Solve Save + Borr Dynamic Programming Problem (Vectorized)
back to Fan's Dynamic Assets Repository Table of Content.
Contents
- FF_ABZ_VF_VEC solve infinite horizon exo shock + endo asset problem
- Default
- Parse Parameters 1
- Parse Parameters 2
- Display Parameters
- Initialize Output Matrixes
- Initialize Convergence Conditions
- Iterate Value Function
- Solve Optimization Problem Current Iteration
- Check Tolerance and Continuation
- Process Optimal Choices
function result_map = ff_abz_vf_vec(varargin)
FF_ABZ_VF_VEC solve infinite horizon exo shock + endo asset problem
This program solves the infinite horizon dynamic single asset and single shock problem with vectorized codes. ff_abz_vf shows looped codes. The solution is the same.
The borrowing problem is similar to the savings problem. The main addition here in comparison to the savings only code ff_az_vf_vec is the ability to deal with default, as well as an additional shock to the borrowing interest rate.
The vectorization takes advantage of implicit parallization that modern computers have when same instructions are given for different blocks of data With vectorization, we face a tradeoff between memory and speed. Suppose we have many shock points and many states points, if we build all states and choices into one single matrix and compute consumption, utility, etc over that entire matrix, that might be more efficient than computing consumption, utility, etc by subset of that matrix over a loop, but there is time required for generating that large input matrix, and if there are too many states, a computer could run out of memory.
The design philosophy here is that we vectorize the endogenous states and choices into matrixes, but do not include the exogeous states (shocks). The exogenous shocks remain looped. This means we can potentially have multiple shock variables discretized over a large number of shock states, and the computer would not run into memory problems. The speed gain from vectoring the rest of the problem conditional on shocks is very large compared to the pure looped version of the problem. Even if more memory is available, including the exogenous states in the vectorization process might not be speed improving.
Note one key issue is whether a programming language is row or column major depending on which, states should be rows or columns.
Another programming issue is the idea of broadcasting vs matrix algebra, both are used here. Since Matlab R2016b, matrix broadcasting has been allowed, which means the sum of a N by 1 and 1 by M is N by M. This is unrelated to matrix algebra. Matrix array broadcasting is very useful because it reduces the dimensionality of our model input state and choice and shock vectors, offering greater code clarity.
@param param_map container parameter container
@param support_map container support container
@param armt_map container container with states, choices and shocks grids that are inputs for grid based solution algorithm
@param func_map container container with function handles for consumption cash-on-hand etc.
@return result_map container contains policy function matrix, value function matrix, iteration results, and policy function, value function and iteration results tables.
keys included in result_map:
- mt_val matrix states_n by shock_n matrix of converged value function grid
- mt_pol_a matrix states_n by shock_n matrix of converged policy function grid
- ar_val_diff_norm array if bl_post = true it_iter_last by 1 val function difference between iteration
- ar_pol_diff_norm array if bl_post = true it_iter_last by 1 policy function difference between iterations
- mt_pol_perc_change matrix if bl_post = true it_iter_last by shock_n the proportion of grid points at which policy function changed between current and last iteration for each element of shock
@example
% Get Default Parameters
it_param_set = 2;
[param_map, support_map] = ffs_abz_set_default_param(it_param_set);
% Chnage param_map keys for borrowing
param_map('fl_b_bd') = -20; % borrow bound
param_map('bl_default') = false; % true if allow for default
param_map('fl_c_min') = 0.0001; % u(c_min) when default
% Change Keys in param_map
param_map('it_a_n') = 500;
param_map('fl_z_r_borr_n') = 5;
param_map('it_z_wage_n') = 15;
param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n');
param_map('fl_a_max') = 100;
param_map('fl_w') = 1.3;
% Change Keys support_map
support_map('bl_display') = false;
support_map('bl_post') = true;
support_map('bl_display_final') = false;
% Call Program with external parameters that override defaults.
ff_abz_vf_vec(param_map, support_map);@include
@seealso
- save loop: ff_az_vf
- save vectorized: ff_az_vf_vec
- save optimized-vectorized: ff_az_vf_vecsv
- save + borr loop: ff_abz_vf
- save + borr vectorized: ff_abz_vf_vec
- save + borr optimized-vectorized: ff_abz_vf_vecsv
Default
- it_param_set = 1: quick test
- it_param_set = 2: benchmark run
- it_param_set = 3: benchmark profile
- it_param_set = 4: press publish button
it_param_set = 4; bl_input_override = true; [param_map, support_map] = ffs_abz_set_default_param(it_param_set); % Note: param_map and support_map can be adjusted here or outside to override defaults % param_map('it_a_n') = 750; % param_map('fl_z_r_borr_n') = 5; % param_map('it_z_wage_n') = 15; % param_map('it_z_n') = param_map('it_z_wage_n') * param_map('fl_z_r_borr_n'); % param_map('fl_r_save') = 0.025; % param_map('fl_z_r_borr_poiss_mean') = 1.75; [armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override default_params = {param_map support_map armt_map func_map};
Parse Parameters 1
% if varargin only has param_map and support_map, params_len = length(varargin); [default_params{1:params_len}] = varargin{:}; param_map = [param_map; default_params{1}]; support_map = [support_map; default_params{2}]; if params_len >= 1 && params_len <= 2 % If override param_map, re-generate armt and func if they are not % provided bl_input_override = true; [armt_map, func_map] = ffs_abz_get_funcgrid(param_map, support_map, bl_input_override); else % Override all armt_map = [armt_map; default_params{3}]; func_map = [func_map; default_params{4}]; end % append function name st_func_name = 'ff_abz_vf_vec'; support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')]; support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')]; support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')];
Parse Parameters 2
% armt_map params_group = values(armt_map, {'ar_a', 'mt_z_trans', 'ar_z_r_borr_mesh_wage', 'ar_z_wage_mesh_r_borr'}); [ar_a, mt_z_trans, ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr] = params_group{:}; % func_map params_group = values(func_map, {'f_util_log', 'f_util_crra', 'f_cons_checkcmin', 'f_awithr_to_anor', 'f_coh', 'f_cons_coh'}); [f_util_log, f_util_crra, f_cons_checkcmin, f_awithr_to_anor, f_coh, f_cons_coh] = params_group{:}; % param_map params_group = values(param_map, {'it_a_n', 'it_z_n', 'fl_crra', 'fl_beta', 'fl_c_min',... 'fl_nan_replace', 'bl_default', 'fl_default_aprime'}); [it_a_n, it_z_n, fl_crra, fl_beta, fl_c_min, ... fl_nan_replace, bl_default, fl_default_aprime] = params_group{:}; params_group = values(param_map, {'it_maxiter_val', 'fl_tol_val', 'fl_tol_pol', 'it_tol_pol_nochange'}); [it_maxiter_val, fl_tol_val, fl_tol_pol, it_tol_pol_nochange] = params_group{:}; % support_map params_group = values(support_map, {'bl_profile', 'st_profile_path', ... 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',... 'bl_time', 'bl_display_defparam', 'bl_display', 'it_display_every', 'bl_post'}); [bl_profile, st_profile_path, ... st_profile_prefix, st_profile_name_main, st_profile_suffix, ... bl_time, bl_display_defparam, bl_display, it_display_every, bl_post] = params_group{:};
Display Parameters
if(bl_display_defparam) fft_container_map_display(param_map); fft_container_map_display(support_map); end
----------------------------------------
----------------------------------------
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Begin: Show all key and value pairs from container
CONTAINER NAME: PARAM_MAP
----------------------------------------
Map with properties:
Count: 35
KeyType: char
ValueType: any
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
----------------------------------------
----------------------------------------
pos = 32 ; key = st_analytical_stationary_type ; val = eigenvector
pos = 33 ; key = st_model ; val = abz
pos = 34 ; key = st_z_r_borr_drv_ele_type ; val = unif
pos = 35 ; key = st_z_r_borr_drv_prb_type ; val = poiss
----------------------------------------
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Scalars in Container and Sizes and Basic Statistics
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i idx value
__ ___ ______
bl_b_is_principle 1 1 1
bl_default 2 2 1
bl_loglin 3 3 0
fl_a_max 4 4 50
fl_a_min 5 5 0
fl_b_bd 6 6 -20
fl_beta 7 7 0.94
fl_c_min 8 8 0.01
fl_crra 9 9 1.5
fl_default_aprime 10 10 0
fl_loglin_threshold 11 11 1
fl_nan_replace 12 12 -99999
fl_r_save 13 13 0.025
fl_tol_dist 14 14 1e-05
fl_tol_pol 15 15 1e-05
fl_tol_val 16 16 1e-05
fl_w 17 17 1.28
fl_z_r_borr_max 18 18 0.095
fl_z_r_borr_min 19 19 0.025
fl_z_r_borr_n 20 20 5
fl_z_r_borr_poiss_mean 21 21 10
fl_z_wage_mu 22 22 0
fl_z_wage_rho 23 23 0.8
fl_z_wage_sig 24 24 0.2
it_a_n 25 25 750
it_maxiter_dist 26 26 1000
it_maxiter_val 27 27 1000
it_tol_pol_nochange 28 28 25
it_trans_power_dist 29 29 1000
it_z_n 30 30 55
it_z_wage_n 31 31 11
----------------------------------------
----------------------------------------
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Begin: Show all key and value pairs from container
CONTAINER NAME: SUPPORT_MAP
----------------------------------------
Map with properties:
Count: 40
KeyType: char
ValueType: any
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
----------------------------------------
----------------------------------------
pos = 26 ; key = st_img_name_main ; val = ff_abz_vf_vec_default
pos = 27 ; key = st_img_path ; val = C:/Users/fan/CodeDynaAsset//m_abz//solve/img/
pos = 28 ; key = st_img_prefix ; val =
pos = 29 ; key = st_img_suffix ; val = _p4.png
pos = 30 ; key = st_mat_name_main ; val = ff_abz_vf_vec_default
pos = 31 ; key = st_mat_path ; val = C:/Users/fan/CodeDynaAsset//m_abz//solve/mat/
pos = 32 ; key = st_mat_prefix ; val =
pos = 33 ; key = st_mat_suffix ; val = _p4
pos = 34 ; key = st_mat_test_path ; val = C:/Users/fan/CodeDynaAsset//m_abz//test/ff_az_ds_vecsv/mat/
pos = 35 ; key = st_matimg_path_root ; val = C:/Users/fan/CodeDynaAsset//m_abz/
pos = 36 ; key = st_profile_name_main ; val = ff_abz_vf_vec_default
pos = 37 ; key = st_profile_path ; val = C:/Users/fan/CodeDynaAsset//m_abz//solve/profile/
pos = 38 ; key = st_profile_prefix ; val =
pos = 39 ; key = st_profile_suffix ; val = _p4
pos = 40 ; key = st_title_prefix ; val =
----------------------------------------
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Scalars in Container and Sizes and Basic Statistics
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
i idx value
__ ___ _____
bl_display 1 1 0
bl_display_defparam 2 2 1
bl_display_dist 3 3 0
bl_display_final 4 4 1
bl_display_final_dist 5 5 0
bl_display_final_dist_detail 6 6 0
bl_display_funcgrids 7 7 0
bl_graph 8 8 1
bl_graph_coh_t_coh 9 9 1
bl_graph_funcgrids 10 10 0
bl_graph_onebyones 11 11 1
bl_graph_pol_lvl 12 12 1
bl_graph_pol_pct 13 13 1
bl_graph_val 14 14 1
bl_img_save 15 15 0
bl_mat 16 16 0
bl_post 17 17 1
bl_profile 18 18 0
bl_profile_dist 19 19 0
bl_time 20 20 1
it_display_every 21 21 5
it_display_final_colmax 22 22 15
it_display_final_rowmax 23 23 100
it_display_summmat_colmax 24 24 5
it_display_summmat_rowmax 25 25 5
Initialize Output Matrixes
include mt_pol_idx which we did not have in looped code
mt_val_cur = zeros(length(ar_a),it_z_n); mt_val = mt_val_cur - 1; mt_pol_a = zeros(length(ar_a),it_z_n); mt_pol_a_cur = mt_pol_a - 1; mt_pol_idx = zeros(length(ar_a),it_z_n);
Initialize Convergence Conditions
bl_vfi_continue = true; it_iter = 0; ar_val_diff_norm = zeros([it_maxiter_val, 1]); ar_pol_diff_norm = zeros([it_maxiter_val, 1]); mt_pol_perc_change = zeros([it_maxiter_val, it_z_n]);
Iterate Value Function
Loop solution with 4 nested loops
- loop 1: over exogenous states
- loop 2: over endogenous states
- loop 3: over choices
- loop 4: add future utility, integration--loop over future shocks
% Start Profile if (bl_profile) close all; profile off; profile on; end % Start Timer if (bl_time) tic; end % Value Function Iteration while bl_vfi_continue
it_iter = it_iter + 1;
Solve Optimization Problem Current Iteration
Only this segment of code differs between ff_abz_vf and ff_abz_vf_vec
% loop 1: over exogenous states % incorporating these shocks into vectorization has high memory burden % but insignificant speed gains. Keeping this loop allows for large % number of shocks without overwhelming memory for it_z_i = 1:it_z_n % Current Shock fl_z_r_borr = ar_z_r_borr_mesh_wage(it_z_i); fl_z_wage = ar_z_wage_mesh_r_borr(it_z_i); % cash-on-hand ar_coh = f_coh(fl_z_wage, ar_a); % Consumption: fl_z = 1 by 1, ar_a = 1 by N, ar_a' = N by 1 % mt_c is N by N: matrix broadcasting, expand to matrix from arrays mt_c = f_cons_coh(ar_coh, fl_z_r_borr, ar_a'); % EVAL current utility: N by N, f_util defined earlier if (fl_crra == 1) mt_utility = f_util_log(mt_c); fl_u_cmin = f_util_log(fl_c_min); else mt_utility = f_util_crra(mt_c); fl_u_cmin = f_util_crra(fl_c_min); end % f(z'|z) ar_z_trans_condi = mt_z_trans(it_z_i,:); % EVAL EV((A',K'),Z'|Z) = V((A',K'),Z') x p(z'|z)', (N by Z) x (Z by 1) = N by 1 % Note: transpose ar_z_trans_condi from 1 by Z to Z by 1 % Note: matrix multiply not dot multiply mt_evzp_condi_z = mt_val_cur * ar_z_trans_condi'; % EVAL add on future utility, N by N + N by 1, broadcast again mt_utility = mt_utility + fl_beta*mt_evzp_condi_z; if (bl_default) % if default: only today u(cmin), transition out next period, debt wiped out mt_utility(mt_c <= fl_c_min) = fl_u_cmin + fl_beta*mt_evzp_condi_z(ar_a == fl_default_aprime); else % if default is not allowed: v = u(cmin) mt_utility(mt_c <= fl_c_min) = fl_nan_replace; end % Optimization: remember matlab is column major, rows must be % choices, columns must be states % <https://en.wikipedia.org/wiki/Row-_and_column-major_order COLUMN-MAJOR> % mt_utility is N by N, rows are choices, cols are states. [ar_opti_val_z, ar_opti_idx_z] = max(mt_utility); ar_opti_aprime_z = ar_a(ar_opti_idx_z); ar_opti_c_z = f_cons_coh(ar_coh, fl_z_r_borr, ar_opti_aprime_z); % Handle Default is optimal or not if (bl_default) % if defaulting is optimal choice, at these states, not required % to default, non-default possible, but default could be optimal ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = fl_default_aprime; ar_opti_idx_z(ar_opti_c_z <= fl_c_min) = find(ar_a == fl_default_aprime); else % if default is not allowed, then next period same state as now % this is absorbing state, this is the limiting case, single % state space point, lowest a and lowest shock has this. ar_opti_aprime_z(ar_opti_c_z <= fl_c_min) = ar_a(ar_opti_c_z <= fl_c_min); end % store optimal values mt_val(:,it_z_i) = ar_opti_val_z; mt_pol_a(:,it_z_i) = ar_opti_aprime_z; if (it_iter == (it_maxiter_val + 1)) mt_pol_idx(:,it_z_i) = ar_opti_idx_z; end end
Check Tolerance and Continuation
% Difference across iterations ar_val_diff_norm(it_iter) = norm(mt_val - mt_val_cur); ar_pol_diff_norm(it_iter) = norm(mt_pol_a - mt_pol_a_cur); mt_pol_perc_change(it_iter, :) = sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n); % Update mt_val_cur = mt_val; mt_pol_a_cur = mt_pol_a; % Print Iteration Results if (bl_display && (rem(it_iter, it_display_every)==0)) fprintf('VAL it_iter:%d, fl_diff:%d, fl_diff_pol:%d\n', ... it_iter, ar_val_diff_norm(it_iter), ar_pol_diff_norm(it_iter)); tb_valpol_iter = array2table([mean(mt_val_cur,1); mean(mt_pol_a_cur,1); ... mt_val_cur(it_a_n,:); mt_pol_a_cur(it_a_n,:)]); tb_valpol_iter.Properties.VariableNames = strcat('z', string((1:size(mt_val_cur,2)))); tb_valpol_iter.Properties.RowNames = {'mval', 'map', 'Hval', 'Hap'}; disp('mval = mean(mt_val_cur,1), average value over a') disp('map = mean(mt_pol_a_cur,1), average choice over a') disp('Hval = mt_val_cur(it_a_n,:), highest a state val') disp('Hap = mt_pol_a_cur(it_a_n,:), highest a state choice') disp(tb_valpol_iter); end % Continuation Conditions: % 1. if value function convergence criteria reached % 2. if policy function variation over iterations is less than % threshold if (it_iter == (it_maxiter_val + 1)) bl_vfi_continue = false; elseif ((it_iter == it_maxiter_val) || ... (ar_val_diff_norm(it_iter) < fl_tol_val) || ... (sum(ar_pol_diff_norm(max(1, it_iter-it_tol_pol_nochange):it_iter)) < fl_tol_pol)) % Fix to max, run again to save results if needed it_iter_last = it_iter; it_iter = it_maxiter_val; end
end % End Timer if (bl_time) toc; end % End Profile if (bl_profile) profile off profile viewer st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix]; profsave(profile('info'), strcat(st_profile_path, st_file_name)); end
Elapsed time is 345.177068 seconds.
Process Optimal Choices
result_map = containers.Map('KeyType','char', 'ValueType','any'); result_map('mt_val') = mt_val; result_map('mt_pol_idx') = mt_pol_idx; result_map('cl_mt_val') = {mt_val, zeros(1)}; result_map('cl_mt_coh') = {f_coh(ar_z_wage_mesh_r_borr, ar_a'), zeros(1)}; result_map('cl_mt_pol_a') = {f_awithr_to_anor(ar_z_r_borr_mesh_wage, mt_pol_a), zeros(1)}; result_map('cl_mt_pol_c') = {f_cons_checkcmin(ar_z_r_borr_mesh_wage, ar_z_wage_mesh_r_borr, ar_a', mt_pol_a), zeros(1)}; result_map('ar_st_pol_names') = ["cl_mt_val", "cl_mt_pol_a", "cl_mt_coh", "cl_mt_pol_c"]; if (bl_post) bl_input_override = true; result_map('ar_val_diff_norm') = ar_val_diff_norm(1:it_iter_last); result_map('ar_pol_diff_norm') = ar_pol_diff_norm(1:it_iter_last); result_map('mt_pol_perc_change') = mt_pol_perc_change(1:it_iter_last, :); result_map = ff_az_vf_post(param_map, support_map, armt_map, func_map, result_map, bl_input_override); end
valgap = norm(mt_val - mt_val_cur): value function difference across iterations
polgap = norm(mt_pol_a - mt_pol_a_cur): policy function difference across iterations
z1 = z1 perc change: sum((mt_pol_a ~= mt_pol_a_cur))/(it_a_n): percentage of state space points conditional on shock where the policy function is changing across iterations
valgap polgap zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi7_zr_0_025_zw_1_1509 zi8_zr_0_025_zw_1_4057 zi48_zr_0_095_zw_0_63162 zi49_zr_0_095_zw_0_77146 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613
________ _______ _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ______________________ ______________________ ________________________ ________________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________
iter=1 352.78 3846.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
iter=2 302.85 4213.3 0.99867 1 1 1 1 1 1 1 0.98533 0.988 0.99067 0.99333 0.99733 1 1 1
iter=3 247.45 1370.3 0.984 0.98667 0.99067 0.99467 0.99733 0.99867 0.99867 1 0.976 0.98 0.98667 0.99467 0.996 1 1 1
iter=4 205.06 685.13 0.97067 0.97467 0.98 0.98133 0.98667 0.99333 0.99467 0.99467 0.968 0.97067 0.97733 0.988 0.996 0.98933 0.99867 1
iter=5 173.89 403.37 0.95467 0.956 0.96533 0.96933 0.97733 0.98667 0.99467 0.996 0.95333 0.96267 0.96933 0.98267 0.99467 0.98667 0.996 1
iter=6 149.47 269.7 0.94133 0.94133 0.94933 0.96 0.97067 0.984 0.984 0.988 0.94 0.95067 0.96533 0.96933 0.98667 0.98 0.99467 0.99733
iter=7 129.24 193.98 0.92667 0.93733 0.94533 0.95733 0.95333 0.96533 0.97867 0.98533 0.93867 0.93867 0.95067 0.95733 0.97467 0.98533 0.98667 0.98667
iter=8 112.61 144.55 0.91467 0.92267 0.93333 0.94267 0.956 0.95867 0.976 0.98667 0.92667 0.94267 0.94533 0.95867 0.96133 0.984 0.976 0.972
iter=9 98.571 110.61 0.90933 0.91867 0.92267 0.93067 0.952 0.95467 0.964 0.98 0.92267 0.936 0.95067 0.95467 0.968 0.97333 0.968 0.98267
iter=10 86.561 88.402 0.90133 0.91333 0.92267 0.92667 0.94267 0.95467 0.95733 0.96267 0.912 0.91333 0.93333 0.94 0.95467 0.95733 0.976 0.96667
iter=11 76.23 71.99 0.88667 0.89467 0.908 0.92133 0.92133 0.936 0.94667 0.95733 0.89867 0.92 0.91467 0.94267 0.94 0.97067 0.972 0.956
iter=12 67.259 59.599 0.884 0.88267 0.88933 0.91867 0.90933 0.92267 0.94133 0.95333 0.89733 0.904 0.92 0.92267 0.94267 0.94667 0.94533 0.964
iter=13 59.469 49.538 0.86533 0.86667 0.87867 0.88267 0.896 0.90267 0.92533 0.93333 0.872 0.88533 0.90267 0.90933 0.924 0.92933 0.952 0.94533
iter=14 52.672 42.341 0.836 0.85333 0.86533 0.864 0.88133 0.89733 0.912 0.92 0.856 0.88 0.87067 0.89733 0.89733 0.92533 0.92533 0.924
iter=15 46.718 36.325 0.82 0.82667 0.83467 0.85067 0.85333 0.86933 0.86667 0.89867 0.844 0.84 0.86 0.87067 0.88533 0.89333 0.89067 0.92267
iter=16 41.497 31.568 0.788 0.81067 0.80667 0.812 0.83067 0.832 0.84267 0.84133 0.808 0.82133 0.832 0.83733 0.852 0.848 0.88133 0.88533
iter=17 36.931 27.298 0.76133 0.76267 0.784 0.78 0.80267 0.79867 0.8 0.81067 0.76267 0.78133 0.78133 0.80267 0.79867 0.83067 0.84 0.84133
iter=18 32.935 23.985 0.73733 0.74933 0.75467 0.74533 0.756 0.77067 0.77067 0.77333 0.76133 0.752 0.77467 0.78 0.77333 0.788 0.796 0.82533
iter=19 29.427 22.92 0.696 0.696 0.704 0.71467 0.70667 0.72267 0.724 0.74133 0.7 0.72133 0.71467 0.72 0.74667 0.74267 0.76133 0.78667
iter=20 26.354 18.398 0.648 0.656 0.66267 0.66533 0.66667 0.67333 0.69733 0.696 0.66933 0.64667 0.67867 0.67733 0.7 0.70667 0.74267 0.748
iter=21 23.673 20.326 0.62133 0.612 0.61333 0.628 0.62533 0.64133 0.64667 0.66667 0.59467 0.652 0.61067 0.65333 0.64 0.692 0.696 0.676
iter=22 21.331 14.676 0.57733 0.564 0.568 0.59467 0.58133 0.59733 0.61067 0.61733 0.61867 0.588 0.64133 0.624 0.632 0.63333 0.63067 0.70667
iter=23 19.278 13.103 0.52 0.51467 0.51867 0.52933 0.544 0.544 0.56267 0.57467 0.528 0.52133 0.536 0.54267 0.588 0.56267 0.616 0.636
iter=24 17.484 20.103 0.46267 0.468 0.48267 0.48667 0.49067 0.5 0.516 0.528 0.46533 0.46933 0.484 0.492 0.50933 0.55333 0.58133 0.56533
iter=25 15.919 10.708 0.41067 0.42267 0.43467 0.44133 0.45067 0.45333 0.46667 0.48533 0.42933 0.496 0.44267 0.496 0.46933 0.51733 0.49867 0.524
iter=26 14.549 9.6377 0.372 0.37067 0.38533 0.384 0.396 0.4 0.42533 0.43067 0.41867 0.38133 0.43867 0.42533 0.43733 0.44267 0.46133 0.52267
iter=27 13.349 8.7583 0.32933 0.34667 0.34133 0.34933 0.35733 0.364 0.37467 0.392 0.34933 0.35333 0.36267 0.36267 0.40933 0.39067 0.40533 0.444
iter=28 12.293 20.055 0.30667 0.30267 0.30933 0.30933 0.32533 0.336 0.34267 0.35333 0.304 0.31733 0.324 0.332 0.34667 0.35333 0.404 0.39867
iter=29 11.365 20.119 0.264 0.27467 0.28 0.28533 0.284 0.29733 0.30667 0.316 0.27733 0.27867 0.29067 0.296 0.31467 0.33067 0.348 0.35467
iter=30 10.546 20.046 0.244 0.25067 0.25467 0.25733 0.264 0.268 0.27867 0.28533 0.26133 0.28 0.26267 0.26933 0.27467 0.308 0.31467 0.31867
iter=31 9.8215 20.038 0.22 0.21733 0.22667 0.22533 0.236 0.24267 0.25067 0.26133 0.22133 0.24267 0.23733 0.26667 0.25733 0.27733 0.27733 0.28933
iter=32 9.177 6.0135 0.19867 0.20667 0.20933 0.20667 0.216 0.22 0.22933 0.22933 0.204 0.21733 0.21733 0.23333 0.22133 0.24667 0.25467 0.264
iter=33 8.601 5.4548 0.17733 0.17733 0.18 0.188 0.192 0.196 0.20267 0.22 0.19467 0.19067 0.21467 0.204 0.21733 0.22 0.23067 0.252
iter=34 8.0824 5.1358 0.16267 0.17067 0.168 0.17333 0.18 0.18133 0.19067 0.19333 0.17867 0.17733 0.184 0.188 0.196 0.204 0.21067 0.24267
iter=35 7.612 4.6977 0.144 0.14533 0.15467 0.152 0.152 0.16267 0.17067 0.176 0.15467 0.14933 0.16533 0.16933 0.18533 0.17467 0.19333 0.20267
iter=36 7.1826 4.3323 0.13867 0.14 0.13333 0.144 0.14933 0.14667 0.15467 0.16 0.144 0.148 0.14533 0.152 0.16267 0.168 0.172 0.18933
iter=37 6.7888 4.0273 0.112 0.12933 0.128 0.12267 0.13467 0.14133 0.14267 0.15067 0.12667 0.13467 0.14267 0.14 0.152 0.15333 0.15867 0.16933
iter=38 6.4262 3.6336 0.108 0.10933 0.112 0.11867 0.116 0.12133 0.128 0.13333 0.11333 0.11467 0.12267 0.12667 0.13467 0.13733 0.144 0.15867
iter=39 6.091 3.3142 0.097333 0.10267 0.1 0.1 0.1 0.112 0.112 0.116 0.10133 0.1 0.10933 0.112 0.11733 0.12667 0.136 0.136
iter=40 5.7799 3.1979 0.092 0.092 0.096 0.10133 0.11067 0.10267 0.11333 0.112 0.10267 0.10933 0.10133 0.11333 0.108 0.11867 0.11733 0.13467
iter=41 5.4897 3.0676 0.076 0.085333 0.088 0.085333 0.088 0.092 0.094667 0.10533 0.088 0.086667 0.092 0.094667 0.10667 0.1 0.11467 0.12133
iter=42 5.2179 2.8667 0.074667 0.070667 0.076 0.081333 0.077333 0.084 0.084 0.086667 0.08 0.078667 0.084 0.082667 0.088 0.094667 0.098667 0.104
iter=43 4.9625 2.6699 0.066667 0.066667 0.065333 0.069333 0.077333 0.070667 0.08 0.084 0.070667 0.073333 0.069333 0.077333 0.085333 0.090667 0.098667 0.1
iter=44 4.7217 2.5725 0.062667 0.065333 0.062667 0.06 0.068 0.072 0.076 0.08 0.06 0.068 0.072 0.076 0.077333 0.08 0.085333 0.093333
iter=45 4.494 2.4152 0.056 0.057333 0.056 0.065333 0.065333 0.068 0.070667 0.068 0.064 0.065333 0.066667 0.069333 0.066667 0.073333 0.070667 0.08
iter=46 4.2781 2.2213 0.053333 0.049333 0.054667 0.052 0.049333 0.057333 0.057333 0.068 0.050667 0.050667 0.057333 0.057333 0.068 0.065333 0.073333 0.08
iter=47 4.073 1.9928 0.04 0.048 0.049333 0.053333 0.048 0.052 0.052 0.062667 0.052 0.048 0.052 0.053333 0.061333 0.06 0.066667 0.066667
iter=48 3.8779 1.7916 0.04 0.04 0.048 0.042667 0.048 0.048 0.048 0.046667 0.042667 0.049333 0.048 0.048 0.048 0.054667 0.058667 0.06
iter=49 3.692 1.6427 0.036 0.033333 0.036 0.04 0.041333 0.042667 0.049333 0.045333 0.04 0.041333 0.042667 0.049333 0.045333 0.049333 0.056 0.056
iter=50 3.5146 1.5439 0.034667 0.036 0.034667 0.038667 0.036 0.038667 0.038667 0.041333 0.038667 0.036 0.037333 0.038667 0.042667 0.049333 0.045333 0.056
iter=79 0.73574 0.36196 0.0013333 0 0 0.0013333 0 0.0026667 0 0.0026667 0.0013333 0 0.0026667 0 0.0026667 0.0026667 0.004 0
iter=80 0.69375 0.29554 0.0013333 0.0013333 0 0.0013333 0 0 0.0013333 0.0026667 0.0013333 0 0 0.0013333 0.0026667 0.0013333 0 0.0026667
iter=81 0.65401 0.29554 0 0 0.0013333 0 0.0026667 0 0.0013333 0.0013333 0 0.0026667 0 0.0013333 0.0013333 0.0026667 0.0026667 0.0013333
iter=82 0.6164 0.41796 0 0.0053333 0.004 0.0013333 0.0013333 0 0.0026667 0.0013333 0.0013333 0.0013333 0 0.0026667 0.0013333 0.0013333 0.0026667 0.0013333
iter=83 0.58083 0.36196 0 0 0 0.0026667 0.0013333 0.0026667 0 0.0013333 0.0026667 0.0013333 0.0026667 0 0.0013333 0 0 0.004
iter=84 0.5472 0.29554 0 0 0 0 0 0 0.0026667 0 0 0 0 0.0026667 0 0 0.0026667 0.0013333
iter=85 0.51542 0.20898 0 0.0013333 0 0 0.0013333 0.0013333 0 0 0 0.0013333 0.0013333 0 0 0.0013333 0.0013333 0.0013333
iter=86 0.48541 0.20898 0 0 0.0013333 0.0013333 0.0013333 0 0 0 0.0013333 0.0013333 0 0 0 0 0 0.0013333
iter=87 0.45706 0.29554 0.0013333 0 0.0013333 0 0 0 0 0 0 0 0 0 0 0 0 0.0026667
iter=88 0.43031 0.20898 0 0 0 0 0 0.0013333 0 0.0013333 0 0 0.0013333 0 0.0013333 0.0013333 0 0.0013333
iter=89 0.40506 0.29554 0 0 0 0 0.0013333 0 0 0 0 0.0013333 0 0 0 0.0026667 0 0
iter=90 0.38125 0.20898 0 0 0 0 0 0.0013333 0 0.0013333 0 0 0.0013333 0 0.0013333 0.0013333 0.0013333 0
iter=91 0.35879 0.20898 0 0.0013333 0 0 0 0.0013333 0 0.0013333 0 0 0.0013333 0 0.0013333 0 0 0
iter=92 0.33762 0.20898 0 0 0 0.0013333 0 0 0 0.0013333 0.0013333 0 0 0 0.0013333 0 0.0013333 0
iter=93 0.31766 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=94 0.29886 0.20898 0 0 0 0 0 0 0 0.0013333 0 0 0 0 0.0013333 0 0 0
iter=95 0.28114 0.20898 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0013333 0 0
iter=96 0.26446 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=97 0.24874 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=98 0.23395 0.20898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0013333
iter=99 0.22002 0.20898 0.0013333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=100 0.20692 0.20898 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0013333
iter=101 0.19458 0.20898 0 0 0 0.0013333 0 0 0 0 0.0013333 0 0 0 0 0 0 0
iter=102 0.18297 0.20898 0 0 0 0 0 0 0.0013333 0 0 0 0 0.0013333 0 0 0 0
iter=103 0.17205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=104 0.16178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=105 0.15211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=106 0.14302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=107 0.13446 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=108 0.12642 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=109 0.11886 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=110 0.11174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=111 0.10505 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=112 0.098761 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=113 0.092846 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=114 0.087284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=115 0.082055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=116 0.077138 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=117 0.072516 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=118 0.06817 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=119 0.064083 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=120 0.060242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=121 0.056631 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=122 0.053235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=123 0.050043 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=124 0.047043 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=125 0.044222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=126 0.04157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=127 0.039077 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
iter=128 0.036733 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tb_val: V(a,z) value at each state space point
zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi7_zr_0_025_zw_1_1509 zi8_zr_0_025_zw_1_4057 zi48_zr_0_095_zw_0_63162 zi49_zr_0_095_zw_0_77146 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613
_______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ______________________ ______________________ ________________________ ________________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________
a1=-20 -17.865 -17.407 -16.896 -16.363 -15.598 -14.718 -13.953 -13.232 -16.363 -15.822 -15.278 -14.738 -14.203 -13.672 -12.314 -10.919
a2=-19.9065 -17.865 -17.407 -16.896 -16.283 -15.365 -14.578 -13.863 -13.172 -16.363 -15.822 -15.278 -14.738 -14.203 -13.628 -12.22 -10.827
a3=-19.8131 -17.865 -17.407 -16.896 -15.982 -15.182 -14.46 -13.785 -13.119 -16.363 -15.822 -15.278 -14.738 -14.203 -13.427 -12.137 -10.738
a4=-19.7196 -17.865 -17.407 -16.542 -15.754 -15.033 -14.359 -13.716 -13.07 -16.363 -15.822 -15.278 -14.738 -14.203 -13.266 -12.042 -10.65
a5=-19.6262 -17.794 -17.019 -16.277 -15.575 -14.908 -14.272 -13.653 -13.026 -16.363 -15.822 -15.278 -14.738 -14.203 -13.132 -11.951 -10.565
a6=-19.5327 -17.385 -16.731 -16.073 -15.428 -14.802 -14.195 -13.597 -12.985 -16.363 -15.822 -15.278 -14.738 -14.203 -13.02 -11.862 -10.477
a7=-19.4393 -17.093 -16.512 -15.908 -15.305 -14.71 -14.126 -13.546 -12.907 -16.363 -15.822 -15.278 -14.738 -14.015 -12.923 -11.763 -10.388
a8=-19.3458 -16.871 -16.338 -15.773 -15.2 -14.63 -14.065 -13.5 -12.812 -16.363 -15.822 -15.278 -14.738 -13.845 -12.838 -11.666 -10.301
a9=-19.2523 -16.695 -16.195 -15.658 -15.11 -14.559 -14.01 -13.457 -12.715 -16.363 -15.822 -15.278 -14.738 -13.705 -12.763 -11.576 -10.214
a10=-19.1589 -16.551 -16.076 -15.56 -15.03 -14.495 -13.959 -13.418 -12.623 -16.363 -15.822 -15.278 -14.566 -13.587 -12.697 -11.484 -10.128
a11=-19.0654 -16.43 -15.973 -15.475 -14.96 -14.438 -13.913 -13.381 -12.536 -16.363 -15.822 -15.278 -14.377 -13.486 -12.636 -11.398 -10.043
a12=-18.972 -16.327 -15.884 -15.399 -14.897 -14.386 -13.871 -13.347 -12.456 -16.363 -15.822 -15.189 -14.223 -13.399 -12.56 -11.311 -9.958
a13=-18.8785 -16.237 -15.806 -15.332 -14.84 -14.339 -13.832 -13.266 -12.376 -16.363 -15.822 -14.956 -14.095 -13.322 -12.46 -11.221 -9.8713
a14=-18.785 -16.159 -15.737 -15.272 -14.789 -14.296 -13.796 -13.168 -12.302 -16.363 -15.694 -14.773 -13.987 -13.253 -12.37 -11.135 -9.7857
a15=-18.6916 -16.089 -15.675 -15.218 -14.742 -14.256 -13.763 -13.071 -12.231 -16.363 -15.439 -14.623 -13.893 -13.192 -12.27 -11.048 -9.7008
a16=-18.5981 -16.027 -15.619 -15.168 -14.698 -14.219 -13.731 -12.984 -12.16 -16.076 -15.241 -14.499 -13.811 -13.137 -12.176 -10.966 -9.6161
a17=-18.5047 -15.971 -15.568 -15.123 -14.659 -14.184 -13.7 -12.899 -12.094 -15.827 -15.081 -14.392 -13.739 -13.087 -12.084 -10.882 -9.5322
a18=-18.4112 -15.92 -15.522 -15.082 -14.622 -14.152 -13.589 -12.821 -12.025 -15.633 -14.949 -14.301 -13.674 -13.041 -11.992 -10.8 -9.4474
a19=-18.3178 -15.873 -15.48 -15.043 -14.588 -14.122 -13.491 -12.747 -11.954 -15.476 -14.837 -14.22 -13.616 -12.982 -11.906 -10.718 -9.3629
a20=-18.2243 -15.83 -15.44 -15.008 -14.556 -14.094 -13.396 -12.677 -11.884 -15.345 -14.741 -14.149 -13.563 -12.88 -11.823 -10.632 -9.2787
a21=-18.1308 -15.791 -15.404 -14.974 -14.526 -14.023 -13.312 -12.61 -11.815 -15.235 -14.657 -14.085 -13.515 -12.777 -11.741 -10.547 -9.195
a22=-18.0374 -15.754 -15.37 -14.943 -14.498 -13.915 -13.229 -12.544 -11.745 -15.14 -14.583 -14.028 -13.472 -12.677 -11.663 -10.463 -9.1116
a23=-17.9439 -15.721 -15.339 -14.914 -14.472 -13.815 -13.155 -12.478 -11.676 -15.057 -14.517 -13.976 -13.431 -12.584 -11.585 -10.38 -9.0269
a24=-17.8505 -15.689 -15.309 -14.887 -14.381 -13.723 -13.082 -12.415 -11.599 -14.983 -14.457 -13.929 -13.394 -12.497 -11.509 -10.296 -8.9423
a25=-17.757 -15.659 -15.281 -14.862 -14.267 -13.637 -13.013 -12.355 -11.522 -14.918 -14.404 -13.885 -13.325 -12.412 -11.427 -10.212 -8.8581
a26=-17.6636 -15.631 -15.255 -14.788 -14.167 -13.556 -12.948 -12.293 -11.448 -14.859 -14.355 -13.845 -13.218 -12.334 -11.344 -10.129 -8.7738
a27=-17.5701 -15.605 -15.231 -14.664 -14.07 -13.481 -12.886 -12.235 -11.376 -14.806 -14.31 -13.808 -13.115 -12.257 -11.262 -10.046 -8.689
a28=-17.4766 -15.581 -15.126 -14.558 -13.984 -13.41 -12.828 -12.167 -11.3 -14.757 -14.269 -13.774 -13.023 -12.184 -11.181 -9.9649 -8.6044
a29=-17.3832 -15.512 -15 -14.454 -13.899 -13.343 -12.77 -12.095 -11.225 -14.713 -14.231 -13.742 -12.933 -12.113 -11.102 -9.8823 -8.5199
a30=-17.2897 -15.381 -14.889 -14.362 -13.824 -13.279 -12.714 -12.026 -11.151 -14.672 -14.196 -13.632 -12.849 -12.037 -11.021 -9.7999 -8.4356
a31=-17.1963 -15.258 -14.784 -14.273 -13.75 -13.219 -12.66 -11.954 -11.078 -14.634 -14.163 -13.528 -12.772 -11.961 -10.937 -9.7177 -8.351
a32=-17.1028 -15.147 -14.689 -14.193 -13.684 -13.161 -12.605 -11.878 -11.006 -14.599 -14.132 -13.428 -12.697 -11.887 -10.855 -9.6361 -8.2659
a33=-17.0093 -15.043 -14.599 -14.116 -13.618 -13.107 -12.543 -11.804 -10.934 -14.567 -14.062 -13.338 -12.627 -11.813 -10.775 -9.5547 -8.1805
a34=-16.9159 -14.948 -14.516 -14.046 -13.558 -13.052 -12.484 -11.731 -10.862 -14.536 -13.947 -13.252 -12.555 -11.741 -10.694 -9.4719 -8.0949
a35=-16.8224 -14.859 -14.438 -13.977 -13.499 -13.001 -12.414 -11.657 -10.79 -14.508 -13.843 -13.172 -12.488 -11.659 -10.614 -9.389 -8.009
a36=-16.729 -14.776 -14.365 -13.914 -13.444 -12.951 -12.343 -11.585 -10.72 -14.409 -13.744 -13.097 -12.422 -11.577 -10.533 -9.3068 -7.923
a37=-16.6355 -14.699 -14.296 -13.853 -13.391 -12.899 -12.27 -11.514 -10.648 -14.291 -13.655 -13.024 -12.357 -11.498 -10.454 -9.2237 -7.837
a38=-16.5421 -14.626 -14.231 -13.797 -13.341 -12.848 -12.191 -11.443 -10.574 -14.185 -13.57 -12.957 -12.292 -11.422 -10.375 -9.1406 -7.751
a39=-16.4486 -14.558 -14.17 -13.742 -13.292 -12.787 -12.117 -11.374 -10.502 -14.084 -13.492 -12.892 -12.223 -11.34 -10.294 -9.0578 -7.6648
a40=-16.3551 -14.493 -14.112 -13.691 -13.243 -12.716 -12.044 -11.306 -10.43 -13.993 -13.417 -12.83 -12.146 -11.26 -10.214 -8.9755 -7.5784
a41=-16.2617 -14.432 -14.056 -13.64 -13.197 -12.642 -11.972 -11.237 -10.356 -13.907 -13.349 -12.77 -12.073 -11.181 -10.134 -8.8928 -7.491
a42=-16.1682 -14.374 -14.004 -13.593 -13.152 -12.562 -11.902 -11.168 -10.283 -13.828 -13.281 -12.712 -11.996 -11.104 -10.056 -8.8099 -7.4033
a43=-16.0748 -14.319 -13.953 -13.546 -13.095 -12.485 -11.833 -11.099 -10.209 -13.753 -13.219 -12.654 -11.915 -11.027 -9.9754 -8.7271 -7.3155
a44=-15.9813 -14.266 -13.905 -13.503 -13.02 -12.41 -11.765 -11.03 -10.135 -13.682 -13.159 -12.589 -11.836 -10.95 -9.8946 -8.6437 -7.2273
a45=-15.8879 -14.216 -13.859 -13.459 -12.938 -12.337 -11.698 -10.96 -10.061 -13.616 -13.102 -12.525 -11.758 -10.873 -9.8143 -8.5597 -7.139
a46=-15.7944 -14.169 -13.815 -13.414 -12.857 -12.265 -11.632 -10.89 -9.987 -13.552 -13.046 -12.45 -11.679 -10.797 -9.7333 -8.4757 -7.0507
a47=-15.7009 -14.123 -13.772 -13.338 -12.776 -12.196 -11.568 -10.818 -9.9136 -13.494 -12.993 -12.374 -11.602 -10.72 -9.6524 -8.3919 -6.962
a48=-15.6075 -14.079 -13.73 -13.251 -12.699 -12.129 -11.503 -10.746 -9.8396 -13.436 -12.937 -12.295 -11.527 -10.642 -9.5717 -8.3078 -6.8732
a49=-15.514 -14.036 -13.683 -13.164 -12.626 -12.064 -11.436 -10.674 -9.7655 -13.382 -12.883 -12.213 -11.452 -10.564 -9.4908 -8.2237 -6.7832
a50=-15.4206 -13.996 -13.588 -13.08 -12.555 -12 -11.37 -10.601 -9.6918 -13.33 -12.817 -12.134 -11.379 -10.487 -9.4101 -8.1396 -6.6928
a701=45.4206 13.169 13.248 13.338 13.439 13.55 13.671 13.805 13.952 13.439 13.55 13.671 13.805 13.952 14.113 14.287 14.467
a702=45.514 13.181 13.259 13.349 13.45 13.56 13.682 13.815 13.962 13.45 13.56 13.682 13.815 13.962 14.122 14.296 14.476
a703=45.6075 13.192 13.27 13.361 13.461 13.571 13.692 13.825 13.972 13.461 13.571 13.692 13.825 13.972 14.132 14.306 14.485
a704=45.7009 13.204 13.282 13.372 13.472 13.582 13.703 13.836 13.982 13.472 13.582 13.703 13.836 13.982 14.142 14.316 14.495
a705=45.7944 13.215 13.293 13.383 13.483 13.593 13.713 13.846 13.992 13.483 13.593 13.713 13.846 13.992 14.152 14.325 14.504
a706=45.8879 13.227 13.304 13.394 13.494 13.603 13.724 13.856 14.002 13.494 13.603 13.724 13.856 14.002 14.162 14.335 14.513
a707=45.9813 13.238 13.315 13.405 13.505 13.614 13.734 13.867 14.012 13.505 13.614 13.734 13.867 14.012 14.172 14.344 14.522
a708=46.0748 13.25 13.327 13.416 13.516 13.625 13.745 13.877 14.022 13.516 13.625 13.745 13.877 14.022 14.181 14.354 14.532
a709=46.1682 13.261 13.338 13.427 13.527 13.636 13.755 13.887 14.032 13.527 13.636 13.755 13.887 14.032 14.191 14.363 14.541
a710=46.2617 13.272 13.349 13.438 13.537 13.646 13.766 13.897 14.042 13.537 13.646 13.766 13.897 14.042 14.201 14.373 14.55
a711=46.3551 13.284 13.36 13.449 13.548 13.657 13.776 13.908 14.052 13.548 13.657 13.776 13.908 14.052 14.211 14.382 14.559
a712=46.4486 13.295 13.371 13.46 13.559 13.668 13.787 13.918 14.062 13.559 13.668 13.787 13.918 14.062 14.22 14.391 14.568
a713=46.5421 13.306 13.383 13.471 13.57 13.678 13.797 13.928 14.072 13.57 13.678 13.797 13.928 14.072 14.23 14.401 14.577
a714=46.6355 13.317 13.394 13.482 13.581 13.689 13.808 13.938 14.082 13.581 13.689 13.808 13.938 14.082 14.24 14.41 14.587
a715=46.729 13.329 13.405 13.493 13.591 13.699 13.818 13.948 14.092 13.591 13.699 13.818 13.948 14.092 14.249 14.42 14.596
a716=46.8224 13.34 13.416 13.504 13.602 13.71 13.828 13.959 14.102 13.602 13.71 13.828 13.959 14.102 14.259 14.429 14.605
a717=46.9159 13.351 13.427 13.515 13.613 13.72 13.839 13.969 14.112 13.613 13.72 13.839 13.969 14.112 14.269 14.438 14.614
a718=47.0093 13.362 13.438 13.526 13.624 13.731 13.849 13.979 14.122 13.624 13.731 13.849 13.979 14.122 14.278 14.448 14.623
a719=47.1028 13.373 13.449 13.537 13.634 13.742 13.859 13.989 14.131 13.634 13.742 13.859 13.989 14.131 14.288 14.457 14.632
a720=47.1963 13.385 13.46 13.548 13.645 13.752 13.87 13.999 14.141 13.645 13.752 13.87 13.999 14.141 14.297 14.466 14.641
a721=47.2897 13.396 13.471 13.558 13.656 13.762 13.88 14.009 14.151 13.656 13.762 13.88 14.009 14.151 14.307 14.476 14.65
a722=47.3832 13.407 13.482 13.569 13.666 13.773 13.89 14.019 14.161 13.666 13.773 13.89 14.019 14.161 14.316 14.485 14.659
a723=47.4766 13.418 13.493 13.58 13.677 13.783 13.9 14.029 14.171 13.677 13.783 13.9 14.029 14.171 14.326 14.494 14.668
a724=47.5701 13.429 13.504 13.591 13.687 13.794 13.911 14.039 14.18 13.687 13.794 13.911 14.039 14.18 14.335 14.503 14.677
a725=47.6636 13.44 13.515 13.602 13.698 13.804 13.921 14.049 14.19 13.698 13.804 13.921 14.049 14.19 14.345 14.513 14.686
a726=47.757 13.451 13.526 13.612 13.709 13.815 13.931 14.059 14.2 13.709 13.815 13.931 14.059 14.2 14.354 14.522 14.695
a727=47.8505 13.462 13.536 13.623 13.719 13.825 13.941 14.069 14.21 13.719 13.825 13.941 14.069 14.21 14.364 14.531 14.704
a728=47.9439 13.473 13.547 13.634 13.73 13.835 13.951 14.079 14.219 13.73 13.835 13.951 14.079 14.219 14.373 14.54 14.713
a729=48.0374 13.484 13.558 13.644 13.74 13.846 13.961 14.089 14.229 13.74 13.846 13.961 14.089 14.229 14.383 14.549 14.722
a730=48.1308 13.495 13.569 13.655 13.751 13.856 13.972 14.099 14.239 13.751 13.856 13.972 14.099 14.239 14.392 14.559 14.731
a731=48.2243 13.506 13.58 13.666 13.761 13.866 13.982 14.109 14.248 13.761 13.866 13.982 14.109 14.248 14.402 14.568 14.739
a732=48.3178 13.517 13.59 13.676 13.772 13.876 13.992 14.118 14.258 13.772 13.876 13.992 14.118 14.258 14.411 14.577 14.748
a733=48.4112 13.527 13.601 13.687 13.782 13.887 14.002 14.128 14.268 13.782 13.887 14.002 14.128 14.268 14.42 14.586 14.757
a734=48.5047 13.538 13.612 13.697 13.792 13.897 14.012 14.138 14.277 13.792 13.897 14.012 14.138 14.277 14.43 14.595 14.766
a735=48.5981 13.549 13.623 13.708 13.803 13.907 14.022 14.148 14.287 13.803 13.907 14.022 14.148 14.287 14.439 14.604 14.775
a736=48.6916 13.56 13.633 13.719 13.813 13.917 14.032 14.158 14.296 13.813 13.917 14.032 14.158 14.296 14.449 14.613 14.784
a737=48.785 13.571 13.644 13.729 13.824 13.928 14.042 14.168 14.306 13.824 13.928 14.042 14.168 14.306 14.458 14.622 14.792
a738=48.8785 13.582 13.655 13.74 13.834 13.938 14.052 14.177 14.316 13.834 13.938 14.052 14.177 14.316 14.467 14.631 14.801
a739=48.972 13.592 13.665 13.75 13.844 13.948 14.062 14.187 14.325 13.844 13.948 14.062 14.187 14.325 14.476 14.64 14.81
a740=49.0654 13.603 13.676 13.761 13.855 13.958 14.072 14.197 14.335 13.855 13.958 14.072 14.197 14.335 14.486 14.65 14.819
a741=49.1589 13.614 13.687 13.771 13.865 13.968 14.082 14.207 14.344 13.865 13.968 14.082 14.207 14.344 14.495 14.659 14.828
a742=49.2523 13.625 13.697 13.781 13.875 13.978 14.092 14.216 14.354 13.875 13.978 14.092 14.216 14.354 14.504 14.668 14.836
a743=49.3458 13.635 13.708 13.792 13.885 13.988 14.101 14.226 14.363 13.885 13.988 14.101 14.226 14.363 14.513 14.677 14.845
a744=49.4393 13.646 13.718 13.802 13.896 13.998 14.111 14.236 14.372 13.896 13.998 14.111 14.236 14.372 14.523 14.685 14.854
a745=49.5327 13.657 13.729 13.813 13.906 14.008 14.121 14.245 14.382 13.906 14.008 14.121 14.245 14.382 14.532 14.694 14.862
a746=49.6262 13.667 13.739 13.823 13.916 14.018 14.131 14.255 14.391 13.916 14.018 14.131 14.255 14.391 14.541 14.703 14.871
a747=49.7196 13.678 13.75 13.833 13.926 14.028 14.141 14.265 14.401 13.926 14.028 14.141 14.265 14.401 14.55 14.712 14.88
a748=49.8131 13.688 13.76 13.844 13.936 14.038 14.151 14.274 14.41 13.936 14.038 14.151 14.274 14.41 14.559 14.721 14.888
a749=49.9065 13.699 13.771 13.854 13.947 14.048 14.161 14.284 14.42 13.947 14.048 14.161 14.284 14.42 14.569 14.73 14.897
a750=50 13.709 13.781 13.864 13.957 14.058 14.17 14.293 14.429 13.957 14.058 14.17 14.293 14.429 14.578 14.739 14.906
tb_pol_a: optimal asset choice for each state space point
zi1_zr_0_025_zw_0_34664 zi2_zr_0_025_zw_0_42338 zi3_zr_0_025_zw_0_51712 zi4_zr_0_025_zw_0_63162 zi5_zr_0_025_zw_0_77146 zi6_zr_0_025_zw_0_94226 zi7_zr_0_025_zw_1_1509 zi8_zr_0_025_zw_1_4057 zi48_zr_0_095_zw_0_63162 zi49_zr_0_095_zw_0_77146 zi50_zr_0_095_zw_0_94226 zi51_zr_0_095_zw_1_1509 zi52_zr_0_095_zw_1_4057 zi53_zr_0_095_zw_1_7169 zi54_zr_0_095_zw_2_097 zi55_zr_0_095_zw_2_5613
_______________________ _______________________ _______________________ _______________________ _______________________ _______________________ ______________________ ______________________ ________________________ ________________________ ________________________ _______________________ _______________________ _______________________ ______________________ _______________________
a1=-20 0 0 0 0 -19.512 -19.512 -19.512 -19.512 0 0 0 0 0 0 -18.265 -17.753
a2=-19.9065 0 0 0 -19.512 -19.512 -19.512 -19.512 -19.512 0 0 0 0 0 -18.265 -18.265 -17.667
a3=-19.8131 0 0 0 -19.512 -19.512 -19.512 -19.512 -19.512 0 0 0 0 0 -18.265 -18.265 -17.582
a4=-19.7196 0 0 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 0 0 0 0 0 -18.265 -18.009 -17.497
a5=-19.6262 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 0 0 0 0 0 -18.265 -17.923 -17.411
a6=-19.5327 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 0 0 0 0 0 -18.265 -17.923 -17.241
a7=-19.4393 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.6 0 0 0 0 -18.265 -18.265 -17.753 -17.241
a8=-19.3458 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.509 0 0 0 0 -18.265 -18.265 -17.667 -17.07
a9=-19.2523 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.418 0 0 0 0 -18.265 -18.265 -17.582 -17.07
a10=-19.1589 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.418 0 0 0 -18.265 -18.265 -18.265 -17.497 -16.899
a11=-19.0654 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.327 0 0 0 -18.265 -18.265 -18.009 -17.411 -16.814
a12=-18.972 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.236 0 0 -18.265 -18.265 -18.265 -17.753 -17.326 -16.729
a13=-18.8785 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.327 -18.236 0 0 -18.265 -18.265 -18.265 -17.667 -17.241 -16.643
a14=-18.785 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.327 -18.145 0 -18.265 -18.265 -18.265 -18.265 -17.497 -17.155 -16.558
a15=-18.6916 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.236 -18.053 0 -18.265 -18.265 -18.265 -18.265 -17.497 -17.07 -16.472
a16=-18.5981 -19.512 -19.512 -19.512 -19.512 -19.512 -19.512 -18.145 -18.053 -18.265 -18.265 -18.265 -18.265 -18.265 -17.411 -16.985 -16.387
a17=-18.5047 -19.512 -19.512 -19.512 -19.512 -19.512 -18.145 -18.145 -17.962 -18.265 -18.265 -18.265 -18.265 -18.265 -17.326 -16.899 -16.302
a18=-18.4112 -19.512 -19.512 -19.512 -19.512 -19.512 -18.145 -18.053 -17.78 -18.265 -18.265 -18.265 -18.265 -18.265 -17.241 -16.814 -16.216
a19=-18.3178 -19.512 -19.512 -19.512 -19.512 -19.512 -18.053 -18.053 -17.689 -18.265 -18.265 -18.265 -18.265 -17.411 -17.155 -16.643 -16.131
a20=-18.2243 -19.512 -19.512 -19.512 -19.512 -19.512 -18.053 -17.962 -17.689 -18.265 -18.265 -18.265 -18.265 -17.411 -17.07 -16.643 -16.046
a21=-18.1308 -19.512 -19.512 -19.512 -19.512 -18.053 -17.962 -17.962 -17.506 -18.265 -18.265 -18.265 -18.265 -17.241 -17.07 -16.558 -15.96
a22=-18.0374 -19.512 -19.512 -19.512 -19.512 -17.962 -17.962 -17.78 -17.506 -18.265 -18.265 -18.265 -18.265 -17.241 -16.985 -16.472 -15.79
a23=-17.9439 -19.512 -19.512 -19.512 -19.512 -17.962 -17.871 -17.78 -17.324 -18.265 -18.265 -18.265 -18.265 -17.155 -16.899 -16.387 -15.704
a24=-17.8505 -19.512 -19.512 -19.512 -17.871 -17.871 -17.871 -17.689 -17.233 -18.265 -18.265 -18.265 -18.265 -17.07 -16.814 -16.216 -15.619
a25=-17.757 -19.512 -19.512 -19.512 -17.871 -17.871 -17.78 -17.597 -17.142 -18.265 -18.265 -18.265 -17.155 -17.07 -16.643 -16.131 -15.534
a26=-17.6636 -19.512 -19.512 -17.871 -17.78 -17.78 -17.78 -17.506 -17.05 -18.265 -18.265 -18.265 -17.155 -16.985 -16.558 -16.046 -15.448
a27=-17.5701 -19.512 -19.512 -17.78 -17.78 -17.78 -17.689 -17.506 -16.868 -18.265 -18.265 -18.265 -17.07 -16.899 -16.472 -15.96 -15.363
a28=-17.4766 -19.512 -17.78 -17.78 -17.689 -17.689 -17.689 -17.233 -16.868 -18.265 -18.265 -18.265 -16.985 -16.899 -16.387 -15.875 -15.278
a29=-17.3832 -17.689 -17.689 -17.689 -17.689 -17.689 -17.597 -17.142 -16.777 -18.265 -18.265 -18.265 -16.985 -16.814 -16.302 -15.79 -15.192
a30=-17.2897 -17.689 -17.689 -17.689 -17.689 -17.597 -17.506 -17.05 -16.686 -18.265 -18.265 -16.985 -16.899 -16.643 -16.131 -15.704 -15.107
a31=-17.1963 -17.597 -17.597 -17.597 -17.597 -17.597 -17.415 -16.868 -16.594 -18.265 -18.265 -16.899 -16.899 -16.558 -16.046 -15.619 -15.022
a32=-17.1028 -17.597 -17.597 -17.597 -17.597 -17.506 -17.233 -16.777 -16.503 -18.265 -18.265 -16.899 -16.814 -16.472 -16.046 -15.534 -14.851
a33=-17.0093 -17.506 -17.506 -17.506 -17.506 -17.506 -17.142 -16.686 -16.412 -18.265 -16.899 -16.814 -16.729 -16.387 -15.96 -15.448 -14.766
a34=-16.9159 -17.506 -17.506 -17.506 -17.415 -17.415 -17.05 -16.594 -16.321 -18.265 -16.814 -16.814 -16.643 -16.216 -15.79 -15.278 -14.68
a35=-16.8224 -17.415 -17.415 -17.415 -17.415 -17.324 -16.777 -16.503 -16.23 -18.265 -16.814 -16.729 -16.558 -16.131 -15.704 -15.192 -14.595
a36=-16.729 -17.415 -17.415 -17.415 -17.324 -17.233 -16.686 -16.412 -16.139 -16.729 -16.729 -16.729 -16.558 -16.046 -15.619 -15.107 -14.509
a37=-16.6355 -17.324 -17.324 -17.324 -17.324 -17.142 -16.594 -16.412 -16.047 -16.729 -16.729 -16.643 -16.472 -15.96 -15.534 -15.022 -14.424
a38=-16.5421 -17.324 -17.324 -17.324 -17.233 -17.05 -16.503 -16.321 -15.956 -16.643 -16.643 -16.558 -16.387 -15.875 -15.448 -14.936 -14.339
a39=-16.4486 -17.233 -17.233 -17.233 -17.233 -16.777 -16.412 -16.23 -15.865 -16.643 -16.643 -16.558 -16.131 -15.79 -15.363 -14.851 -14.253
a40=-16.3551 -17.233 -17.233 -17.233 -17.142 -16.503 -16.321 -16.139 -15.774 -16.558 -16.558 -16.472 -16.046 -15.704 -15.278 -14.766 -14.168
a41=-16.2617 -17.142 -17.142 -17.142 -17.05 -16.412 -16.23 -16.047 -15.592 -16.558 -16.472 -16.387 -15.96 -15.619 -15.192 -14.68 -13.997
a42=-16.1682 -17.142 -17.142 -17.05 -16.868 -16.321 -16.23 -15.956 -15.592 -16.472 -16.472 -16.387 -15.79 -15.534 -15.107 -14.595 -13.912
a43=-16.0748 -17.05 -17.05 -17.05 -16.503 -16.23 -16.139 -15.865 -15.409 -16.472 -16.387 -16.216 -15.704 -15.448 -14.936 -14.509 -13.827
a44=-15.9813 -17.05 -17.05 -16.959 -16.23 -16.139 -16.047 -15.683 -15.318 -16.387 -16.387 -16.046 -15.619 -15.278 -14.851 -14.339 -13.741
a45=-15.8879 -16.959 -16.959 -16.868 -16.139 -16.047 -15.956 -15.592 -15.227 -16.387 -16.302 -15.96 -15.534 -15.192 -14.766 -14.253 -13.656
a46=-15.7944 -16.959 -16.868 -16.777 -16.047 -16.047 -15.865 -15.5 -15.136 -16.302 -16.216 -15.704 -15.448 -15.192 -14.68 -14.168 -13.571
a47=-15.7009 -16.868 -16.868 -16.047 -16.047 -15.956 -15.774 -15.409 -15.044 -16.302 -16.131 -15.619 -15.363 -15.022 -14.595 -14.083 -13.485
a48=-15.6075 -16.868 -16.777 -15.956 -15.956 -15.865 -15.683 -15.318 -14.953 -16.216 -16.046 -15.448 -15.278 -14.936 -14.509 -13.997 -13.4
a49=-15.514 -16.777 -15.956 -15.956 -15.865 -15.774 -15.592 -15.227 -14.862 -16.131 -15.96 -15.448 -15.192 -14.851 -14.424 -13.912 -13.229
a50=-15.4206 -16.686 -15.865 -15.865 -15.865 -15.774 -15.409 -15.136 -14.771 -16.131 -15.704 -15.363 -15.107 -14.766 -14.339 -13.827 -13.144
a701=45.4206 41.851 41.851 41.942 42.033 42.216 42.398 42.58 42.854 42.033 42.216 42.398 42.58 42.854 43.127 43.583 44.039
a702=45.514 41.942 41.942 42.033 42.124 42.307 42.489 42.672 42.945 42.124 42.307 42.489 42.672 42.945 43.219 43.674 44.13
a703=45.6075 42.033 42.033 42.124 42.216 42.398 42.58 42.763 43.036 42.216 42.398 42.58 42.763 43.036 43.31 43.674 44.222
a704=45.7009 42.124 42.124 42.216 42.307 42.489 42.672 42.854 43.127 42.307 42.489 42.672 42.854 43.127 43.401 43.766 44.313
a705=45.7944 42.216 42.216 42.307 42.398 42.58 42.763 42.945 43.219 42.398 42.58 42.763 42.945 43.219 43.492 43.857 44.404
a706=45.8879 42.307 42.307 42.398 42.489 42.672 42.763 43.036 43.31 42.489 42.672 42.763 43.036 43.31 43.583 43.948 44.495
a707=45.9813 42.398 42.398 42.489 42.58 42.763 42.854 43.127 43.401 42.58 42.763 42.854 43.127 43.401 43.674 44.039 44.586
a708=46.0748 42.489 42.489 42.58 42.672 42.854 42.945 43.219 43.401 42.672 42.854 42.945 43.219 43.401 43.766 44.13 44.677
a709=46.1682 42.489 42.58 42.672 42.763 42.945 43.036 43.31 43.492 42.763 42.945 43.036 43.31 43.492 43.857 44.222 44.769
a710=46.2617 42.58 42.672 42.763 42.854 43.036 43.127 43.401 43.583 42.854 43.036 43.127 43.401 43.583 43.948 44.313 44.86
a711=46.3551 42.672 42.763 42.854 42.945 43.127 43.219 43.492 43.674 42.945 43.127 43.219 43.492 43.674 44.039 44.404 44.951
a712=46.4486 42.763 42.854 42.945 43.036 43.219 43.31 43.583 43.766 43.036 43.219 43.31 43.583 43.766 44.13 44.495 45.042
a713=46.5421 42.854 42.945 43.036 43.127 43.219 43.401 43.674 43.857 43.127 43.219 43.401 43.674 43.857 44.222 44.586 45.133
a714=46.6355 42.945 43.036 43.127 43.219 43.31 43.492 43.674 43.948 43.219 43.31 43.492 43.674 43.948 44.313 44.677 45.225
a715=46.729 43.036 43.127 43.219 43.31 43.401 43.583 43.766 44.039 43.31 43.401 43.583 43.766 44.039 44.404 44.769 45.316
a716=46.8224 43.127 43.219 43.31 43.401 43.492 43.674 43.857 44.13 43.401 43.492 43.674 43.857 44.13 44.495 44.86 45.407
a717=46.9159 43.219 43.31 43.401 43.492 43.583 43.766 43.948 44.222 43.492 43.583 43.766 43.948 44.222 44.586 44.951 45.498
a718=47.0093 43.31 43.401 43.492 43.583 43.674 43.857 44.039 44.313 43.583 43.674 43.857 44.039 44.313 44.677 45.042 45.589
a719=47.1028 43.401 43.492 43.583 43.674 43.766 43.948 44.13 44.404 43.674 43.766 43.948 44.13 44.404 44.769 45.133 45.68
a720=47.1963 43.492 43.583 43.674 43.766 43.857 44.039 44.222 44.495 43.766 43.857 44.039 44.222 44.495 44.86 45.225 45.68
a721=47.2897 43.583 43.674 43.766 43.857 43.948 44.13 44.313 44.586 43.857 43.948 44.13 44.313 44.586 44.951 45.316 45.772
a722=47.3832 43.674 43.766 43.857 43.948 44.039 44.222 44.404 44.677 43.948 44.039 44.222 44.404 44.677 45.042 45.407 45.863
a723=47.4766 43.766 43.857 43.948 44.039 44.13 44.313 44.495 44.769 44.039 44.13 44.313 44.495 44.769 45.133 45.498 45.954
a724=47.5701 43.857 43.948 44.039 44.13 44.222 44.404 44.586 44.86 44.13 44.222 44.404 44.586 44.86 45.225 45.589 46.045
a725=47.6636 43.948 44.039 44.13 44.222 44.313 44.495 44.677 44.951 44.222 44.313 44.495 44.677 44.951 45.225 45.68 46.136
a726=47.757 44.039 44.13 44.222 44.313 44.404 44.586 44.769 45.042 44.313 44.404 44.586 44.769 45.042 45.316 45.772 46.227
a727=47.8505 44.13 44.222 44.313 44.404 44.495 44.677 44.86 45.133 44.404 44.495 44.677 44.86 45.133 45.407 45.863 46.319
a728=47.9439 44.222 44.313 44.404 44.495 44.586 44.769 44.951 45.225 44.495 44.586 44.769 44.951 45.225 45.498 45.954 46.41
a729=48.0374 44.313 44.404 44.404 44.586 44.677 44.86 45.042 45.316 44.586 44.677 44.86 45.042 45.316 45.589 46.045 46.501
a730=48.1308 44.404 44.495 44.495 44.677 44.769 44.951 45.133 45.407 44.677 44.769 44.951 45.133 45.407 45.68 46.136 46.592
a731=48.2243 44.495 44.586 44.586 44.769 44.86 45.042 45.225 45.498 44.769 44.86 45.042 45.225 45.498 45.772 46.227 46.683
a732=48.3178 44.586 44.677 44.677 44.86 44.951 45.133 45.316 45.589 44.86 44.951 45.133 45.316 45.589 45.863 46.319 46.775
a733=48.4112 44.677 44.677 44.769 44.86 45.042 45.225 45.407 45.68 44.86 45.042 45.225 45.407 45.68 45.954 46.41 46.866
a734=48.5047 44.769 44.769 44.86 44.951 45.133 45.316 45.498 45.772 44.951 45.133 45.316 45.498 45.772 46.045 46.501 46.957
a735=48.5981 44.86 44.86 44.951 45.042 45.225 45.407 45.589 45.863 45.042 45.225 45.407 45.589 45.863 46.136 46.592 47.048
a736=48.6916 44.951 44.951 45.042 45.133 45.316 45.498 45.68 45.954 45.133 45.316 45.498 45.68 45.954 46.227 46.683 47.139
a737=48.785 45.042 45.042 45.133 45.225 45.407 45.589 45.772 46.045 45.225 45.407 45.589 45.772 46.045 46.319 46.775 47.23
a738=48.8785 45.133 45.133 45.225 45.316 45.498 45.68 45.863 46.136 45.316 45.498 45.68 45.863 46.136 46.41 46.775 47.322
a739=48.972 45.225 45.225 45.316 45.407 45.589 45.772 45.954 46.227 45.407 45.589 45.772 45.954 46.227 46.501 46.866 47.413
a740=49.0654 45.316 45.316 45.407 45.498 45.68 45.772 46.045 46.319 45.498 45.68 45.772 46.045 46.319 46.592 46.957 47.504
a741=49.1589 45.407 45.407 45.498 45.589 45.772 45.863 46.136 46.41 45.589 45.772 45.863 46.136 46.41 46.683 47.048 47.595
a742=49.2523 45.498 45.498 45.589 45.68 45.863 45.954 46.227 46.41 45.68 45.863 45.954 46.227 46.41 46.775 47.139 47.686
a743=49.3458 45.498 45.589 45.68 45.772 45.954 46.045 46.319 46.501 45.772 45.954 46.045 46.319 46.501 46.866 47.23 47.778
a744=49.4393 45.589 45.68 45.772 45.863 46.045 46.136 46.41 46.592 45.863 46.045 46.136 46.41 46.592 46.957 47.322 47.869
a745=49.5327 45.68 45.772 45.863 45.954 46.136 46.227 46.501 46.683 45.954 46.136 46.227 46.501 46.683 47.048 47.413 47.96
a746=49.6262 45.772 45.863 45.954 46.045 46.227 46.319 46.592 46.775 46.045 46.227 46.319 46.592 46.775 47.139 47.504 48.051
a747=49.7196 45.863 45.954 46.045 46.136 46.227 46.41 46.683 46.866 46.136 46.227 46.41 46.683 46.866 47.23 47.595 48.142
a748=49.8131 45.954 46.045 46.136 46.227 46.319 46.501 46.683 46.957 46.227 46.319 46.501 46.683 46.957 47.322 47.686 48.233
a749=49.9065 46.045 46.136 46.227 46.319 46.41 46.592 46.775 47.048 46.319 46.41 46.592 46.775 47.048 47.413 47.778 48.325
a750=50 46.136 46.227 46.319 46.41 46.501 46.683 46.866 47.139 46.41 46.501 46.683 46.866 47.139 47.504 47.869 48.416
end
ans =
Map with properties:
Count: 13
KeyType: char
ValueType: any