Derive Asset and Choices/Outcomes Distribution (Vectorized)
back to Fan's Dynamic Assets Repository Table of Content.
Contents
- FF_AZ_DS_VEC finds the stationary asset distributions Vectorized
- Default
- Parse Parameters
- Start Profiler and Timer
- Get Size of Endogenous and Exogenous State
- f(a,z): Initialize Output Matrixes
- f(a,z): Initialize Convergence Conditions
- f(a,z): Derive Stationary Distribution
- f(a,z): Vectorized Solution
- f(a,z): Check Tolerance and Continuation
- End Time and Profiler
- f(y), f(c), f(a): Generate Key Distributional Statistics for Each outcome
function [result_map] = ff_az_ds_vec(varargin)
FF_AZ_DS_VEC finds the stationary asset distributions Vectorized
Building on the Asset Dynamic Programming Problem ff_az_vf_vecsv, here we solve for the asset distribution using vectorized codes. ff_az_ds shows looped codes for finding asset distribution. The solution is the same. Both ff_az_ds and ff_az_ds_vec using optimized-vectorized dynamic programming code from ff_az_vf_vecsv. The idea here is that in addition to vectornizing the dynamic programming funcion, we can also vectorize the distribution code here.
This function finds the distributio based on the outputs of several dynamic programming problems, both single and multiple assets:
- One Asset DP Savings ff_az_vf_vecsv
- One Asset DP Savings and Borrowing ff_abz_vf_vecsv
- Risky + Safe Asset Concurrent DP ff_akz_vf_vecsv
- Risky + Safe Asset Two-Stage DP ff_wkz_vf_vecsv
Similar to ff_az_ds. The code here works when we are looking for the distribution of f(a,z), where a'(a,z), meaning that the a next period is determined by a last period and some shock. Given this, the a' is fixed for all z'. If however, the outcome of interest is such that: y'(y,z,z'), meaning that y' is different depending on realized z', the code below does not work.
Distributions of Interest:
Statistics include:
- percentiles:
- fraction of outcome held by up to percentiles:
@param param_map container parameter container
@param support_map container support container
@param armt_map container container with states, choices and shocks grids that are inputs for grid based solution algorithm
@param func_map container container with function handles for consumption cash-on-hand etc.
@return result_map container contains policy function matrix, value function matrix, iteration results, and policy function, value function and iteration results tables.
new keys included in result_map in addition to the output from ff_az_vf_vecsv are various distribution statistics for each model outcome, keys include cl_mt_pol_a, cl_mt_pol_c, cl_mt_pol_coh, etc.
@example
% Get Default Parameters it_param_set = 6; [param_map, support_map] = ffs_az_set_default_param(it_param_set); % Change Keys in param_map param_map('it_a_n') = 500; param_map('it_z_n') = 11; param_map('fl_a_max') = 100; param_map('fl_w') = 1.3; % Change Keys support_map support_map('bl_display') = false; support_map('bl_post') = true; support_map('bl_display_final') = false; % Call Program with external parameters that override defaults ff_az_ds_vec(param_map, support_map);
@include
@seealso
- derive distribution f(y'(y,z)) one asset loop: ff_az_ds
- derive distribution f(y'({x,y},z)) two assets loop: ff_akz_ds
- derive distribution f(y'({x,y},z, z')) two assets loop: ff_iwkz_ds
- derive distribution f(y'({y},z)) or f(y'({x,y},z)) vectorized: ff_az_ds_vec
- derive distribution f(y'({y},z, z')) or f(y'({x,y},z, z')) vectorized: ff_iwkz_ds_vec
- derive distribution f(y'({y},z)) or f(y'({x,y},z)) semi-analytical: ff_az_ds_vecsv
- derive distribution f(y'({y},z, z')) or f(y'({x,y},z, z')) semi-analytical: ff_iwkz_ds_vecsv
Default
Program can be externally invoked with az, abz or various other programs. By default, program invokes using az model programs:
- it_subset = 5 is basic invoke quick test
- it_subset = 6 is invoke full test
- it_subset = 7 is profiling invoke
- it_subset = 8 is matlab publish
- it_subset = 9 is invoke operational (only final stats) and coh graph
if (~isempty(varargin)) % if invoked from outside override fully [param_map, support_map, armt_map, ~, result_map] = varargin{:}; else % default invoke close all; it_param_set = 8; bl_input_override = true; % 1. Generate Parameters [param_map, support_map] = ffs_az_set_default_param(it_param_set); % Note: param_map and support_map can be adjusted here or outside to override defaults % param_map('it_a_n') = 750; % param_map('it_z_n') = 15; % 2. Generate function and grids [armt_map, func_map] = ffs_az_get_funcgrid(param_map, support_map, bl_input_override); % 1 for override % 3. Solve value and policy function using az_vf_vecsv, if want to solve % other models, solve outside then provide result_map as input [result_map] = ff_az_vf_vecsv(param_map, support_map, armt_map, func_map); end
---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: SUPPORT_MAP ---------------------------------------- Map with properties: Count: 40 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 26 ; key = st_img_name_main ; val = ff_az_vf_vecsv_default pos = 27 ; key = st_img_path ; val = C:/Users/fan/CodeDynaAsset//m_az//solve/img/ pos = 28 ; key = st_img_prefix ; val = pos = 29 ; key = st_img_suffix ; val = _p8.png pos = 30 ; key = st_mat_name_main ; val = ff_az_vf_vecsv_default pos = 31 ; key = st_mat_path ; val = C:/Users/fan/CodeDynaAsset//m_az//solve/mat/ pos = 32 ; key = st_mat_prefix ; val = pos = 33 ; key = st_mat_suffix ; val = _p8 pos = 34 ; key = st_mat_test_path ; val = C:/Users/fan/CodeDynaAsset//m_az//test/ff_az_ds_vecsv/mat/ pos = 35 ; key = st_matimg_path_root ; val = C:/Users/fan/CodeDynaAsset//m_az/ pos = 36 ; key = st_profile_name_main ; val = ff_az_vf_vecsv_default pos = 37 ; key = st_profile_path ; val = C:/Users/fan/CodeDynaAsset//m_az//solve/profile/ pos = 38 ; key = st_profile_prefix ; val = pos = 39 ; key = st_profile_suffix ; val = _p8 pos = 40 ; key = st_title_prefix ; val = ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value __ ___ _____ bl_display 1 1 0 bl_display_defparam 2 2 1 bl_display_dist 3 3 0 bl_display_final 4 4 0 bl_display_final_dist 5 5 1 bl_display_final_dist_detail 6 6 1 bl_display_funcgrids 7 7 0 bl_graph 8 8 1 bl_graph_coh_t_coh 9 9 1 bl_graph_funcgrids 10 10 0 bl_graph_onebyones 11 11 1 bl_graph_pol_lvl 12 12 0 bl_graph_pol_pct 13 13 0 bl_graph_val 14 14 0 bl_img_save 15 15 0 bl_mat 16 16 0 bl_post 17 17 1 bl_profile 18 18 0 bl_profile_dist 19 19 0 bl_time 20 20 0 it_display_every 21 21 20 it_display_final_colmax 22 22 12 it_display_final_rowmax 23 23 100 it_display_summmat_colmax 24 24 5 it_display_summmat_rowmax 25 25 5 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: ARMT_MAP ---------------------------------------- Map with properties: Count: 4 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Matrix in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx rowN colN mean std min max _ ___ ____ ____ ________ ________ _________ _______ ar_a 1 1 1 750 25 14.463 0 50 ar_stationary 2 2 1 15 0.066667 0.060897 0.0027089 0.16757 ar_z 3 3 1 15 1.1347 0.69878 0.34741 2.567 mt_z_trans 4 4 15 15 0.066667 0.095337 0 0.27902 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: PARAM_MAP ---------------------------------------- Map with properties: Count: 24 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 23 ; key = st_analytical_stationary_type ; val = eigenvector pos = 24 ; key = st_model ; val = az ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx value __ ___ _____ bl_loglin 1 1 0 fl_a_max 2 2 50 fl_a_min 3 3 0 fl_b_bd 4 4 0 fl_beta 5 5 0.94 fl_crra 6 6 1.5 fl_loglin_threshold 7 7 1 fl_nan_replace 8 8 -9999 fl_r_save 9 9 0.025 fl_tol_dist 10 10 1e-05 fl_tol_pol 11 11 1e-05 fl_tol_val 12 12 1e-05 fl_w 13 13 1.28 fl_z_mu 14 14 0 fl_z_rho 15 15 0.8 fl_z_sig 16 16 0.2 it_a_n 17 17 750 it_maxiter_dist 18 18 1000 it_maxiter_val 19 19 1000 it_tol_pol_nochange 20 20 25 it_trans_power_dist 21 21 1000 it_z_n 22 22 15 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: FUNC_MAP ---------------------------------------- Map with properties: Count: 6 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 1 ; key = f_coh ; val = @(z,b)(z*fl_w+b.*(1+fl_r_save)) pos = 2 ; key = f_cons ; val = @(z,b,bprime)(f_coh(z,b)-bprime) pos = 3 ; key = f_inc ; val = @(z,b)(z*fl_w+b.*(fl_r_save)) pos = 4 ; key = f_util_crra ; val = @(c)(((c).^(1-fl_crra)-1)./(1-fl_crra)) pos = 5 ; key = f_util_log ; val = @(c)log(c) pos = 6 ; key = f_util_standin ; val = @(z,b)f_util_log(f_coh(z,b)) ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Scalars in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx xFunction _ ___ _________ f_coh 1 1 1 f_cons 2 2 2 f_inc 3 3 3 f_util_crra 4 4 4 f_util_log 5 5 5 f_util_standin 6 6 6 ---------------------------------------- ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Begin: Show all key and value pairs from container CONTAINER NAME: RESULT_MAP ---------------------------------------- Map with properties: Count: 10 KeyType: char ValueType: any xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- ---------------------------------------- pos = 2 ; key = ar_st_pol_names ; val = cl_mt_val cl_mt_pol_a cl_mt_coh cl_mt_pol_c ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Matrix in Container and Sizes and Basic Statistics xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx rowN colN mean std min max _ ___ ____ ____ _______ _______ _______ ______ ar_pol_diff_norm 1 1 105 1 29.079 159.48 0 1532.9 ar_val_diff_norm 2 3 105 1 10.915 26.247 0.02899 163.75 cl_mt_coh 3 4 750 15 27.077 14.84 0.44468 54.536 cl_mt_pol_a 4 5 750 15 23.941 13.926 0 49.599 cl_mt_pol_c 5 6 750 15 3.136 0.93512 0.44468 4.9363 cl_mt_val 6 7 750 15 10.288 3.1692 -1.496 15.012 mt_pol_idx 7 8 750 15 359.64 208.62 1 744 mt_pol_perc_change 8 9 105 15 0.21725 0.34614 0 1 mt_val 9 10 750 15 10.288 3.1692 -1.496 15.012
Parse Parameters
% append function name st_func_name = 'ff_az_ds_vec'; support_map('st_profile_name_main') = [st_func_name support_map('st_profile_name_main')]; support_map('st_mat_name_main') = [st_func_name support_map('st_mat_name_main')]; support_map('st_img_name_main') = [st_func_name support_map('st_img_name_main')]; % result_map % ar_st_pol_names is from section _Process Optimal Choices_ in the value % function code. params_group = values(result_map, {'mt_pol_idx'}); [mt_pol_idx] = params_group{:}; % armt_map params_group = values(armt_map, {'mt_z_trans'}); [mt_z_trans] = params_group{:}; % param_map params_group = values(param_map, {'it_maxiter_dist', 'fl_tol_dist'}); [it_maxiter_dist, fl_tol_dist] = params_group{:}; % support_map params_group = values(support_map, {'bl_profile_dist', 'st_profile_path', ... 'st_profile_prefix', 'st_profile_name_main', 'st_profile_suffix',... 'bl_time', 'bl_display_dist', 'it_display_every'}); [bl_profile_dist, st_profile_path, ... st_profile_prefix, st_profile_name_main, st_profile_suffix, ... bl_time, bl_display_dist, it_display_every] = params_group{:};
Start Profiler and Timer
% Start Profile if (bl_profile_dist) close all; profile off; profile on; end % Start Timer if (bl_time) tic; end
Get Size of Endogenous and Exogenous State
The key idea is that all information for policy function is captured by mt_pol_idx matrix, its rows are the number of endogenous states, and its columns are the exogenous shocks.
[it_endostates_rows_n, it_exostates_cols_n] = size(mt_pol_idx);
f(a,z): Initialize Output Matrixes
Initialize the distribution to be uniform
mt_dist_az_init = ones(it_endostates_rows_n,it_exostates_cols_n)/it_endostates_rows_n/it_exostates_cols_n; mt_dist_az_cur = mt_dist_az_init; mt_dist_az_zeros = zeros(it_endostates_rows_n,it_exostates_cols_n);
f(a,z): Initialize Convergence Conditions
bl_histiter_continue = true; it_iter = 0; ar_dist_diff_norm = zeros([it_maxiter_dist, 1]); mt_dist_perc_change = zeros([it_maxiter_dist, it_exostates_cols_n]);
f(a,z): Derive Stationary Distribution
Iterate over the discrete joint random variable variables (a,z)
while (bl_histiter_continue)
it_iter = it_iter + 1;
f(a,z): Vectorized Solution
this is the only part of the code that differs from ff_az_ds.html the looped code.
% 1. initialize empty mt_dist_az = mt_dist_az_zeros; % 2. One loop remains for i = 1:it_exostates_cols_n % 3. Get Unique Index (future states receive from multiple current states) [ar_idx_full, ~, ar_idx_of_unique] = unique(mt_pol_idx(:,i)); mt_zi_prob = mt_dist_az_cur(:,i) * mt_z_trans(i,:); % 4. Cumulative probability received at state from zi [mt_idx_of_unique_mesh, mt_col_idx] = ndgrid(ar_idx_of_unique, 1:size(mt_zi_prob,2)); mt_zi_cumu_prob = accumarray([mt_idx_of_unique_mesh(:) mt_col_idx(:)], mt_zi_prob(:)); % 5. Adding up mt_dist_az(ar_idx_full, :) = mt_zi_cumu_prob + mt_dist_az(ar_idx_full,:); end
f(a,z): Check Tolerance and Continuation
% Difference across iterations ar_dist_diff_norm(it_iter) = norm(mt_dist_az - mt_dist_az_cur); mt_dist_perc_change(it_iter, :) = sum((mt_dist_az ~= mt_dist_az))/(it_endostates_rows_n); % Update mt_dist_az_cur = mt_dist_az; % Print Iteration Results if (bl_display_dist && (rem(it_iter, it_display_every)==0)) fprintf('Dist it_iter:%d, fl_dist_diff:%d\n', it_iter, ar_dist_diff_norm(it_iter)); tb_hist_iter = array2table([sum(mt_dist_az_cur,1); std(mt_dist_az_cur,1); ... mt_dist_az_cur(1,:); mt_dist_az_cur(it_endostates_rows_n,:)]); tb_hist_iter.Properties.VariableNames = strcat('z', string((1:size(mt_dist_az,2)))); tb_hist_iter.Properties.RowNames = {'mdist','sddist', 'Ldist', 'Hdist'}; disp('mdist = sum(mt_dist_az_cur,1) = sum_{a}(p(a)|z)') disp('sddist = std(mt_pol_a_cur,1) = std_{a}(p(a)|z)') disp('Ldist = mt_dist_az_cur(1,:) = p(min(a)|z)') disp('Hdist = mt_dist_az_cur(it_a_n,:) = p(max(a)|z)') disp(tb_hist_iter); end % Continuation Conditions: if (it_iter == (it_maxiter_dist + 1)) bl_histiter_continue = false; elseif ((it_iter == it_maxiter_dist) || ... (ar_dist_diff_norm(it_iter) < fl_tol_dist)) it_iter_last = it_iter; it_iter = it_maxiter_dist; end
end
End Time and Profiler
% End Timer if (bl_time) toc; end % End Profile if (bl_profile_dist) profile off profile viewer st_file_name = [st_profile_prefix st_profile_name_main st_profile_suffix]; profsave(profile('info'), strcat(st_profile_path, st_file_name)); end
f(y), f(c), f(a): Generate Key Distributional Statistics for Each outcome
Having derived f(a,z) the probability mass function of the joint discrete random variables, we now obtain distributional statistics. Note that we know f(a,z), and we also know relevant policy functions a'(a,z), c(a,z), or other policy functions. We can simulate any choices that are a function of the random variables (a,z), using f(a,z). We call function ff_az_ds_post_stats which uses fft_disc_rand_var_stats and fft_disc_rand_var_mass2outcomes to compute various statistics of interest.
bl_input_override = true;
result_map('mt_dist') = mt_dist_az;
result_map = ff_az_ds_post_stats(support_map, result_map, mt_dist_az, bl_input_override);
---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_val xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 3.2160 fl_choice_sd 1.5949 fl_choice_coefofvar 0.4959 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0.0237 fl_choice_prob_above_zero 0.9763 fl_choice_prob_max 0 tb_disc_cumu cl_mt_valDiscreteVal cl_mt_valDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ _______ __________ -1.496 0.0022497 0.22497 -0.0010465 -1.2889 0.00011708 0.23667 -0.0010934 -1.1195 5.0166e-05 0.24169 -0.0011109 -0.96773 5.0905e-05 0.24678 -0.0011262 -0.85738 0.0054589 0.79267 -0.0025815 -0.82642 2.8104e-05 0.79548 -0.0025887 -0.69878 2.9614e-05 0.79844 -0.0025952 -0.68792 0.00036451 0.8349 -0.0026731 -0.57856 2.249e-05 0.83714 -0.0026772 -0.54598 0.00014412 0.85156 -0.0027016 cl_mt_valDiscreteVal cl_mt_valDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ ___ __________ 14.956 0 100 1 14.962 0 100 1 14.968 0 100 1 14.975 0 100 1 14.981 0 100 1 14.987 0 100 1 14.993 0 100 1 14.999 0 100 1 15.006 0 100 1 15.012 0 100 1 tb_prob_drv percentiles cl_mt_valDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ____________________________________ ________________________________ 0.1 -1.496 -0.0010465 1 -0.20677 -0.0036078 5 0.4326 0.00013246 10 1.051 0.016595 15 1.6461 0.054864 20 1.7912 0.064583 25 2.2186 0.12076 35 2.6167 0.16824 50 3.239 0.30272 65 3.834 0.46974 75 4.2838 0.59101 80 4.5488 0.65996 85 4.8767 0.73282 90 5.2801 0.81138 95 5.8899 0.89847 99 7.0098 0.97682 99.9 8.0879 0.99741 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_pol_a xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 0.8308 fl_choice_sd 1.1783 fl_choice_coefofvar 1.4183 fl_choice_prob_zero 0.2815 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 0.7185 fl_choice_prob_max 0 tb_disc_cumu cl_mt_pol_aDiscreteVal cl_mt_pol_aDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ______ __________ 0 0.28147 28.147 0 0.066756 0.063772 34.524 0.0051244 0.13351 0.035749 38.099 0.01087 0.20027 0.051954 43.295 0.023394 0.26702 0.034348 46.729 0.034434 0.33378 0.034461 50.175 0.04828 0.40053 0.033484 53.524 0.064424 0.46729 0.023335 55.857 0.077549 0.53405 0.030339 58.891 0.097053 0.6008 0.023924 61.284 0.11436 cl_mt_pol_aDiscreteVal cl_mt_pol_aDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___ __________ 48.999 0 100 1 49.065 0 100 1 49.132 0 100 1 49.199 0 100 1 49.266 0 100 1 49.332 0 100 1 49.399 0 100 1 49.466 0 100 1 49.533 0 100 1 49.599 0 100 1 tb_prob_drv percentiles cl_mt_pol_aDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ______________________________________ ________________________________ 0.1 0 0 1 0 0 5 0 0 10 0 0 15 0 0 20 0 0 25 0 0 35 0.13351 0.01087 50 0.33378 0.04828 65 0.73431 0.14685 75 1.1348 0.25996 80 1.4686 0.35468 85 1.8024 0.43783 90 2.3364 0.56644 95 3.271 0.73086 99 5.3405 0.92153 99.9 8.0774 0.98949 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_coh xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 2.1316 fl_choice_sd 1.4662 fl_choice_coefofvar 0.6878 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max 0 tb_disc_cumu cl_mt_cohDiscreteVal cl_mt_cohDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ _______ __________ 0.44468 0.0022497 0.22497 0.00046931 0.51297 0.0054589 0.77086 0.001783 0.51311 0.00011708 0.78257 0.0018112 0.5814 0.00036451 0.81902 0.0019106 0.58153 5.0166e-05 0.82403 0.0019243 0.59175 0.013549 2.1789 0.0056855 0.64982 0.00014412 2.1933 0.0057294 0.64996 5.0905e-05 2.1984 0.0057449 0.66017 0.0011396 2.3124 0.0060979 0.68262 0.027189 5.0313 0.014805 cl_mt_cohDiscreteVal cl_mt_cohDiscreteValProbMass CDF cumsumFrac ____________________ ____________________________ ___ __________ 54.03 0 100 1 54.057 0 100 1 54.098 0 100 1 54.125 0 100 1 54.194 0 100 1 54.262 0 100 1 54.331 0 100 1 54.399 0 100 1 54.467 0 100 1 54.536 0 100 1 tb_prob_drv percentiles cl_mt_cohDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ____________________________________ ________________________________ 0.1 0.44468 0.00046931 1 0.59175 0.0056855 5 0.68262 0.014805 10 0.85587 0.035362 15 0.90837 0.060387 20 1.0479 0.098878 25 1.1136 0.10377 35 1.2772 0.15913 50 1.6681 0.26465 65 2.1977 0.39975 75 2.6879 0.51052 80 3.0188 0.57781 85 3.4471 0.65507 90 4.0585 0.74042 95 5.109 0.84688 99 7.4642 0.95916 99.9 10.402 0.99463 ---------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Summary Statistics for: cl_mt_pol_c xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ---------------------------------------- fl_choice_mean 1.3008 fl_choice_sd 0.3450 fl_choice_coefofvar 0.2652 fl_choice_prob_zero 0 fl_choice_prob_below_zero 0 fl_choice_prob_above_zero 1.0000 fl_choice_prob_max 0 tb_disc_cumu cl_mt_pol_cDiscreteVal cl_mt_pol_cDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ _______ __________ 0.44468 0.0022497 0.22497 0.00076903 0.51297 0.0054589 0.77086 0.0029217 0.51311 0.00011708 0.78257 0.0029679 0.5814 0.00036451 0.81902 0.0031308 0.58153 5.0166e-05 0.82403 0.0031532 0.5832 5.0905e-05 0.82912 0.003176 0.59175 0.013549 2.184 0.0093392 0.64982 0.00014412 2.1984 0.0094112 0.65149 0.00017074 2.2155 0.0094967 0.65163 2.8104e-05 2.2183 0.0095107 cl_mt_pol_cDiscreteVal cl_mt_pol_cDiscreteValProbMass CDF cumsumFrac ______________________ ______________________________ ___ __________ 4.9213 0 100 1 4.923 0 100 1 4.9246 0 100 1 4.9263 0 100 1 4.928 0 100 1 4.9297 0 100 1 4.9313 0 100 1 4.933 0 100 1 4.9347 0 100 1 4.9363 0 100 1 tb_prob_drv percentiles cl_mt_pol_cDiscreteValPercentileValues fracOfSumHeldBelowThisPercentile ___________ ______________________________________ ________________________________ 0.1 0.44468 0.00076903 1 0.59175 0.0093392 5 0.68262 0.024372 10 0.81947 0.054869 15 0.90837 0.10332 20 1.0364 0.12492 25 1.0479 0.17674 35 1.1964 0.25332 50 1.3276 0.41338 65 1.4161 0.55319 75 1.5268 0.66718 80 1.5952 0.72753 85 1.6619 0.78829 90 1.7521 0.85351 95 1.8668 0.92266 99 2.1241 0.98296 99.9 2.3562 0.99811 OriginalVariableNames cl_mt_val cl_mt_pol_a cl_mt_coh cl_mt_pol_c _____________________ __________ ___________ __________ ___________ 'mean' 3.216 0.83075 2.1316 1.3008 'sd' 1.5949 1.1783 1.4662 0.34504 'coefofvar' 0.49593 1.4183 0.68783 0.26524 'min' -1.496 0 0.44468 0.44468 'max' 15.012 49.599 54.536 4.9363 'pYis0' 0 0.28147 0 0 'pYls0' 0.023701 0 0 0 'pYgr0' 0.9763 0.71853 1 1 'pYisMINY' 0.0022497 0.28147 0.0022497 0.0022497 'pYisMAXY' 0 0 0 0 'p0_1' -1.496 0 0.44468 0.44468 'p1' -0.20677 0 0.59175 0.59175 'p5' 0.4326 0 0.68262 0.68262 'p10' 1.051 0 0.85587 0.81947 'p15' 1.6461 0 0.90837 0.90837 'p20' 1.7912 0 1.0479 1.0364 'p25' 2.2186 0 1.1136 1.0479 'p35' 2.6167 0.13351 1.2772 1.1964 'p50' 3.239 0.33378 1.6681 1.3276 'p65' 3.834 0.73431 2.1977 1.4161 'p75' 4.2838 1.1348 2.6879 1.5268 'p80' 4.5488 1.4686 3.0188 1.5952 'p85' 4.8767 1.8024 3.4471 1.6619 'p90' 5.2801 2.3364 4.0585 1.7521 'p95' 5.8899 3.271 5.109 1.8668 'p99' 7.0098 5.3405 7.4642 2.1241 'p99_9' 8.0879 8.0774 10.402 2.3562 'fl_cov_cl_mt_val' 2.5438 1.4648 2.0125 0.54766 'fl_cor_cl_mt_val' 1 0.77947 0.86061 0.99518 'fl_cov_cl_mt_pol_a' 1.4648 1.3883 1.7095 0.32116 'fl_cor_cl_mt_pol_a' 0.77947 1 0.98953 0.78994 'fl_cov_cl_mt_coh' 2.0125 1.7095 2.1497 0.44021 'fl_cor_cl_mt_coh' 0.86061 0.98953 1 0.87016 'fl_cov_cl_mt_pol_c' 0.54766 0.32116 0.44021 0.11905 'fl_cor_cl_mt_pol_c' 0.99518 0.78994 0.87016 1 'fracByP0_1' -0.0010465 0 0.00046931 0.00076903 'fracByP1' -0.0036078 0 0.0056855 0.0093392 'fracByP5' 0.00013246 0 0.014805 0.024372 'fracByP10' 0.016595 0 0.035362 0.054869 'fracByP15' 0.054864 0 0.060387 0.10332 'fracByP20' 0.064583 0 0.098878 0.12492 'fracByP25' 0.12076 0 0.10377 0.17674 'fracByP35' 0.16824 0.01087 0.15913 0.25332 'fracByP50' 0.30272 0.04828 0.26465 0.41338 'fracByP65' 0.46974 0.14685 0.39975 0.55319 'fracByP75' 0.59101 0.25996 0.51052 0.66718 'fracByP80' 0.65996 0.35468 0.57781 0.72753 'fracByP85' 0.73282 0.43783 0.65507 0.78829 'fracByP90' 0.81138 0.56644 0.74042 0.85351 'fracByP95' 0.89847 0.73086 0.84688 0.92266 'fracByP99' 0.97682 0.92153 0.95916 0.98296 'fracByP99_9' 0.99741 0.98949 0.99463 0.99811
end
ans = Map with properties: Count: 13 KeyType: char ValueType: any