NA 5.175416e+03 520.8715 NA NA 9.936072 NA NA
BMU country 2010 NA 4.473000e+03 608.0000 NA NA 7.356908 NA NA
BMU country 2020 NA 4.390206e+03 520.8518 NA NA 8.428897 NA NA
BOL country 1960 1507690 NA NA NA NA NA NA NA
BOL country 1980 2279052 8.569330e+05 NA NA NA NA NA NA
BOL country 1990 2728649 1.097661e+06 NA NA NA NA NA NA
BOL country 2000 3177025 1.461816e+06 59909.2940 NA 53.03059 24.400488 NA NA
BOL country 2010 3465712 1.444023e+06 76782.0733 NA 45.13699 18.806773 NA NA
BOL country 2020 3525599 1.394029e+06 76841.0418 NA 45.88172 18.141727 NA NA
BRA country 1960 31157132 NA NA NA NA NA NA NA
BRA country 1980 46094176 1.608973e+07 556335.0327 NA 82.85327 28.920938 NA NA
BRA country 1990 52387547 2.031224e+07 676660.7098 NA 77.42070 30.018353 NA NA
BRA country 2000 52329021 2.021151e+07 815079.0000 NA 64.20116 24.796990 NA NA
BRA country 2010 48582701 1.689349e+07 762132.0000 NA 63.74578 22.166095 NA NA
BRA country 2020 44019351 1.543299e+07 768375.3810 NA 57.28886 20.085224 NA NA
BRB country 1960 87977 NA NA NA NA NA NA NA
BRB country 1980 75086 3.129900e+04 1315.1598 NA 57.09268 23.798629 NA NA
BRB country 1990 62692 2.851600e+04 1602.0000 NA 39.13358 17.800250 NA NA
BRB country 2000 59208 2.447500e+04 1393.0000 NA 42.50395 17.569993 NA NA
BRB country 2010 55701 2.265900e+04 1742.0000 NA 31.97532 13.007463 NA NA
BRB country 2020 48164 1.924200e+04 1476.0000 NA 32.63144 13.036585 NA NA
BRN country 1960 35551 NA NA NA NA NA NA NA
BRN country 1980 75467 3.051300e+04 1671.0000 NA 45.16278 18.260323 NA NA
BRN country 1990 89629 3.939476e+04 2688.3463 NA 33.33983 14.653901 NA NA
BRN country 2000 102138 4.542800e+04 3324.0000 NA 30.72744 13.666667 NA NA
BRN country 2010 100886 4.421500e+04 3896.0000 NA 25.89476 11.348819 NA NA
BRN country 2020 97664 3.964900e+04 4258.0000 NA 22.93659 9.311649 NA NA
BTN country 1960 94002 NA NA NA NA NA NA NA
BTN country 1980 177671 2.989900e+04 945.3473 NA 187.94257 31.627529 NA NA
BTN country 1990 230565 5.310188e+04 1709.4232 NA 134.87883 31.064211 NA NA
BTN country 2000 235302 8.509200e+04 2068.0000 NA 113.78240 41.147002 NA NA
BTN country 2010 213689 1.103690e+05 4262.0000 NA 50.13820 25.896058 NA NA
BTN country 2020 192089 9.416500e+04 2941.0000 NA 65.31418 32.018021 NA NA
BWA country 1960 219410 NA NA NA NA NA NA NA
BWA country 1980 435482 1.719140e+05 5316.0000 NA 81.91911 32.338977 NA NA
BWA country 1990 578604 2.835160e+05 8956.0000 NA 64.60518 31.656543 NA NA
BWA country 2000 635233 3.242830e+05 12135.0000 NA 52.34718 26.722950 NA NA
BWA country 2010 694859 3.324515e+05 13407.9564 NA 51.82438 24.795090 NA NA
BWA country 2020 785530 3.648943e+05 11612.1785 NA 67.64708 31.423415 NA NA
CAF country 1960 570960 NA NA NA NA NA NA NA
CAF country 1980 928400 2.434190e+05 4010.0000 NA 231.52120 60.702993 NA NA
CAF country 1990 1228797 3.236610e+05 3581.0000 NA 343.14354 90.382854 NA NA
CAF country 2000 1575406 4.337708e+05 4409.9475 NA 357.23918 98.361893 NA NA
CAF country 2010 1932637 6.368710e+05 7553.0000 NA 255.87674 84.320270 NA NA
CAF country 2020 2102963 9.998486e+05 11513.1893 NA 182.65686 86.843756 NA NA
CAN country 1960 6040212 NA NA NA NA NA NA NA
CAN country 1980 5578695 2.205865e+06 143285.6387 NA 38.93408 15.394879 NA NA
CAN country 1990 5729961 2.345000e+06 149500.0000 NA 38.32750 15.685619 NA NA
CAN country 2000 5880513 2.456434e+06 141045.0000 NA 41.69246 17.415959 NA NA
CAN country 2010 5606922 2.168022e+06 NA NA NA NA NA NA
CAN country 2020 6000465 2.408472e+06 NA NA NA NA NA NA
CHE country 1960 1315049 5.730520e+05 17449.2007 NA 75.36442 32.841163 NA NA
CHE country 1980 1279347 4.404003e+05 25230.3099 NA 50.70675 17.455207 NA NA
CHE country 1990 1179241 4.111542e+05 30392.5974 NA 38.80027 13.528104 NA NA
CHE country 2000 1253186 4.737390e+05 36611.1231 NA 34.22965 12.939756 NA NA
CHE country 2010 1178302 4.360730e+05 44102.0000 4527.00 26.71765 9.887828 260.2832 96.32715
CHE country 2020 1291911 5.302300e+05 54777.0000 4610.00 23.58492 9.679793 280.2410 115.01735
CHI country 1960 23546 NA NA NA NA NA NA NA
CHI country 1980 23439 NA NA NA NA NA NA NA
CHI country 1990 22684 NA NA NA NA NA NA NA
CHI country 2000 25306 NA NA NA NA NA NA NA
CHI country 2010 24827 NA NA NA NA NA NA NA
CHI country 2020 26034 NA NA NA NA NA NA NA
CHL country 1960 3208362 NA NA NA NA NA NA NA
CHL country 1980 3823972 1.754075e+06 NA NA NA NA NA NA
CHL country 1990 3998236 1.593486e+06 NA NA NA NA NA NA
CHL country 2000 4193301 1.798515e+06 55808.0000 NA 75.13799 32.226831 NA NA
CHL country 2010 3767708 1.546543e+06 66059.0000 NA 57.03550 23.411541 NA NA
CHL country 2020 3677716 1.565850e+06 95462.7332 NA 38.52515 16.402735 NA NA
CHN country 1960 265641893 9.379100e+07 2693000.0000 726484.00 98.64162 34.827701 365.6542 129.10264
CHN country 1980 352611901 1.462700e+08 5499000.0000 917316.00 64.12291 26.599382 384.3952 159.45432
CHN country 1990 324546177 1.224140e+08 5582000.0000 766072.00 58.14156 21.930133 423.6497 159.79438
CHN country 2000 312993544 1.301330e+08 5860000.0000 553622.00 53.41187 22.206997 565.3560 235.05749
CHN country 2010 249615182 9.940700e+07 5617000.0000 257410.00 44.43923 17.697525 969.7183 386.18158
CHN country 2020 249901204 1.072535e+08 6434200.0000 157979.00 38.83951 16.669283 1581.8634 678.90986
CIV country 1960 1496544 NA NA NA NA NA NA NA
CIV country 1980 3636087 9.541900e+05 24609.0000 NA 147.75436 38.774026 NA NA
CIV country 1990 5379225 1.405187e+06 38722.0000 NA 138.91909 36.289112 NA NA
CIV country 2000 7179531 1.943101e+06 43205.0000 NA 166.17361 44.973985 NA NA
CIV country 2010 8956696 2.563666e+06 56514.9682 NA 158.48361 45.362596 NA NA
CIV country 2020 10949219 4.101430e+06 101085.0000 NA 108.31695 40.574071 NA NA
CMR country 1960 2066923 NA NA NA NA NA NA NA
CMR country 1980 3852220 1.302974e+06 25289.0000 NA 152.32789 51.523350 NA NA
CMR country 1990 5471853 1.946301e+06 37804.0000 NA 144.74270 51.483996 NA NA
CMR country 2000 6995203 2.237083e+06 41998.5829 NA 166.55807 53.265678 NA NA
CMR country 2010 8887234 3.510396e+06 76655.0000 NA 115.93809 45.794743 NA NA
CMR country 2020 11166234 4.607127e+06 99454.0307 NA 112.27533 46.324189 NA NA
COD country 1960 6612287 NA NA NA NA NA NA NA
COD country 1980 11755475 4.054758e+06 99361.2797 NA 118.31042 40.808231 NA NA
COD country 1990 15617193 3.429633e+06 114365.0382 NA 136.55566 29.988474 NA NA
COD country 2000 21452139 4.452456e+06 156028.1009 NA 137.48895 28.536241 NA NA
COD country 2010 29790152 1.057242e+07 285640.0000 NA 104.29265 37.013100 NA NA
COD country 2020 41014814 1.920163e+07 652095.4320 NA 62.89695 29.446041 NA NA
COG country 1960 425386 NA NA NA NA NA NA NA
COG country 1980 819733 3.830180e+05 6852.0000 NA 119.63412 55.898716 NA NA
COG country 1990 1051806 4.921430e+05 7639.0000 NA 137.68896 64.425056 NA NA
COG country 2000 1318699 4.187070e+05 6923.0000 NA 190.48086 60.480572 NA NA
COG country 2010 1779358 7.050930e+05 14347.0000 NA 124.02300 49.145675 NA NA
COG country 2020 2277331 8.004810e+05 33133.3199 NA 68.73235 24.159395 NA NA
COL country 1960 7497972 NA NA NA NA NA NA NA
COL country 1980 10766636 4.168200e+06 136381.0000 NA 78.94528 30.562908 NA NA
COL country 1990 11931200 4.246658e+06 141936.0000 NA 84.06042 29.919527 NA NA
COL country 2000 12908990 5.221018e+06 197374.0000 NA 65.40370 26.452410 NA NA
COL country 2010 12331562 5.084972e+06 180760.0000 NA 68.22064 28.131069 NA NA
COL country 2020 11287640 4.224512e+06 184850.6967 NA 61.06355 22.853643 NA NA
COM country 1960 78957 NA NA NA NA NA NA NA
COM country 1980 137879 5.460648e+04 1160.6850 NA 118.79106 47.046768 NA NA
COM country 1990 189111 6.782500e+04 1900.0000 NA 99.53211 35.697368 NA NA
COM country 2000 238510 9.342100e+04 2536.0000 NA 94.04968 36.837934 NA NA
COM country 2010 283080 1.147186e+05 4021.4341 NA 70.39280 28.526790 NA NA
COM country 2020 339315 1.298704e+05 2100.5643 NA 161.53516 61.826444 NA NA
CPV country 1960 85006 NA NA NA NA NA NA NA
CPV country 1980 134286 5.811100e+04 1396.0000 NA 96.19341 41.626791 NA NA
CPV country 1990 155787 6.776100e+04 2028.0000 NA 76.81805 33.412722 NA NA
CPV country 2000 183960 9.163600e+04 3190.0000 NA 57.66771 28.726019 NA NA
CPV country 2010 159192 7.113400e+04 3009.0000 NA 52.90528 23.640412 NA NA
CPV country 2020 156130 6.110155e+04 3143.8216 NA 49.66249 19.435439 NA NA
CRI country 1960 603128 NA NA NA NA NA NA NA
CRI country 1980 880420 3.486740e+05 12596.0000 NA 69.89679 27.681327 NA NA
CRI country 1990 1111065 4.352050e+05 13651.0000 NA 81.39074 31.880815 NA NA
CRI country 2000 1234692 5.514650e+05 22111.0000 NA 55.84062 24.940753 NA NA
CRI country 2010 1112649 5.206090e+05 29163.0000 NA 38.15276 17.851696 NA NA
CRI country 2020 1061003 4.927610e+05 43093.0000 NA 24.62124 11.434827 NA NA
CUB country 1960 2503849 NA NA NA NA NA NA NA
CUB country 1980 3124091 1.550323e+06 86519.0000 NA 36.10873 17.918873 NA NA
CUB country 1990 2464759 8.855760e+05 71887.0000 NA 34.28657 12.319001 NA NA
CUB country 2000 2401518 1.045578e+06 90920.0000 NA 26.41353 11.499978 NA NA
CUB country 2010 1991584 8.527440e+05 93414.0000 NA 21.31997 9.128653 NA NA
CUB country 2020 1803279 7.598030e+05 84629.0000 NA 21.30805 8.978045 NA NA
CUW country 1960 51456 NA NA NA NA NA NA NA
CUW country 1980 45907 NA NA NA NA NA NA NA
CUW country 1990 39609 NA NA NA NA NA NA NA
CUW country 2000 33363 NA NA NA NA NA NA NA
CUW country 2010 30796 2.552826e+04 NA NA NA NA NA NA
CUW country 2020 28165 1.292200e+04 NA NA NA NA NA NA
CYM country 1980 NA 2.109000e+03 112.0000 NA NA 18.830357 NA NA
CYM country 1990 NA 2.619048e+03 155.5292 NA NA 16.839595 NA NA
CYM country 2000 NA 3.435000e+03 237.0000 NA NA 14.493671 NA NA
CYM country 2010 NA 3.900209e+03 322.8460 NA NA 12.080708 NA NA
CYM country 2020 NA 4.534000e+03 347.0000 NA NA 13.066282 NA NA
CYP country 1960 210309 NA NA NA NA NA NA NA
CYP country 1980 171294 5.057900e+04 2200.0000 NA 77.86091 22.990454 NA NA
CYP country 1990 195411 6.084100e+04 2846.0000 NA 68.66163 21.377723 NA NA
CYP country 2000 211296 6.395200e+04 3608.0000 NA 58.56319 17.725055 NA NA
CYP country 2010 198453 5.480600e+04 3985.0000 NA 49.80000 13.753074 NA NA
CYP country 2020 200146 5.990104e+04 5356.0320 NA 37.36834 11.183848 NA NA
CZE country 1960 2471190 NA NA NA NA NA NA NA
CZE country 1980 2411901 6.729224e+05 22879.3838 NA 105.41809 29.411736 NA NA
CZE country 1990 2227371 5.667620e+05 23145.0000 NA 96.23552 24.487449 NA NA
CZE country 2000 1684165 6.449560e+05 38196.0000 NA 44.09271 16.885433 NA NA
CZE country 2010 1491710 4.633570e+05 24769.0000 NA 60.22488 18.707134 NA NA
CZE country 2020 1685507 5.801289e+05 NA NA NA NA NA NA
DEU country 1990 12768494 NA 181026.5562 18001.15 70.53382 NA 709.3154 NA
DEU country 2000 12884644 3.352935e+06 215437.0000 17275.00 59.80702 15.563413 745.8549 194.09175
DEU country 2010 11095807 2.837737e+06 228438.0000 16290.00 48.57251 12.422351 681.1422 174.20117
DEU country 2020 11605595 2.842302e+06 237828.0000 15447.00 48.79827 11.951082 751.3171 184.00350
DJI country 1960 36262 NA NA NA NA NA NA NA
DJI country 1980 166794 1.522700e+04 360.0000 NA 463.31667 42.297222 NA NA
DJI country 1990 265743 3.137800e+04 711.0000 NA 373.75949 44.132208 NA NA

Implement FPC file

Step 2, we will generate the FPC file. This is functionalized in [PrjCompPPTS::ff_ppts_lrce_fpc()].

First, from levels/ratios file (keep ranks), variables are levels and ratios, convert all vars to long. unit of obs: locType x loc x time x var(level/change).

df_ysts_longer <- df_flr %>%
  pivot_longer(
    cols = matches("var"),
    names_to = c("vartype", "variable"),
    names_pattern = paste0("var_(.*)_(.*)"),
    values_to = "stat"
  ) %>%
  drop_na(stat)
print(glue::glue("dim of youth wide ratio file: {dim(df_ysts_longer)}"))
#> dim of youth wide ratio file: 6644
#> dim of youth wide ratio file: 6

Second, generate ranks, grouped by locType x time x var(level/change). Ranking across locations.

df_ysts_longer_rank <- df_ysts_longer %>%
  group_by(location_level, variable, year_bins) %>%
  arrange(stat, ..by_group = TRUE) %>%
  mutate(rank = row_number()) %>%
  arrange(location_level, variable, year_bins, location_code) %>%
  select(-stat, -vartype) %>%
  mutate(vartype = "rank") %>%
  rename(stat = rank)
print(glue::glue("dim of youth wide ratio file: {dim(df_ysts_longer_rank)}"))
#> dim of youth wide ratio file: 6644
#> dim of youth wide ratio file: 6

Third, select subperiods of interest, time from long to wide: unit of obs: locType x loc x var(level/change).

ar_it_years_chg <- c(1960, 1980, 2000, 2020)
df_ysts_longer_wide <- bind_rows(df_ysts_longer, df_ysts_longer_rank) %>%
  filter(year_bins %in% ar_it_years_chg) %>%
  pivot_wider(
    id_cols = c("location_code", "location_level", "vartype", "variable"),
    names_from = year_bins,
    names_prefix = "year",
    names_sep = "_",
    values_from = c(stat)
  )
print(glue::glue("dim of youth wide ratio file: {dim(df_ysts_longer_wide)}"))
#> dim of youth wide ratio file: 2728
#> dim of youth wide ratio file: 8

Fourth, compute stats ratios over time for level and change vars. 1980 to 2020 change, 80 to 00, 00 to 20.

df_fpc <- df_ysts_longer_wide %>%
  mutate(
    chg_80v60 = (year1980 - year1960) / year1960,
    chg_00v80 = (year2000 - year1980) / year1980,
    chg_20v00 = (year2020 - year2000) / year2000,
    chg_20v80 = (year2020 - year1980) / year1980
  )
print(glue::glue("dim FPC: {dim(df_fpc)}"))
#> dim FPC: 2728
#> dim FPC: 12

Review output.

kable(df_fpc[1:300,], caption="FPC")
FPC
location_code location_level vartype variable year1960 year1980 year2000 year2020 chg_80v60 chg_00v80 chg_20v00 chg_20v80
ABW country lvl youthpop 2.376900e+04 1.593400e+04 2.106200e+04 1.855800e+04 -0.3296310 0.3218275 -0.1188871 0.1646793
ABW country lvl student NA NA 9.263000e+03 NA NA NA NA NA
ABW country lvl teacher NA NA 4.860000e+02 NA NA NA NA NA
ABW country rat y2t NA NA 4.333745e+01 NA NA NA NA NA
ABW country rat s2t NA NA 1.905967e+01 NA NA NA NA NA
AFG country lvl youthpop 3.791398e+06 6.167998e+06 1.016002e+07 1.628084e+07 0.6268400 0.6472155 0.6024419 1.6395672
AFG country lvl student NA 9.595830e+05 7.493600e+05 7.018950e+06 NA -0.2190775 8.3665931 6.3145838
AFG country lvl teacher NA 1.932204e+04 3.236756e+04 1.373762e+05 NA 0.6751628 3.2442571 6.1098215
AFG country rat y2t NA 3.192209e+02 3.138953e+02 1.185128e+02 NA -0.0166833 -0.6224447 -0.6287435
AFG country rat s2t NA 4.966262e+01 2.315158e+01 5.109290e+01 NA -0.5338229 1.2068864 0.0287999
AGO country lvl youthpop 2.298278e+06 3.846099e+06 7.738638e+06 1.524842e+07 0.6734699 1.0120746 0.9704274 2.9646468
AGO country lvl student NA 1.420839e+06 1.666859e+06 6.463250e+06 NA 0.1731513 2.8775024 3.5488968
AGO country lvl teacher NA 3.270082e+04 4.008081e+04 5.071264e+04 NA 0.2256820 0.2652598 0.5508062
AGO country rat y2t NA 1.176147e+02 1.930759e+02 3.006829e+02 NA 0.6415959 0.5573302 1.5565069
AGO country rat s2t NA 4.344964e+01 4.158746e+01 1.274485e+02 NA -0.0428584 2.0645899 1.9332465
ALB country lvl youthpop 6.460250e+05 9.614260e+05 9.370160e+05 4.891280e+05 0.4882179 -0.0253894 -0.4779940 -0.4912474
ALB country lvl student NA 2.722770e+05 2.832490e+05 1.621700e+05 NA 0.0402972 -0.4274649 -0.4043933
ALB country lvl teacher NA NA 1.255100e+04 9.668000e+03 NA NA -0.2297028 NA
ALB country rat y2t NA NA 7.465668e+01 5.059247e+01 NA NA -0.3223316 NA
ALB country rat s2t NA NA 2.256784e+01 1.677389e+01 NA NA -0.2567348 NA
AND country lvl student NA 2.908487e+03 4.033574e+03 4.246000e+03 NA 0.3868289 0.0526645 0.4598655
AND country lvl teacher NA 2.517682e+02 3.271314e+02 4.110000e+02 NA 0.2993356 0.2563760 0.6324541
AND country rat s2t NA 1.155224e+01 1.233013e+01 1.033090e+01 NA 0.0673369 -0.1621421 -0.1057234
ARE country lvl youthpop 4.118400e+04 2.866090e+05 8.162140e+05 1.465172e+06 5.9592317 1.8478310 0.7950832 4.1120935
ARE country lvl student NA 8.047000e+04 2.731440e+05 4.623330e+05 NA 2.3943581 0.6926347 4.7454082
ARE country lvl teacher NA 4.949000e+03 1.691600e+04 2.464600e+04 NA 2.4180643 0.4569638 3.9799960
ARE country rat y2t NA 5.791251e+01 4.825100e+01 5.944867e+01 NA -0.1668293 0.2320712 0.0265256
ARE country rat s2t NA 1.625985e+01 1.614708e+01 1.875895e+01 NA -0.0069355 0.1617548 0.1536974
ARG country lvl youthpop 6.359619e+06 8.485078e+06 1.049424e+07 1.108795e+07 0.3342117 0.2367875 0.0565753 0.3067591
ARG country lvl student NA 3.917449e+06 4.900956e+06 4.824506e+06 NA 0.2510580 -0.0155989 0.2315428
ARG country lvl teacher NA 1.936400e+05 2.444120e+05 NA NA 0.2621979 NA NA
ARG country rat y2t NA 4.381883e+01 4.293667e+01 NA NA -0.0201319 NA NA
ARG country rat s2t NA 2.023058e+01 2.005203e+01 NA NA -0.0088258 NA NA
ARM country lvl youthpop 7.244370e+05 9.383030e+05 7.922970e+05 6.173110e+05 0.2952168 -0.1556065 -0.2208591 -0.3420984
ARM country lvl student NA NA 1.803060e+05 1.549050e+05 NA NA -0.1408772 NA
ARM country lvl teacher NA NA 1.174797e+04 8.066000e+03 NA NA -0.3134131 NA
ARM country rat y2t NA NA 6.744120e+01 7.653248e+01 NA NA 0.1348030 NA
ARM country rat s2t NA NA 1.534785e+01 1.920469e+01 NA NA 0.2512951 NA
ASM country lvl student NA 6.521841e+03 NA NA NA NA NA NA
ASM country lvl teacher NA 3.585114e+02 NA NA NA NA NA NA
ASM country rat s2t NA 1.819145e+01 NA NA NA NA NA NA
ATG country lvl youthpop 2.326700e+04 2.348900e+04 2.180800e+04 2.139800e+04 0.0095414 -0.0715654 -0.0188004 -0.0890204
ATG country lvl student NA 9.899027e+03 1.302500e+04 1.048651e+04 NA 0.3157859 -0.1948940 0.0593471
ATG country lvl teacher NA 4.008789e+02 6.950000e+02 7.982935e+02 NA 0.7336907 0.1486237 0.9913582
ATG country rat y2t NA 5.859376e+01 3.137842e+01 2.680468e+01 NA -0.4644751 -0.1457607 -0.5425335
ATG country rat s2t NA 2.469331e+01 1.874101e+01 1.313615e+01 NA -0.2410492 -0.2990690 -0.4680278
AUS country lvl youthpop 3.101573e+06 3.717172e+06 3.999611e+06 4.956854e+06 0.1984796 0.0759822 0.2393340 0.3335014
AUS country lvl student NA 1.718352e+06 1.905951e+06 2.280007e+06 NA 0.1091738 0.1962569 0.3268568
AUS country lvl teacher NA 9.102629e+04 1.063422e+05 NA NA 0.1682577 NA NA
AUS country rat y2t NA 4.083625e+01 3.761077e+01 NA NA -0.0789856 NA NA
AUS country rat s2t NA 1.887753e+01 1.792281e+01 NA NA -0.0505744 NA NA
AUT country lvl youthpop 1.566864e+06 1.549231e+06 1.348118e+06 1.285114e+06 -0.0112537 -0.1298147 -0.0467348 -0.1704826
AUT country lvl student 5.161100e+05 4.013960e+05 3.935860e+05 3.475210e+05 -0.2222666 -0.0194571 -0.1170392 -0.1342191
AUT country lvl teacher 2.149900e+04 2.752500e+04 3.385300e+04 3.729600e+04 0.2802921 0.2299001 0.1017044 0.3549864
AUT country lvl school 4.393000e+03 3.450000e+03 3.360000e+03 3.014000e+03 -0.2146597 -0.0260870 -0.1029762 -0.1263768
AUT country rat y2t 7.288079e+01 5.628451e+01 3.982270e+01 3.445715e+01 -0.2277182 -0.2924748 -0.1347360 -0.3878039
AUT country rat s2t 2.400623e+01 1.458296e+01 1.162633e+01 9.317916e+00 -0.3925344 -0.2027459 -0.1985502 -0.3610409
AUT country rat y2s 3.566729e+02 4.490525e+02 4.012256e+02 4.263816e+02 0.2590036 -0.1065062 0.0626978 -0.0504861
AUT country rat s2s 1.174846e+02 1.163467e+02 1.171387e+02 1.153023e+02 -0.0096861 0.0068074 -0.0156774 -0.0089767
AZE country lvl youthpop 1.539915e+06 2.146219e+06 2.506956e+06 2.373427e+06 0.3937256 0.1680802 -0.0532634 0.1058643
AZE country lvl student NA 4.704598e+05 7.001360e+05 6.512580e+05 NA 0.4881952 -0.0698122 0.3843011
AZE country lvl teacher NA NA 3.746900e+04 4.016000e+04 NA NA 0.0718194 NA
AZE country rat y2t NA NA 6.690747e+01 5.909928e+01 NA NA -0.1167014 NA
AZE country rat s2t NA NA 1.868574e+01 1.621658e+01 NA NA -0.1321412 NA
BDI country lvl youthpop 1.226079e+06 1.857676e+06 3.194025e+06 5.380807e+06 0.5151356 0.7193660 0.6846477 1.8965261
BDI country lvl student NA 1.597290e+05 7.047850e+05 2.256960e+06 NA 3.4123797 2.2023382 13.1299322
BDI country lvl teacher NA 4.623000e+03 1.273100e+04 5.173266e+04 NA 1.7538395 3.0635188 10.1902787
BDI country rat y2t NA 4.018334e+02 2.508856e+02 1.040118e+02 NA -0.3756477 -0.5854215 -0.7411569
BDI country rat s2t NA 3.455094e+01 5.535975e+01 4.362737e+01 NA 0.6022647 -0.2119298 0.2626971
BEL country lvl youthpop 2.152022e+06 1.985822e+06 1.800715e+06 1.966443e+06 -0.0772297 -0.0932143 0.0920346 -0.0097587
BEL country lvl student NA 8.617460e+05 7.737420e+05 8.249863e+05 NA -0.1021229 0.0662291 -0.0426573
BEL country lvl teacher NA 4.421200e+04 6.264403e+04 7.469843e+04 NA 0.4169011 0.1924270 0.6895511
BEL country rat y2t NA 4.491591e+01 2.874520e+01 2.632509e+01 NA -0.3600219 -0.0841917 -0.4139027
BEL country rat s2t NA 1.949122e+01 1.235141e+01 1.104422e+01 NA -0.3663092 -0.1058328 -0.4333745
BEN country lvl youthpop 9.369510e+05 1.660673e+06 3.099203e+06 5.085024e+06 0.7724225 0.8662331 0.6407522 2.0620261
BEN country lvl student NA 3.573480e+05 9.324240e+05 2.182724e+06 NA 1.6092884 1.3409136 5.1081187
BEN country lvl teacher NA 6.547000e+03 1.771000e+04 5.700200e+04 NA 1.7050558 2.2186335 7.7065832
BEN country rat y2t NA 2.536540e+02 1.749973e+02 8.920782e+01 NA -0.3100944 -0.4902333 -0.6483091
BEN country rat s2t NA 5.458195e+01 5.264958e+01 3.829206e+01 NA -0.0354031 -0.2726996 -0.2984482
BFA country lvl youthpop 1.995469e+06 3.109926e+06 5.429021e+06 9.274847e+06 0.5584938 0.7457075 0.7083830 1.9823369
BFA country lvl student NA 1.848290e+05 8.521600e+05 3.240347e+06 NA 3.6105319 2.8025101 16.5315941
BFA country lvl teacher NA 3.490000e+03 1.743500e+04 8.730400e+04 NA 3.9957020 4.0073989 24.0154728
BFA country rat y2t NA 8.910963e+02 3.113863e+02 1.062362e+02 NA -0.6505581 -0.6588283 -0.8807803
BFA country rat s2t NA 5.295960e+01 4.887640e+01 3.711568e+01 NA -0.0771003 -0.2406217 -0.2991700
BGD country lvl youthpop 2.019146e+07 3.560653e+07 4.717854e+07 4.406189e+07 0.7634453 0.3249970 -0.0660608 0.2374666
BGD country lvl student NA 8.240169e+06 1.464509e+07 1.760384e+07 NA 0.7772804 0.2020301 1.1363445
BGD country lvl teacher NA 1.538590e+05 2.824397e+05 5.827026e+05 NA 0.8357047 1.0631045 2.7872507
BGD country rat y2t NA 2.314231e+02 1.670393e+02 7.561643e+01 NA -0.2782080 -0.5473137 -0.6732546
BGD country rat s2t NA 5.355663e+01 5.185210e+01 3.021068e+01 NA -0.0318266 -0.4173683 -0.4359115
BGR country lvl youthpop 2.052880e+06 1.962711e+06 1.279448e+06 1.017877e+06 -0.0439232 -0.3481221 -0.2044405 -0.4813923
BGR country lvl student NA 5.212790e+05 3.928760e+05 2.511105e+05 NA -0.2463230 -0.3608403 -0.5182800
BGR country lvl teacher NA NA 2.334400e+04 2.221931e+04 NA NA -0.0481790 NA
BGR country rat y2t NA NA 5.480843e+01 4.581047e+01 NA NA -0.1641711 NA
BGR country rat s2t NA NA 1.682985e+01 1.130145e+01 NA NA -0.3284875 NA
BHR country lvl youthpop 6.707200e+04 1.244270e+05 2.003190e+05 3.110890e+05 0.8551258 0.6099319 0.5529680 1.5001728
BHR country lvl student NA 4.867200e+04 7.772000e+04 1.177931e+05 NA 0.5968113 0.5156084 1.4201406
BHR country lvl teacher NA 2.479000e+03 4.505675e+03 9.112000e+03 NA 0.8175374 1.0223384 2.6756757
BHR country rat y2t NA 5.019242e+01 4.445926e+01 3.414058e+01 NA -0.1142235 -0.2320929 -0.3198059
BHR country rat s2t NA 1.963372e+01 1.724936e+01 1.292725e+01 NA -0.1214424 -0.2505664 -0.3415794
BHS country lvl youthpop 4.642900e+04 7.786200e+04 8.734800e+04 8.494700e+04 0.6770122 0.1218309 -0.0274878 0.0909943
BHS country lvl student NA 3.184200e+04 3.390388e+04 2.839622e+04 NA 0.0647534 -0.1624493 -0.1082150
BHS country lvl teacher NA 1.218000e+03 2.273131e+03 1.443763e+03 NA 0.8662815 -0.3648570 0.1853556
BHS country rat y2t NA 6.392611e+01 3.842630e+01 5.883721e+01 NA -0.3988951 0.5311705 -0.0796059
BHS country rat s2t NA 2.614286e+01 1.491506e+01 1.966820e+01 NA -0.4294786 0.3186805 -0.2476646
BIH country lvl youthpop 1.225443e+06 1.201151e+06 7.769390e+05 4.764550e+05 -0.0198230 -0.3531712 -0.3867537 -0.6033346
BIH country lvl student NA NA NA 1.523330e+05 NA NA NA NA
BIH country lvl teacher NA NA NA 9.443000e+03 NA NA NA NA
BIH country rat y2t NA NA NA 5.045589e+01 NA NA NA NA
BIH country rat s2t NA NA NA 1.613184e+01 NA NA NA NA
BLR country lvl youthpop 2.369415e+06 2.197454e+06 1.848790e+06 1.617137e+06 -0.0725753 -0.1586673 -0.1252998 -0.2640861
BLR country lvl student NA 7.331000e+05 5.997320e+05 4.374147e+05 NA -0.1819233 -0.2706498 -0.4033356
BLR country lvl teacher NA NA 3.294000e+04 2.173771e+04 NA NA -0.3400818 NA
BLR country rat y2t NA NA 5.612599e+01 7.439318e+01 NA NA 0.3254676 NA
BLR country rat s2t NA NA 1.820680e+01 2.012239e+01 NA NA 0.1052131 NA
BLZ country lvl youthpop 4.168600e+04 6.710200e+04 1.007580e+05 1.161030e+05 0.6097011 0.5015648 0.1522956 0.7302465
BLZ country lvl student NA 2.804100e+04 4.478800e+04 4.944900e+04 NA 0.5972326 0.1040681 0.7634535
BLZ country lvl teacher NA NA 1.921000e+03 2.598000e+03 NA NA 0.3524206 NA
BLZ country rat y2t NA NA 5.245081e+01 4.468938e+01 NA NA -0.1479754 NA
BLZ country rat s2t NA NA 2.331494e+01 1.903349e+01 NA NA -0.1836356 NA
BMU country lvl student NA 5.986000e+03 5.175416e+03 4.390206e+03 NA -0.1354132 -0.1517192 -0.2665877
BMU country lvl teacher NA 2.620000e+02 5.208715e+02 5.208518e+02 NA 0.9880590 -0.0000378 0.9879839
BMU country rat s2t NA 2.284733e+01 9.936072e+00 8.428897e+00 NA -0.5651101 -0.1516872 -0.6310773
BOL country lvl youthpop 1.507690e+06 2.279052e+06 3.177025e+06 3.525599e+06 0.5116184 0.3940116 0.1097171 0.5469586
BOL country lvl student NA 8.569330e+05 1.461816e+06 1.394029e+06 NA 0.7058697 -0.0463716 0.6267657
BOL country lvl teacher NA NA 5.990929e+04 7.684104e+04 NA NA 0.2826231 NA
BOL country rat y2t NA NA 5.303059e+01 4.588172e+01 NA NA -0.1348065 NA
BOL country rat s2t NA NA 2.440049e+01 1.814173e+01 NA NA -0.2565015 NA
BRA country lvl youthpop 3.115713e+07 4.609418e+07 5.232902e+07 4.401935e+07 0.4794101 0.1352632 -0.1587966 -0.0450127
BRA country lvl student NA 1.608973e+07 2.021151e+07 1.543299e+07 NA 0.2561743 -0.2364255 -0.0408173
BRA country lvl teacher NA 5.563350e+05 8.150790e+05 7.683754e+05 NA 0.4650866 -0.0572995 0.3811379
BRA country rat y2t NA 8.285327e+01 6.420116e+01 5.728886e+01 NA -0.2251221 -0.1076663 -0.3085504
BRA country rat s2t NA 2.892094e+01 2.479699e+01 2.008522e+01 NA -0.1425938 -0.1900137 -0.3055127
BRB country lvl youthpop 8.797700e+04 7.508600e+04 5.920800e+04 4.816400e+04 -0.1465269 -0.2114642 -0.1865288 -0.3585489
BRB country lvl student NA 3.129900e+04 2.447500e+04 1.924200e+04 NA -0.2180261 -0.2138100 -0.3852200
BRB country lvl teacher NA 1.315160e+03 1.393000e+03 1.476000e+03 NA 0.0591869 0.0595836 0.1222971
BRB country rat y2t NA 5.709268e+01 4.250395e+01 3.263144e+01 NA -0.2555272 -0.2322728 -0.4284480
BRB country rat s2t NA 2.379863e+01 1.756999e+01 1.303659e+01 NA -0.2617225 -0.2580199 -0.4522128
BRN country lvl youthpop 3.555100e+04 7.546700e+04 1.021380e+05 9.766400e+04 1.1227814 0.3534127 -0.0438035 0.2941286
BRN country lvl student NA 3.051300e+04 4.542800e+04 3.964900e+04 NA 0.4888080 -0.1272123 0.2994134
BRN country lvl teacher NA 1.671000e+03 3.324000e+03 4.258000e+03 NA 0.9892280 0.2809868 1.5481747
BRN country rat y2t NA 4.516278e+01 3.072744e+01 2.293659e+01 NA -0.3196292 -0.2535469 -0.4921351
BRN country rat s2t NA 1.826032e+01 1.366667e+01 9.311649e+00 NA -0.2515649 -0.3186599 -0.4900611
BTN country lvl youthpop 9.400200e+04 1.776710e+05 2.353020e+05 1.920890e+05 0.8900768 0.3243692 -0.1836491 0.0811500
BTN country lvl student NA 2.989900e+04 8.509200e+04 9.416500e+04 NA 1.8459815 0.1066258 2.1494364
BTN country lvl teacher NA 9.453473e+02 2.068000e+03 2.941000e+03 NA 1.1875558 0.4221470 2.1110259
BTN country rat y2t NA 1.879426e+02 1.137824e+02 6.531418e+01 NA -0.3945895 -0.4259729 -0.6524780
BTN country rat s2t NA 3.162753e+01 4.114700e+01 3.201802e+01 NA 0.3009869 -0.2218626 0.0123466
BWA country lvl youthpop 2.194100e+05 4.354820e+05 6.352330e+05 7.855300e+05 0.9847865 0.4586895 0.2366014 0.8038174
BWA country lvl student NA 1.719140e+05 3.242830e+05 3.648943e+05 NA 0.8863094 0.1252341 1.1225398
BWA country lvl teacher NA 5.316000e+03 1.213500e+04 1.161218e+04 NA 1.2827314 -0.0430838 1.1843827
BWA country rat y2t NA 8.191911e+01 5.234718e+01 6.764708e+01 NA -0.3609894 0.2922776 -0.1742210
BWA country rat s2t NA 3.233898e+01 2.672295e+01 3.142341e+01 NA -0.1736612 0.1758962 -0.0283114
CAF country lvl youthpop 5.709600e+05 9.284000e+05 1.575406e+06 2.102963e+06 0.6260333 0.6969044 0.3348705 1.2651476
CAF country lvl student NA 2.434190e+05 4.337708e+05 9.998486e+05 NA 0.7819923 1.3050161 3.1075208
CAF country lvl teacher NA 4.010000e+03 4.409947e+03 1.151319e+04 NA 0.0997375 1.6107316 1.8711195
CAF country rat y2t NA 2.315212e+02 3.572392e+02 1.826569e+02 NA 0.5430085 -0.4886987 -0.2110577
CAF country rat s2t NA 6.070299e+01 9.836189e+01 8.684376e+01 NA 0.6203796 -0.1170996 0.4306339
CAN country lvl youthpop 6.040212e+06 5.578695e+06 5.880513e+06 6.000465e+06 -0.0764074 0.0541019 0.0203982 0.0756037
CAN country lvl student NA 2.205865e+06 2.456434e+06 2.408472e+06 NA 0.1135922 -0.0195250 0.0918493
CAN country lvl teacher NA 1.432856e+05 1.410450e+05 NA NA -0.0156376 NA NA
CAN country rat y2t NA 3.893408e+01 4.169246e+01 NA NA 0.0708473 NA NA
CAN country rat s2t NA 1.539488e+01 1.741596e+01 NA NA 0.1312827 NA NA
CHE country lvl youthpop 1.315049e+06 1.279347e+06 1.253186e+06 1.291911e+06 -0.0271486 -0.0204488 0.0309012 0.0098205
CHE country lvl student 5.730520e+05 4.404003e+05 4.737390e+05 5.302300e+05 -0.2314829 0.0757010 0.1192450 0.2039729
CHE country lvl teacher 1.744920e+04 2.523031e+04 3.661112e+04 5.477700e+04 0.4459293 0.4510770 0.4961846 1.1710792
CHE country rat y2t 7.536442e+01 5.070675e+01 3.422965e+01 2.358492e+01 -0.3271791 -0.3249489 -0.3109799 -0.5348762
CHE country rat s2t 3.284116e+01 1.745521e+01 1.293976e+01 9.679793e+00 -0.4684961 -0.2586879 -0.2519339 -0.4454496
CHE country lvl school NA NA NA 4.610000e+03 NA NA NA NA
CHE country rat y2s NA NA NA 2.802410e+02 NA NA NA NA
CHE country rat s2s NA NA NA 1.150174e+02 NA NA NA NA
CHI country lvl youthpop 2.354600e+04 2.343900e+04 2.530600e+04 2.603400e+04 -0.0045443 0.0796536 0.0287679 0.1107129
CHL country lvl youthpop 3.208362e+06 3.823972e+06 4.193301e+06 3.677716e+06 0.1918767 0.0965826 -0.1229544 -0.0382471
CHL country lvl student NA 1.754075e+06 1.798515e+06 1.565850e+06 NA 0.0253353 -0.1293651 -0.1073073
CHL country lvl teacher NA NA 5.580800e+04 9.546273e+04 NA NA 0.7105564 NA
CHL country rat y2t NA NA 7.513799e+01 3.852515e+01 NA NA -0.4872747 NA
CHL country rat s2t NA NA 3.222683e+01 1.640273e+01 NA NA -0.4910224 NA
CHN country lvl youthpop 2.656419e+08 3.526119e+08 3.129935e+08 2.499012e+08 0.3273957 -0.1123568 -0.2015771 -0.2912854
CHN country lvl student 9.379100e+07 1.462700e+08 1.301330e+08 1.072535e+08 0.5595313 -0.1103234 -0.1758163 -0.2667430
CHN country lvl teacher 2.693000e+06 5.499000e+06 5.860000e+06 6.434200e+06 1.0419606 0.0656483 0.0979863 0.1700673
CHN country lvl school 7.264840e+05 9.173160e+05 5.536220e+05 1.579790e+05 0.2626789 -0.3964762 -0.7146446 -0.8277813
CHN country rat y2t 9.864162e+01 6.412291e+01 5.341187e+01 3.883951e+01 -0.3499406 -0.1670393 -0.2728299 -0.3942959
CHN country rat s2t 3.482770e+01 2.659938e+01 2.220700e+01 1.666928e+01 -0.2362579 -0.1651311 -0.2493680 -0.3733207
CHN country rat y2s 3.656542e+02 3.843952e+02 5.653560e+02 1.581863e+03 0.0512536 0.4707676 1.7979951 3.1152004
CHN country rat s2s 1.291026e+02 1.594543e+02 2.350575e+02 6.789099e+02 0.2350973 0.4741369 1.8882715 3.2577075
CIV country lvl youthpop 1.496544e+06 3.636087e+06 7.179531e+06 1.094922e+07 1.4296559 0.9745212 0.5250605 2.0112643
CIV country lvl student NA 9.541900e+05 1.943101e+06 4.101430e+06 NA 1.0363879 1.1107652 3.2983368
CIV country lvl teacher NA 2.460900e+04 4.320500e+04 1.010850e+05 NA 0.7556585 1.3396598 3.1076435
CIV country rat y2t NA 1.477544e+02 1.661736e+02 1.083170e+02 NA 0.1246613 -0.3481700 -0.2669120
CIV country rat s2t NA 3.877403e+01 4.497398e+01 4.057407e+01 NA 0.1598998 -0.0978324 0.0464240
CMR country lvl youthpop 2.066923e+06 3.852220e+06 6.995203e+06 1.116623e+07 0.8637463 0.8158888 0.5962702 1.8986491
CMR country lvl student NA 1.302974e+06 2.237083e+06 4.607127e+06 NA 0.7169053 1.0594351 2.5358551
CMR country lvl teacher NA 2.528900e+04 4.199858e+04 9.945403e+04 NA 0.6607451 1.3680330 2.9326992
CMR country rat y2t NA 1.523279e+02 1.665581e+02 1.122753e+02 NA 0.0934181 -0.3259088 -0.2629365
CMR country rat s2t NA 5.152335e+01 5.326568e+01 4.632419e+01 NA 0.0338163 -0.1303182 -0.1009088
COD country lvl youthpop 6.612287e+06 1.175548e+07 2.145214e+07 4.101481e+07 0.7778229 0.8248636 0.9119219 2.4889967
COD country lvl student NA 4.054758e+06 4.452456e+06 1.920163e+07 NA 0.0980817 3.3125931 3.7355795
COD country lvl teacher NA 9.936128e+04 1.560281e+05 6.520954e+05 NA 0.5703109 3.1793461 5.5628727
COD country rat y2t NA 1.183104e+02 1.374889e+02 6.289695e+01 NA 0.1621034 -0.5425309 -0.4683735
COD country rat s2t NA 4.080823e+01 2.853624e+01 2.944604e+01 NA -0.3007234 0.0318823 -0.2784289
COG country lvl youthpop 4.253860e+05 8.197330e+05 1.318699e+06 2.277331e+06 0.9270333 0.6086933 0.7269529 1.7781375
COG country lvl student NA 3.830180e+05 4.187070e+05 8.004810e+05 NA 0.0931784 0.9117927 1.0899304
COG country lvl teacher NA 6.852000e+03 6.923000e+03 3.313332e+04 NA 0.0103619 3.7859772 3.8355692
COG country rat y2t NA 1.196341e+02 1.904809e+02 6.873235e+01 NA 0.5921951 -0.6391640 -0.4254787
COG country rat s2t NA 5.589872e+01 6.048057e+01 2.415940e+01 NA 0.0819671 -0.6005429 -0.5678005
COL country lvl youthpop 7.497972e+06 1.076664e+07 1.290899e+07 1.128764e+07 0.4359397 0.1989808 -0.1255985 0.0483906
COL country lvl student NA 4.168200e+06 5.221018e+06 4.224512e+06 NA 0.2525834 -0.1908643 0.0135099
COL country lvl teacher NA 1.363810e+05 1.973740e+05 1.848507e+05 NA 0.4472251 -0.0634496 0.3553992
COL country rat y2t NA 7.894528e+01 6.540370e+01 6.106355e+01 NA -0.1715312 -0.0663594 -0.2265079
COL country rat s2t NA 3.056291e+01 2.645241e+01 2.285364e+01 NA -0.1344930 -0.1360468 -0.2522425
COM country lvl youthpop 7.895700e+04 1.378790e+05 2.385100e+05 3.393150e+05 0.7462543 0.7298501 0.4226448 1.4609621
COM country lvl student NA 5.460648e+04 9.342100e+04 1.298704e+05 NA 0.7108043 0.3901630 1.3782970
COM country lvl teacher NA 1.160685e+03 2.536000e+03 2.100564e+03 NA 1.1849167 -0.1717018 0.8097626
COM country rat y2t NA 1.187911e+02 9.404968e+01 1.615352e+02 NA -0.2082764 0.7175514 0.3598259
COM country rat s2t NA 4.704677e+01 3.683793e+01 6.182644e+01 NA -0.2169933 0.6783364 0.3141486
CPV country lvl youthpop 8.500600e+04 1.342860e+05 1.839600e+05 1.561300e+05 0.5797238 0.3699120 -0.1512829 0.1626677
CPV country lvl student NA 5.811100e+04 9.163600e+04 6.110155e+04 NA 0.5769131 -0.3332145 0.0514627
CPV country lvl teacher NA 1.396000e+03 3.190000e+03 3.143822e+03 NA 1.2851003 -0.0144760 1.2520212
CPV country rat y2t NA 9.619341e+01 5.766771e+01 4.966249e+01 NA -0.4005025 -0.1388164 -0.4837226
CPV country rat s2t NA 4.162679e+01 2.872602e+01 1.943544e+01 NA -0.3099151 -0.3234204 -0.5331026
CRI country lvl youthpop 6.031280e+05 8.804200e+05 1.234692e+06 1.061003e+06 0.4597565 0.4023898 -0.1406739 0.2051101
CRI country lvl student NA 3.486740e+05 5.514650e+05 4.927610e+05 NA 0.5816063 -0.1064510 0.4132427
CRI country lvl teacher NA 1.259600e+04 2.211100e+04 4.309300e+04 NA 0.7553985 0.9489394 2.4211654
CRI country rat y2t NA 6.989679e+01 5.584062e+01 2.462124e+01 NA -0.2010989 -0.5590802 -0.6477487
CRI country rat s2t NA 2.768133e+01 2.494075e+01 1.143483e+01 NA -0.0990044 -0.5415204 -0.5869119
CUB country lvl youthpop 2.503849e+06 3.124091e+06 2.401518e+06 1.803279e+06 0.2477154 -0.2312906 -0.2491087 -0.4227828
CUB country lvl student NA 1.550323e+06 1.045578e+06 7.598030e+05 NA -0.3255741 -0.2733177 -0.5099066
CUB country lvl teacher NA 8.651900e+04 9.092000e+04 8.462900e+04 NA 0.0508674 -0.0691927 -0.0218449
CUB country rat y2t NA 3.610873e+01 2.641353e+01 2.130805e+01 NA -0.2685002 -0.1932903 -0.4098920
CUB country rat s2t NA 1.791887e+01 1.149998e+01 8.978045e+00 NA -0.3582198 -0.2192989 -0.4989615
CUW country lvl youthpop 5.145600e+04 4.590700e+04 3.336300e+04 2.816500e+04 -0.1078397 -0.2732481 -0.1558013 -0.3864770
CUW country lvl student NA NA NA 1.292200e+04 NA NA NA NA
CYM country lvl student NA 2.109000e+03 3.435000e+03 4.534000e+03 NA 0.6287340 0.3199418 1.1498340
CYM country lvl teacher NA 1.120000e+02 2.370000e+02 3.470000e+02 NA 1.1160714 0.4641350 2.0982143
CYM country rat s2t NA 1.883036e+01 1.449367e+01 1.306628e+01 NA -0.2303029 -0.0984836 -0.3061054
CYP country lvl youthpop 2.103090e+05 1.712940e+05 2.112960e+05 2.001460e+05 -0.1855127 0.2335283 -0.0527696 0.1684356
CYP country lvl student NA 5.057900e+04 6.395200e+04 5.990104e+04 NA 0.2643983 -0.0633437 0.1843066
CYP country lvl teacher NA 2.200000e+03 3.608000e+03 5.356032e+03 NA 0.6400000 0.4844878 1.4345600
CYP country rat y2t NA 7.786091e+01 5.856319e+01 3.736834e+01 NA -0.2478486 -0.3619143 -0.5200629
CYP country rat s2t NA 2.299045e+01 1.772506e+01 1.118385e+01 NA -0.2290254 -0.3690374 -0.5135439
CZE country lvl youthpop 2.471190e+06 2.411901e+06 1.684165e+06 1.685507e+06 -0.0239921 -0.3017271 0.0007968 -0.3011707
CZE country lvl student NA 6.729224e+05 6.449560e+05 5.801289e+05 NA -0.0415596 -0.1005139 -0.1378962
CZE country lvl teacher NA 2.287938e+04 3.819600e+04 NA NA 0.6694506 NA NA
CZE country rat y2t NA 1.054181e+02 4.409271e+01 NA NA -0.5817349 NA NA
CZE country rat s2t NA 2.941174e+01 1.688543e+01 NA NA -0.4258947 NA NA
DEU country lvl youthpop NA NA 1.288464e+07 1.160560e+07 NA NA -0.0992693 NA
DEU country lvl student NA NA 3.352935e+06 2.842302e+06 NA NA -0.1522943 NA
DEU country lvl teacher NA NA 2.154370e+05 2.378280e+05 NA NA 0.1039329 NA
DEU country lvl school NA NA 1.727500e+04 1.544700e+04 NA NA -0.1058177 NA
DEU country rat y2t NA NA 5.980702e+01 4.879827e+01 NA NA -0.1840711 NA
DEU country rat s2t NA NA 1.556341e+01 1.195108e+01 NA NA -0.2321040 NA
DEU country rat y2s NA NA 7.458549e+02 7.513171e+02 NA NA 0.0073233 NA
DEU country rat s2s NA NA 1.940918e+02 1.840035e+02 NA NA -0.0519767 NA
DJI country lvl youthpop 3.626200e+04 1.667940e+05 2.940320e+05 2.856540e+05 3.5996911 0.7628452 -0.0284935 0.7126156
DJI country lvl student NA 1.522700e+04 3.819100e+04 6.913400e+04 NA 1.5081106 0.8102171 3.5402246
DJI country lvl teacher NA 3.600000e+02 1.041899e+03 2.310000e+03 NA 1.8941632 1.2171060 5.4166667
DJI country rat y2t NA 4.633167e+02 2.822078e+02 1.236597e+02 NA -0.3908964 -0.5618132 -0.7330989
DJI country rat s2t NA 4.229722e+01 3.665519e+01 2.992814e+01 NA -0.1333901 -0.1835225 -0.2924325
DMA country lvl student NA 1.560100e+04 1.177400e+04 6.185000e+03 NA -0.2453048 -0.4746900 -0.6035511
DMA country lvl teacher NA 4.569721e+02 6.020000e+02 5.200000e+02 NA 0.3173671 -0.1362126 0.1379251
DMA country rat s2t NA 3.413994e+01 1.955814e+01 1.189423e+01 NA -0.4271185 -0.3918526 -0.6516037
DNK country lvl youthpop 1.154416e+06 1.067393e+06 9.861990e+05 9.494540e+05 -0.0753827 -0.0760676 -0.0372592 -0.1104926
DNK country lvl student NA 4.429310e+05 3.841970e+05 4.554759e+05 NA -0.1326030 0.1855269 0.0283224
DNK country lvl teacher NA 3.512372e+04 3.795600e+04 4.633317e+04 NA 0.0806373 0.2207074 0.3191420
DNK country rat y2t NA 3.038952e+01 2.598269e+01 2.049189e+01 NA -0.1450116 -0.2113255 -0.3256924
DNK country rat s2t NA 1.261060e+01 1.012217e+01 9.830449e+00 NA -0.1973283 -0.0288198 -0.2204612
DOM country lvl youthpop 1.588639e+06 2.482179e+06 2.957529e+06 2.976593e+06 0.5624563 0.1915051 0.0064459 0.1991855
DOM country lvl student NA 1.069117e+06 1.363609e+06 1.223677e+06 NA 0.2754535 -0.1026189 0.1445679
DOM country lvl teacher NA 2.096810e+04 4.394100e+04 6.504100e+04 NA 1.0956116 0.4801893 2.1019019
DOM country rat y2t NA 1.183788e+02 6.730682e+01 4.576487e+01 NA -0.4314284 -0.3200560 -0.6134032
DOM country rat s2t NA 5.098778e+01 3.103273e+01 1.881393e+01 NA -0.3913693 -0.3937390 -0.6310109
DZA country lvl youthpop 4.929676e+06 8.903581e+06 1.066696e+07 1.349889e+07 0.8061189 0.1980524 0.2654868 0.5161195
DZA country lvl student NA 3.061252e+06 4.843313e+06 4.852322e+06 NA 0.5821347 0.0018601 0.5850776
DZA country lvl teacher NA 8.549900e+04 1.705620e+05 2.007490e+05 NA 0.9949005 0.1769855 1.3479690
DZA country rat y2t NA 1.041367e+02 6.254006e+01 6.724264e+01 NA -0.3994425 0.0751932 -0.3542847
DZA country rat s2t NA 3.580454e+01 2.839620e+01 2.417109e+01 NA -0.2069105 -0.1487915 -0.3249154
ECU country lvl youthpop 1.972034e+06 3.355887e+06 4.434201e+06 4.832774e+06 0.7017389 0.3213201 0.0898861 0.4400884
ECU country lvl student NA 1.450109e+06 1.925420e+06 1.876429e+06 NA 0.3277760 -0.0254443 0.2939917
ECU country lvl teacher NA 3.983000e+04 8.280900e+04 7.629700e+04 NA 1.0790610 -0.0786388 0.9155662
ECU country rat y2t NA 8.425526e+01 5.354733e+01 6.334160e+01 NA -0.3644630 0.1829086 -0.2482179
ECU country rat s2t NA 3.640746e+01 2.325134e+01 2.459375e+01 NA -0.3613578 0.0577347 -0.3244860
EGY country lvl youthpop 1.121519e+07 1.766131e+07 2.536962e+07 3.471288e+07 0.5747664 0.4364521 0.3682853 0.9654763
EGY country lvl student NA 4.537233e+06 7.947488e+06 1.391736e+07 NA 0.7516156 0.7511644 2.0673668
EGY country lvl teacher NA 1.370450e+05 3.458280e+05 5.274170e+05 NA 1.5234631 0.5250848 2.8484951
EGY country rat y2t NA 1.288723e+02 7.335907e+01 6.581676e+01 NA -0.4307616 -0.1028136 -0.4892871
EGY country rat s2t NA 3.310761e+01 2.298104e+01 2.638777e+01 NA -0.3058684 0.1482407 -0.2029698
ERI country lvl youthpop 4.377160e+05 7.674830e+05 1.047868e+06 NA 0.7533812 0.3653306 NA NA
ERI country lvl student NA NA 2.959410e+05 3.553063e+05 NA NA 0.2005983 NA
ERI country lvl teacher NA NA 6.229000e+03 9.411820e+03 NA NA 0.5109681 NA
ERI country rat y2t NA NA 1.682241e+02 NA NA NA NA NA
ERI country rat s2t NA NA 4.751019e+01 3.775107e+01 NA NA -0.2054112 NA
ESP country lvl youthpop 8.333672e+06 9.727915e+06 5.978403e+06 6.820080e+06 0.1673024 -0.3854384 0.1407863 -0.2989166
ESP country lvl student NA 3.608854e+06 2.539995e+06 3.033276e+06 NA -0.2961768 0.1942057 -0.1594904
ESP country lvl teacher NA 1.292956e+05 1.746380e+05 2.380446e+05 NA 0.3506884 0.3630747 0.8410892
ESP country rat y2t NA 7.523781e+01 3.423312e+01 2.865042e+01 NA -0.5450012 -0.1630787 -0.6192018
ESP country rat s2t NA 2.791166e+01 1.454434e+01 1.274247e+01 NA -0.4789152 -0.1238883 -0.5434715
EST country lvl youthpop 2.798640e+05 3.194340e+05 2.456310e+05 2.193400e+05 0.1413901 -0.2310430 -0.1070345 -0.3133480
EST country lvl student NA 1.297835e+05 1.234060e+05 9.115491e+04 NA -0.0491392 -0.2613413 -0.2976384
EST country lvl teacher NA NA 8.616000e+03 8.315365e+03 NA NA -0.0348927 NA
EST country rat y2t NA NA 2.850870e+01 2.637768e+01 NA NA -0.0747501 NA
EST country rat s2t NA NA 1.432289e+01 1.096223e+01 NA NA -0.2346357 NA

Implement FEL file

This is functionalized in [PrjCompPPTS::ff_ppts_lrce_fel()].

Note we also generate elasticity information on Compute Elasticities of School Resources to Changes in Populations. It is done more automatically there, across all possible combinations of variables, here, we generate a more selected subset of elasticities, note that this is manual because we specify below what the numerator and denominator for each elasticity is.

First, from fpc, keep percentage changes as stats vars, drop level and rank vars.

print(df_fpc %>% distinct(vartype))
#> # A tibble: 3 × 1
#>   vartype
#>   <chr>  
#> 1 lvl    
#> 2 rat    
#> 3 rank
df_fpc_base <- df_fpc %>%
  filter(vartype == "lvl") %>%
  select(-contains("year"), -vartype)
print(glue::glue("dim df_fpc_base: {dim(df_fpc_base)}"))
#> dim df_fpc_base: 818
#> dim df_fpc_base: 7

Second, from percentage change file, variables are changes over time, convert all change spans to long. unit of obs: locType x loc x vars(change) x changeSpan.

df_fel_long <- df_fpc_base %>%
  pivot_longer(
    cols = matches("chg"),
    names_to = c("yearcomp"),
    names_pattern = paste0("chg_(.*)"),
    values_to = "change"
  ) %>%
  drop_na(change)
print(glue::glue("dim df_fel_long: {dim(df_fel_long)}"))
#> dim df_fel_long: 2456
#> dim df_fel_long: 5

Third, convert vars(change) to wide. unit of obs: locType x loc x changeSpan.

df_fel_wide <- df_fel_long %>%
  pivot_wider(
    id_cols = c("location_code", "location_level", "yearcomp"),
    names_from = variable,
    names_prefix = "var_chg_",
    names_sep = "_",
    values_from = c(change)
  )
print(glue::glue("dim df_fel_wide: {dim(df_fel_wide)}"))
#> dim df_fel_wide: 1055
#> dim df_fel_wide: 7

Fourth, following our prior notations, we compute the percentage changes in education resources over percentage changes in the population. When changes in teachers is in the denominator, we call this the population-teacher elasticity. When the number of schools is in the denominator, we call this this population-school elasticity. In labor economics, the labor supply elasticity refers to the change in labor supply given a change in wages, which could also be referred to as the wage-labor-supply elasticity. We follow this form of terminology here.

We use the following variable names for the following elasticities:

  • Teacher over student : var_elsa_t2s
  • Teacher over youthpop: var_elas_t2y
  • School over student: var_elas_s2s
  • School over youthpop: var_elas_sty
df_fel_elas <- df_fel_wide %>%
  mutate(
    var_elas_y2t = var_chg_teacher / var_chg_youthpop,
    var_elas_s2t = var_chg_teacher / var_chg_student,
    var_elas_y2s = var_chg_school / var_chg_youthpop,
    var_elas_s2s = var_chg_school / var_chg_student
  )
print(glue::glue("dim df_fel_elas: {dim(df_fel_elas)}"))
#> dim df_fel_elas: 1055
#> dim df_fel_elas: 11

Fifth, we clean file and convert to standard format where unit of obs is locType x loc x vars, and year spans are columns.

df_fel <- df_fel_elas %>%
  select(-contains("var_chg")) %>%
  pivot_longer(
    cols = matches("var_elas"),
    names_to = c("variable"),
    names_pattern = paste0("var_elas_(.*)"),
    values_to = "elasticity"
  ) %>%
  drop_na(elasticity) %>%
  pivot_wider(
    id_cols = c("location_code", "location_level", "variable"),
    names_from = yearcomp,
    names_prefix = "elas_",
    names_sep = "_",
    values_from = c(elasticity)
  )
print(glue::glue("dim FEL: {dim(df_fel)}"))
#> dim FEL: 517
#> dim FEL: 7

Review output.

kable(df_fel[1:300,], caption="FEL")
FEL
location_code location_level variable elas_00v80 elas_20v00 elas_20v80 elas_80v60
AFG country y2t 1.0431807 5.3851784 3.7264844 NA
AFG country s2t -3.0818450 0.3877632 0.9675731 NA
AGO country y2t 0.2229895 0.2733433 0.1857915 NA
AGO country s2t 1.3033806 0.0921840 0.1552049 NA
ALB country y2t NA 0.4805559 NA NA
ALB country s2t NA 0.5373607 NA NA
AND country s2t 0.7738193 4.8681019 1.3753024 NA
ARE country y2t 1.3085960 0.5747371 0.9678758 NA
ARE country s2t 1.0099008 0.6597473 0.8387047 NA
ARG country y2t 1.1073133 NA NA NA
ARG country s2t 1.0443717 NA NA NA
ARM country y2t NA 1.4190635 NA NA
ARM country s2t NA 2.2247258 NA NA
ATG country y2t -10.2520289 -7.9053311 -11.1363048 NA
ATG country s2t 2.3233803 -0.7625874 16.7044041 NA
AUS country y2t 2.2144354 NA NA NA
AUS country s2t 1.5411916 NA NA NA
AUT country y2t -1.7709862 -2.1762042 -2.0822435 -24.9066870
AUT country s2t -11.8157461 -0.8689773 -2.6448281 -1.2610628
AUT country y2s 0.2009553 2.2034165 0.7412884 19.0746064
AUT country s2s 1.3407426 0.8798434 0.9415712 0.9657758
AZE country y2t NA -1.3483813 NA NA
AZE country s2t NA -1.0287517 NA NA
BDI country y2t 2.4380349 4.4745913 5.3731287 NA
BDI country s2t 0.5139638 1.3910301 0.7761105 NA
BEL country y2t -4.4725013 2.0908127 -70.6602892 NA
BEL country s2t -4.0823465 2.9054732 -16.1649155 NA
BEN country y2t 1.9683566 3.4625456 3.7373840 NA
BEN country s2t 1.0595091 1.6545686 1.5086930 NA
BFA country y2t 5.3582702 5.6571080 12.1147283 NA
BFA country s2t 1.1066796 1.4299320 1.4527016 NA
BGD country y2t 2.5714231 -16.0928252 11.7374415 NA
BGD country s2t 1.0751650 5.2621098 2.4528218 NA
BGR country y2t NA 0.2356627 NA NA
BGR country s2t NA 0.1335189 NA NA
BHR country y2t 1.3403748 1.8488201 1.7835783 NA
BHR country s2t 1.3698424 1.9827808 1.8840921 NA
BHS country y2t 7.1105215 13.2734395 2.0370021 NA
BHS country s2t 13.3781571 2.2459742 -1.7128453 NA
BLR country y2t NA 2.7141448 NA NA
BLR country s2t NA 1.2565383 NA NA
BLZ country y2t NA 2.3140565 NA NA
BLZ country s2t NA 3.3864438 NA NA
BMU country s2t -7.2966206 0.0002489 -3.7060379 NA
BOL country y2t NA 2.5759251 NA NA
BOL country s2t NA -6.0947390 NA NA
BRA country y2t 3.4383827 0.3608358 -8.4673339 NA
BRA country s2t 1.8155087 0.2423576 -9.3376498 NA
BRB country y2t -0.2798908 -0.3194339 -0.3410890 NA
BRB country s2t -0.2714669 -0.2786756 -0.3174734 NA
BRN country y2t 2.7990728 -6.4147130 5.2635988 NA
BRN country s2t 2.0237556 -2.2088020 5.1706935 NA
BTN country y2t 3.6611238 -2.2986609 26.0138775 NA
BTN country s2t 0.6433195 3.9591461 0.9821300 NA
BWA country y2t 2.7965138 -0.1820943 1.4734475 NA
BWA country s2t 1.4472726 -0.3440258 1.0550920 NA
CAF country y2t 0.1431151 4.8100135 1.4789733 NA
CAF country s2t 0.1275428 1.2342619 0.6021261 NA
CAN country y2t -0.2890391 NA NA NA
CAN country s2t -0.1376641 NA NA NA
CHE country y2t -22.0588366 16.0571115 119.2480360 -16.4254950
CHE country s2t 5.9586690 4.1610525 5.7413464 -1.9264022
CHL country y2t NA -5.7790219 NA NA
CHL country s2t NA -5.4926425 NA NA
CHN country y2t -0.5842840 -0.4860985 -0.5838511 3.1825730
CHN country s2t -0.5950534 -0.5573224 -0.6375698 1.8622026
CHN country y2s 3.5287238 3.5452665 2.8418221 0.8023285
CHN country s2s 3.5937646 4.0647240 3.1032913 0.4694623
CIV country y2t 0.7754151 2.5514389 1.5451194 NA
CIV country s2t 0.7291271 1.2060692 0.9421850 NA
CMR country y2t 0.8098470 2.2943173 1.5446241 NA
CMR country s2t 0.9216630 1.2912853 1.1564932 NA
COD country y2t 0.6914002 3.4864237 2.2349859 NA
COD country s2t 5.8146520 0.9597756 1.4891592 NA
COG country y2t 0.0170232 5.2080092 2.1570712 NA
COG country s2t 0.1112054 4.1522347 3.5190954 NA
COL country y2t 2.2475788 0.5051780 7.3443845 NA
COL country s2t 1.7706037 0.3324330 26.3066112 NA
COM country y2t 1.6235069 -0.4062555 0.5542667 NA
COM country s2t 1.6670082 -0.4400770 0.5875095 NA
CPV country y2t 3.4740705 0.0956883 7.6968007 NA
CPV country s2t 2.2275455 0.0434435 24.3286878 NA
CRI country y2t 1.8772807 -6.7456657 11.8042257 NA
CRI country s2t 1.2988142 -8.9143310 5.8589425 NA
CUB country y2t -0.2199287 0.2777611 0.0516693 NA
CUB country s2t -0.1562392 0.2531585 0.0428410 NA
CYM country s2t 1.7751091 1.4506859 1.8247975 NA
CYP country y2t 2.7405670 -9.1811958 8.5169665 NA
CYP country s2t 2.4205907 -7.6485572 7.7835509 NA
CZE country y2t -2.2187283 NA NA NA
CZE country s2t -16.1082036 NA NA NA
DEU country y2t NA -1.0469801 NA NA
DEU country s2t NA -0.6824478 NA NA
DEU country y2s NA 1.0659661 NA NA
DEU country s2s NA 0.6948233 NA NA
DJI country y2t 2.4830244 -42.7152196 7.6011063 NA
DJI country s2t 1.2559843 1.5021974 1.5300348 NA
DMA country s2t -1.2937666 0.2869507 -0.2285227 NA
DNK country y2t -1.0600747 -5.9235657 -2.8883568 NA
DNK country s2t -0.6081106 1.1896249 11.2681770 NA
DOM country y2t 5.7210561 74.4950647 10.5524860 NA
DOM country s2t 3.9774831 -4.6793479 14.5392020 NA
DZA country y2t 5.0234195 0.6666452 2.6117380 NA
DZA country s2t 1.7090555 95.1488677 2.3039148 NA
ECU country y2t 3.3582118 -0.8748717 2.0804141 NA
ECU country s2t 3.2920679 3.0906230 3.1142586 NA
EGY country y2t 3.4905617 1.4257556 2.9503523 NA
EGY country s2t 2.0269179 0.6990278 1.3778373 NA
ERI country s2t NA 2.5472203 NA NA
ESP country y2t -0.9098428 2.5789073 -2.8137923 NA
ESP country s2t -1.1840505 1.8695372 -5.2736036 NA
EST country y2t NA 0.3259946 NA NA
EST country s2t NA 0.1335138 NA NA
ETH country y2t 1.9452047 10.5636174 8.7205475 NA
ETH country s2t 0.8210905 2.0830506 1.6078918 NA
FIN country y2t 1.9690281 -2.9294110 -1.2133671 NA
FIN country s2t 10.2216282 -5.0667463 -2.6471855 NA
FJI country y2t -0.0505080 -7.5807528 14.8642452 NA
FJI country s2t -0.0438033 6.6500692 2.3171850 NA
FRA country y2t -1.3050018 0.3115628 -2.6426883 NA
FRA country s2t -0.8037875 -4.6051656 -0.8879751 NA
FRA country y2s 1.8468486 -4.5232103 6.7239517 NA
FRA country s2s 1.1375262 66.8569337 2.2593286 NA
FSM country y2t -0.9297516 1.7131583 -11.8069542 NA
FSM country s2t 1.3494473 0.8305079 0.9866088 NA
GAB country y2t 0.6745992 NA NA NA
GAB country s2t 0.6539646 NA NA NA
GBR country y2t 1.5432393 2.2660501 11.7054314 NA
GBR country s2t 0.8395494 2.0040362 -1.1718906 NA
GEO country y2t -0.2272791 -7.4255141 -2.7900770 NA
GEO country s2t -0.7205343 9.4130761 600.4907270 NA
GHA country y2t 0.9927450 3.5391076 2.3318582 NA
GHA country s2t 0.6625396 1.8352091 1.2200158 NA
GIB country s2t 2.3747204 5.3922179 8.0483372 NA
GIN country y2t 1.8828819 3.2094337 3.2222692 NA
GIN country s2t 0.7640840 0.9197466 0.7718124 NA
GMB country y2t 1.9335006 1.8408326 2.4160122 NA
GMB country s2t 0.6520864 1.0483434 0.7195230 NA
GNB country y2t 0.1618751 NA NA NA
GNB country s2t 0.1021771 NA NA NA
GNQ country y2t 0.7824169 1.8028407 1.2869334 NA
GNQ country s2t 1.7091967 6.4781403 4.5408945 NA
GRC country y2t -1.1466741 -6.0609511 -3.2245075 NA
GRC country s2t -1.1575581 -24.4570266 -3.8473811 NA
GRD country y2t -10.1301405 0.2090304 -1.1813692 NA
GRD country s2t -2.6220350 0.2132098 -0.9083230 NA
GTM country y2t 2.4810217 8.9631122 5.0712591 NA
GTM country s2t 1.0656632 4.2519330 2.0169922 NA
GUY country y2t -0.1923301 NA NA NA
GUY country s2t -0.2136364 NA NA NA
HKG country y2t -2.3399697 -1.7170203 -2.4245240 NA
HKG country s2t -3.3416964 -1.1154578 -2.0506890 NA
HND country y2t 1.5668851 2.2411779 1.7598601 NA
HND country s2t 1.1720674 -12.6635481 1.6284448 NA
HRV country y2t NA -0.8045710 NA NA
HRV country s2t NA -0.9110073 NA NA
HTI country y2t 5.9834793 NA NA NA
HTI country s2t 1.6147269 NA NA NA
HUN country y2t NA 1.0240811 NA NA
HUN country s2t NA 0.6423941 NA NA
IDN country y2t 11.2039006 4.4157980 9.0006124 NA
IDN country s2t 4.6281544 10.9636635 7.0953089 NA
IND country y2t 2.1566895 -38.6149594 5.6908086 NA
IND country s2t 1.2210858 8.7038681 2.5341180 NA
IRL country y2t -2.3730901 NA NA NA
IRL country s2t 6.8060670 NA NA NA
IRN country y2t 2.5924806 2.3047315 2.3601256 NA
IRN country s2t 1.2273402 -3.2137657 0.7219718 NA
IRQ country y2t 1.4499725 NA NA NA
IRQ country s2t 2.1207076 NA NA NA
ISL country y2t 14.3132448 4.7755539 9.3081115 NA
ISL country s2t 2.0928460 7.0598720 3.5714421 NA
ISR country y2t 0.7007668 1.3578743 1.0400544 NA
ISR country s2t 0.6228601 1.3762741 0.9811335 NA
ITA country y2t 0.1738063 0.5776067 0.2345122 NA
ITA country s2t 0.1605179 2.3761698 0.2336605 NA
JAM country y2t -34.0811004 -0.2631850 -1.4656141 NA
JAM country s2t -2.2315038 -0.1527276 -0.7242375 NA
JOR country y2t 1.8839431 1.4684272 1.9670803 NA
JOR country s2t 2.2792830 1.7197544 2.4438589 NA
JPN country y2t 0.4039457 -0.2228563 0.2249026 -12.6668932
JPN country s2t 0.3419692 -0.2536955 0.2076355 -4.9019448
JPN country y2s 0.1053393 1.1541884 0.5036933 3.0327597
JPN country s2s 0.0891773 1.3139067 0.4650217 1.1736438
KAZ country y2t NA 1.3753412 NA NA
KAZ country s2t NA 1.8225920 NA NA
KEN country y2t NA 2.4271923 NA NA
KEN country s2t NA 1.4123767 NA NA
KGZ country y2t 3.3219360 0.5354994 1.9695652 NA
KGZ country s2t 1.6759869 0.6354679 1.3428440 NA
KHM country y2t 0.6612784 6.5119994 0.8910134 NA
KHM country s2t 0.6013728 -4.0224379 0.9212257 NA
KIR country y2t 0.1299073 1.9549499 0.7416822 NA
KIR country s2t 0.5714742 2.0131092 1.5833628 NA
KNA country s2t -0.4494984 -2.4204607 -1.8477643 NA
KOR country y2t -0.7049645 -1.0698241 -1.1880832 NA
KOR country s2t -0.6073787 -1.0670556 -1.1257338 NA
KOR country y2s 0.7539975 -0.4921557 0.1139663 NA
KOR country s2s 0.6496242 -0.4908821 0.1079854 NA
KWT country y2t 6.0589055 4.0592232 5.1599650 NA
KWT country s2t -8.5009129 2.3753376 3.7316328 NA
LAO country y2t 1.4163370 37.2920941 2.1789616 NA
LAO country s2t 1.0578109 -3.0372030 2.0531506 NA
LBN country y2t 1.4595376 1.0205646 1.1880458 NA
LBN country s2t 6.5094995 1.5779900 2.4757821 NA
LBR country y2t NA 1.1736303 NA NA
LBR country s2t NA 4.7111616 NA NA
LCA country y2t -7.3690605 0.0368175 -0.3953219 NA
LCA country s2t -0.9199523 0.0329577 -0.2899011 NA
LIE country s2t NA -6.5290479 NA NA
LKA country y2t -1.1679946 5.2699621 -7.1196566 NA
LKA country s2t -0.5563509 -3.7586635 -1.4633042 NA
LSO country y2t 2.1096275 -3.2146876 12.1004567 NA
LSO country s2t 1.0078676 -9.7595873 2.5236163 NA
LTU country y2t -7.9928582 0.9349724 -0.5518053 NA
LTU country s2t 3.5416767 0.7859599 -0.8133922 NA
LUX country y2t 2.4073065 4.7964765 4.2522300 NA
LUX country s2t 1.8891958 3.7805493 3.2642100 NA
LVA country y2t -1.5424277 -0.6721083 -1.2551373 NA
LVA country s2t -6.1276702 -1.5784768 -3.2551365 NA
MAC country y2t 1.2372156 -13.1922787 3.1668826 NA
MAC country s2t 1.0058967 -2.1661867 5.6345881 NA
MAR country y2t 11.8283876 12.4308716 14.6218683 NA
MAR country s2t 1.7083893 1.2996966 1.7074105 NA
MCO country s2t 0.2657332 -52.4528205 3.4197797 NA
MDA country y2t -9.4307826 0.9135818 -0.0032580 NA
MDA country s2t 5.1318294 0.8009827 -0.0036059 NA
MDG country y2t 0.4369061 3.3184164 1.6001231 NA
MDG country s2t 0.8791770 1.8287554 1.5771240 NA
MDV country y2t NA -11.7274950 NA NA
MDV country s2t NA -2.4752910 NA NA
MEX country y2t 5.1003374 -3.5356508 6.8372623 NA
MEX country s2t 12.9503510 -0.9827290 -58.4423471 NA
MKD country y2t NA -1.1960384 NA NA
MKD country s2t NA -2.6036024 NA NA
MLI country y2t 1.9109659 3.5613200 3.9204307 NA
MLI country s2t 0.5021430 2.3400171 1.1635468 NA
MLT country y2t 4.9143572 -4.7172691 -23.1934783 NA
MLT country s2t 2.5209223 -0.9767699 -2.2557549 NA
MMR country y2t 10.6020941 -3.1055261 -69.0241865 NA
MMR country s2t 3.5509185 4.8861947 4.3908412 NA
MNG country y2t 5.6887415 2.0085648 3.9698840 NA
MNG country s2t 0.9266906 1.2550936 1.0550629 NA
MOZ country y2t 2.4618269 2.8624703 3.7489723 NA
MOZ country s2t 1.7136523 1.1634743 1.5696817 NA
MRT country y2t 5.1095771 1.3567015 4.1376703 NA
MRT country s2t 1.0195151 0.8562611 0.9352009 NA
MUS country y2t 1.6859123 -0.3745038 0.2497160 NA
MUS country s2t -3.7415939 -0.3021357 0.2755291 NA
MWI country y2t NA 2.1212329 NA NA
MWI country s2t NA 1.6710722 NA NA
MYS country y2t 2.6208284 -29.9387495 5.8537413 NA
MYS country s2t 2.1736084 45.0201253 4.3767267 NA
NAM country y2t NA 3.0485395 NA NA
NAM country s2t NA 2.1817952 NA NA
NER country y2t 1.8481771 3.0102612 3.5472306 NA
NER country s2t 0.9421744 1.0254977 0.9806881 NA
NGA country y2t 0.7421420 1.9062250 1.3576436 NA
NGA country s2t 0.6217969 2.2121154 1.3248624 NA
NIC country y2t 2.4761701 NA NA NA
NIC country s2t 0.9865400 NA NA NA
NLD country y2t NA -0.6176556 NA NA
NLD country s2t NA -0.4601022 NA NA
NLD country y2s NA 2.0553892 NA NA
NLD country s2s NA 1.5310948 NA NA
NOR country y2t -48.3172545 10.2905348 39.6339869 NA
NOR country s2t 7.1510672 4.9310164 6.9376308 NA
NPL country y2t 4.4597848 -7.1165299 17.8303495 NA
NPL country s2t 1.0135193 35.3783640 2.3612168 NA
NRU country s2t 0.6522808 2.0719535 -2.3465833 NA
NZL country y2t -2.2392106 3.2301852 1.8070833 NA
NZL country s2t 1.3716846 5.2543021 17.8039005 NA
OMN country y2t 4.0692646 3.3844083 5.6714555 NA
OMN country s2t 0.9049293 -32.2597227 2.6015780 NA
PAK country y2t 2.5553326 0.3515035 1.7791634 NA
PAK country s2t 1.1925392 0.1376110 0.6324483 NA
PAN country y2t 1.5621194 0.9930289 1.3139791 NA
PAN country s2t 1.6612671 3.3105022 2.1700616 NA
PER country y2t 3.4801887 -3.7166708 15.6043009 NA
PER country s2t 2.1198162 -3.4621005 6.9590435 NA
PHL country y2t 0.9080816 4.9650688 1.8213303 NA
PHL country s2t 0.7518159 22.9568317 1.8591089 NA
PNG country y2t 1.3059335 5.3893748 3.6964484 NA
PNG country s2t 0.7408880 1.1022846 0.9210731 NA
POL country y2t NA 1.2838038 NA NA
POL country s2t NA 1.0061453 NA NA
PRI country y2t -2.1657263 1.1170500 0.7038737 NA
PRI country s2t -1.0053781 1.0154259 0.5771512 NA
PRT country y2t 0.3018684 0.9159128 0.5487513 NA
PRT country s2t 0.3048731 0.6638930 0.5020675 NA
PRY country y2t 2.0287829 NA NA NA
PRY country s2t 1.2121276 NA NA NA
PSE country y2t NA 3.6956544 NA NA
PSE country s2t NA 3.9886688 NA NA
PYF country y2t 2.6913425 NA NA NA
PYF country s2t -8.2430220 NA NA NA
QAT country y2t 1.3231199 1.0989151 1.2895076 NA
QAT country s2t 1.1856686 1.0324342 1.1470273 NA
ROU country y2t -0.2709849 0.9177502 0.4020552 NA
ROU country s2t -0.4036253 1.1297323 0.5200447 NA