Implements step 3 of https://github.com/FanWangEcon/PrjThaiHFID/issues/22 _notes/issues/issues_20240217_roster_invest_bridge.md
Usage
ffp_hfid_invest_loan_linked(
df_roster_invest_loan_linker,
df_invest,
df_loans_pn_nd,
df_loans_bridges,
df_loans_bridges_1t2,
it_ll_gw1_max = 48,
it_ll_gw2_max = 48,
it_ll_gw3_max = 48,
verbose = FALSE,
verbose_detail = FALSE,
it_verbose_detail_nrow = 100
)
Arguments
- df_roster_invest_loan_linker
Data frame containing the linker file between roster, investment, and loan information.
- df_invest
Data frame containing the investment information.
- df_loans_pn_nd
Data frame containing the non-duplicate loan information.
- df_loans_bridges
Data frame containing the triply-linked bridge loan information.
- df_loans_bridges_1t2
Data frame containing the doubly-linked loan-hook information.
- it_ll_gw1_max
Maximum value for ll_gw1.
- it_ll_gw2_max
Maximum value for ll_gw2.
- it_ll_gw3_max
Maximum value for ll_gw3.
- verbose
Logical value indicating whether to print verbose output.
- verbose_detail
Logical value indicating whether to print verbose detail output.
- it_verbose_detail_nrow
Number of rows to print for verbose detail output.
Author
Fan Wang, http://fanwangecon.github.io
Examples
df_invdates_uniq <- PrjThaiHFID::tstm_invdates_uniq
df_loans_bridges_type <- PrjThaiHFID::tstm_loans_bridges_type
df_loans_pn_nd <- PrjThaiHFID::tstm_loans_pn_nd
df_invest <- PrjThaiHFID::tstm_invest
df_loans_hooks <- ffp_hfid_hook_pairs(df_loans_pn_nd)$tstm_loans_hooks
ls_return_bfh <- ffp_hfid_bridge_from_hook(df_loans_pn_nd, df_loans_hooks)
df_loans_bridges <- ls_return_bfh$tstm_loans_bridges
df_loans_bridges_1t2 <- ls_return_bfh$tstm_loans_bridges_1t2
ls_return_lbr <- ffp_hfid_invest_loan_bridge_roster(df_invdates_uniq, df_loans_bridges_type, df_loans_pn_nd)
#> Adding missing grouping variables: `br_type`, `br_type_id`
df_roster_invest_loan_bridge <- ls_return_lbr$tstm_roster_invest_loan_bridge
ls_return_lbl <- ffp_hfid_invest_loan_or_bridge_linker(df_roster_invest_loan_bridge)
df_roster_invest_loan_linker <- ls_return_lbl$tstm_roster_invest_loan_linker
ls_return <- ffp_hfid_invest_loan_linked(
df_roster_invest_loan_linker,
df_invest,
df_loans_pn_nd,
df_loans_bridges,
df_loans_bridges_1t2)
print(ls_return)
#> $tstm_roster_invest_loan_linked
#> # A tibble: 248,043 × 41
#> thres_inv_mgap thres_inv_dfsd hhid_Num ivars hh_inv_asset_ctr hh_inv_ctr
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 2 2.33 70203 agg_BS_10… 2 2
#> 2 2 2.33 70203 agg_BS_10… 2 2
#> 3 2 2.33 70203 agg_BS_10… 2 2
#> 4 2 2.33 70203 agg_BS_10… 2 2
#> 5 2 2.33 70203 agg_BS_10… 2 2
#> 6 2 2.33 70203 agg_BS_10… 2 2
#> 7 2 2.33 70203 agg_BS_10… 2 2
#> 8 2 2.33 70203 agg_BS_10… 2 2
#> 9 2 2.33 70203 agg_BS_10… 2 2
#> 10 2 2.33 70203 agg_BS_10… 2 2
#> # ℹ 248,033 more rows
#> # ℹ 35 more variables: mth_inv_start <dbl>, mth_inv_end <dbl>,
#> # capital_prior <dbl>, capital_end <dbl>, capital_invest <dbl>,
#> # hh_loan_id_nd <int>, loan_start <dbl>, loan_end <dbl>,
#> # number_indi_loan <int>, forinfm4 <chr>, loan_principal_interest <dbl>,
#> # loan_principal <dbl>, loan_interest_monthly <dbl>, merge_type <chr>,
#> # hh_loan_id_nd_paired_1t2 <int>, hh_loan_id_nd_paired_2t3 <int>, …
#>